
Towards Formal Verification of ToolBus Scripts

Wan Fokkink2,1 Paul Klint1,3 Bert Lisser1 Yaroslav S. Usenko4,1

1 Software Engineering Cluster,
Centrum voor Wiskunde en Informatica,

Amsterdam, The Netherlands
2 Theoretical Computer Science Section,

Vrije Universiteit Amsterdam, The Netherlands
3 Programming Research Group,

Universiteit van Amsterdam, The Netherlands
4 Laboratory for Quality Software (LaQuSo),

Technische Universiteit Eindhoven, The Netherlands

Abstract. ToolBus allows one to connect tools via a software bus.
Programming is done using the scripting language Tscript, which is
based on the process algebra ACP. Tscript was originally designed to
enable formal verification, but this option has so far not been explored in
any detail. We present a method for analyzing a Tscript by translating
it to the process algebraic language mCRL2, and then applying model
checking to verify behavioral properties.

1 Introduction

ToolBus [1, 2] provides a simple, service-oriented view on organizing software
systems by separating the coordination of software components from the ac-
tual computation that they perform. It organizes a system along the lines of a
programmable software bus. Programming is done using the scripting language
Tscript that is based on the process algebra ACP (Algebra of Communicating
Processes) [3] and abstract data types. The tools connected to the ToolBus
can be written in any language and can run on different machines.

A Tscript can be tested, like any other software system, to observe whether
it exhibits the desired behavior. An alternative approach for analyzing commu-
nication protocols is model checking, which constitutes an automated check of
whether some behavioral property is satisfied. This can be, roughly, a safety
property, which must be satisfied throughout any run of the system, or a live-
ness property, which should eventually be satisfied in any run of the system.
To perform model checking, the communication protocol must be specified in
some formal language, and the behavioral properties in some temporal logic.
Strong points of model checking are that it attempts to performs an exhaus-
tive exploration of the state space of a system, and that it can often be fully
automated.

As one of the main aims of Tscript, Bergstra and Klint [2] mention that it
should have “a formal basis and can be formally analyzed”. The formal basis is



2

offered by the process algebra ACP, but ways to formally analyze Tscripts were
lacking so far. This is partly due to a number of obstructions for an automatic
translation from Tscript to ACP, which are explained below. This work was
initiated by the developers of the ToolBus, who are keen to integrate model
checking into the design process. This paper constitutes an important step in
this direction. We have charted the most important distinctions between ACP
and Tscript, and investigated how Tscript can be translated into the formal
modeling language mCRL2 [4]. This language is also based on the process algebra
ACP, extended with equational abstract data types [5].

Since both Tscript and mCRL2 are based on data terms and ACP, an
automated translation is in principle feasible. And as a result, Tscript can
then be model checked using the mCRL2 or CADP toolset [6]. This method
has been applied on a standard example from the ToolBus distribution: a dis-
tributed auction. An implementation of an automatic translator from ToolBus
to mCRL2 is under development. However, we did have to circumvent several
obstructions in the translation from Tscript to mCRL2. Firstly, each Tscript
process has a built-in queue to store incoming messages, which is left implicit
in the process description; in mCRL2, all of these queues are specified explicitly
as a separate process. Secondly, Tscript supports dynamic process creation; in
mCRL2, we chose to start with a fixed number of ToolBus processes, and let
a master process divide connecting tools over these processes. Thirdly, we ex-
pressed the iterative star operator of Tscript as a recursive equation in mCRL2.
And fourthly, we developed some guidelines on how to deal with so-called result
variables in Tscript.

Our work has its origins in the formal verification of interface languages [7, 8].
The aim is to get a separation of concerns, in which the (in our case Tscript)
interfaces that connect software components can be analyzed separately from
the components themselves. Our work is closest in spirit to Pipa [9], an interface
specification language for an aspect-oriented extension of Java called AspectJ
[10]. In [9] it is discussed how one could transform an AspectJ program together
with its Pipa specification into a Java program and JML specification, in order
to apply existing JML-based tools for verifying AspectJ programs, see also [11].
Diertens [12, 13] uses the ToolBus to implement a platform for simulation and
animation of process algebra specifications in the language PSF. In this approach
Tscript is automatically generated from a PSF specification.

2 ToolBus and Tscript

The behavior of the ToolBus consists of the parallel composition of a variable
number of processes. In addition to these processes, a variable number of external
tools may be connected to the ToolBus. All interactions between processes
and connected tools are controlled by Tscripts, which are based on predefined
communication primitives. The classical procedure interface (a named procedure
with typed arguments and a typed result) is thus replaced by a more general
behavior description.



3

A Tscript process is built from the standard process algebraic constructs:
atomic actions (including the deadlock delta and the internal action tau), al-
ternative composition +, sequential composition · and parallel composition ‖.
The binary star operation p ∗ q represents zero or more repetitions of p, followed
by q. Atomic actions are parametrized with data parameters (see below), and
can be provided with a relative or absolute time stamp. A process definition is
of the form Pname(x1, . . . , xn) is P , with P a Tscript process expression and
x1, . . . , xn a list of data parameters. Process instances may be created dynami-
cally using the create statement.

The following communication primitives are available. A process can send
a message (using snd-msg), which should be received, synchronously, by an-
other process (using rec-msg). Furthermore, a process can send a note (using
snd-note), which is broadcast to other, interested, processes. A process may
subscribe and unsubscribe to certain notes. The receiving processes read notes
asynchronously (using rec-note) at a low priority. Processes only receive notes
to which they have subscribed. Communication between ToolBus and tools is
based on handshaking communication. A process may send messages in several
formats to a tool (snd-eval, snd-do, snd-ack-event), and can receive values
(rec-value) and events (rec-event) from a tool.

The only values that can be exchanged between the ToolBus and connected
tools are terms of some sort (basic data types booleans, integers, strings and
lists). In these terms, two types of variables are distinguished: value variables
whose value is used in expressions, and result variables (written with a question
mark) that get a value assigned to them as a result of an action or a process
call. Manipulation of data is completely transparent, i.e., data can be received
from and sent to tools, but inside ToolBus there are hardly any operations on
them. ATerms [14] are used to represent data terms; ATerms support maximal
subterm sharing, and use a very concise, binary format. In general, an adapter is
needed for each connected tool, to adapt it to the common data representation
and message protocols imposed by ToolBus.

The ToolBus was introduced for the implementation of the ASF+SDF
Meta-Environment [15, 16] but has been used for the implementation of various
other systems as well. The source code and binaries of the ToolBus and related
documentation can be found at www.meta-environment.org.

3 mCRL2 and CADP

An mCRL2 [4] specification is built from the standard process algebraic con-
structs: atomic actions (including the deadlock δ and the internal action τ),
alternative composition +, sequential composition · and parallel composition ‖.
One can define synchronous communication between actions. The following two
operators combine data with processes. The sum operator

∑
d:D p(d) describes

the process that can execute the process p(d) for some value d selected from
the sort D. The conditional operator → � describes the if -then-else. The



4

process b → x � y (where b is a boolean) has the behavior of x if b is true and
the behavior of y if b is false.

Data elements are terms of some sort. In addition to equational abstract data
types, mCRL2 also supports built-in functional data types. Atomic actions are
parametrized with data parameters, and can be provided with an absolute time
stamp. A process definition is of the form Pname(x1, . . . , xn) = P , with P an
mCRL2 process and x1, . . . , xn a list of parameters.

The mCRL2 toolset (www.mcrl2.org) supports formal reasoning about sys-
tems specified in mCRL2. It is based on term rewriting techniques and on formal
transformation of process algebraic and data terms. mCRL2 specifications are
first transformed to a linear form [4, Section 5], in a condition-action-effect style.
The resulting specification can be simulated interactively or automatically, there
are a number of symbolic optimization tools, and the corresponding Labeled
Transition System (LTS) can be generated. This LTS can, in turn, be minimized
modulo a range of behavioral semantics and model checked with the mCRL2
toolset or the CADP toolset [6].

4 From Tscript to mCRL2

Both Tscript and mCRL2 are based on the process algebra ACP [3]. In spite of
this common origin, the languages have some important differences, presented
later in this section.

Note queues According to the semantics of the ToolBus, each process created
by Tscript has a queue for incoming notes. A rec-note will inspect the note
queue of the current process, and if the queue contains a note of a given form,
it will remove the note and assign values to variables appearing in its argument
list; these can be used later on in the process expression in which the rec-note
occurs.

mCRL2 contains no built-in primitives for asynchronous communications.
Therefore in mCRL2, note queues are handled by a separate AsyncComm process.
It also takes care of subscriptions/unsubscriptions and lets any process send
any note at any time. Any process can inspect its queue for incoming notes by
synchronously communicating with AsyncComm.

Dynamic process creation Process instances may be created dynamically in
Tscript using the create statement. Although not part of the language, such
a process creation mechanism can, in principle, be modeled in mCRL2 using re-
cursive parallelism. The latter, however, is not currently supported by the tools
in the mCRL2 toolset.

Here, we present a simple solution to this problem, by statically fixing the
maximal number of process instances that can be active simultaneously. These
process instances are present from the start, and the master process divides
connecting tools over these processes. To be more precise, for a given Tscript
process definition Pname, we assume the maximal number of its simultaneously



5

active instances to be some m. For a translation of Pname to an mCRL2 process
Pname, we define the following process Pname inactive,

proc Pname inactive(pid :Pid) = r create(Pname, pid) · Pname(pid)

which after synchronizing with an action s create proceeds as the process Pname.
We instantiate m instances of Pname inactive in parallel by Pname inactive(1) ‖
. . . ‖ Pname inactive(m).

Successful termination of (dynamically) created processes in Tscript is de-
noted by a delta statement. In our approach, the mCRL2 processes do not
terminate, but become inactive instead. Therefore, the terminating delta state-
ments of Pname are translated to Pname inactive(pid) recursive calls.

A process willing to create an instance of Pname has to execute the mCRL2
expression

∑
pid:Pid s create(Pname, pid) (instead of a create command). As a

result of the synchronization with r create, the creating process gets the pid of
the “created” process.

Binary star versus recursion Tscript makes use of the binary star operation
p∗q, representing zero or more repetitions of p followed by q. Assuming that the
Tscript expression p is translated to an mCRL2 process expression P , and q to
Q, the whole Tscript expression p∗q is represented in mCRL2 by the recursion
variable PQ defined as PQ = P · PQ + Q.

Local variables Tscript process definitions may make use of local variables and
assignments to them. They can be directly translated to process parameters in
mCRL2, provided all of them are (made) unique.

Special care has to be taken with the result variables of Tscript, which
get a value assigned depending on the context in which they occur. In case they
occur in input communication statements like rec-msg, rec-note or rec-value,
they can be represented as summations in mCRL2. For example, the Tscript
expression let V:Type in rec-msg(msg(V?))...endlet can be represented as
the mCRL2 expression

∑
V :Type rec msg(V ) · . . .

In case the result variables occur in process calls, the only way we see to trans-
late them to mCRL2, is to (at least partially) unfold the process call instance,
so that we get to a situation where the input variable occurs in a communicating
statement.

Discrete time One simple option to implement discrete time in mCRL2, is to
make use of the tick action synchronization (cf. [17–19]). First, we identify the
places where waiting makes sense. These are places where input communication
statements are possible. In case no delays are present in these statements, we
introduce a possibility to perform the tick action and remain in the current state.
In case a Tscript statement is specified with a certain delay, we prepend the
resulting mCRL2 translation with the appropriate number of ticks. All Tscript
process translations have to synchronize on their tick actions.

Another option is to use the real-time operations built into mCRL2. The
current version of the mCRL2 toolset, however, has only limited support for the



6

analysis of such timed specifications. An interesting possibility is to use clocks
to specify timed primitives of Tscripts, and to use well-known techniques for
analyzing Timed Automata [20] like regions and zones [21] in the context of
mCRL2 (cf. [22]).

Unbounded data types A Tscript can use variables of unbounded data types,
like integers, in communications with the tools. These can be modeled in mCRL2,
but the analysis with explicit-state model checking techniques will not work. An
alternative approach could be in the use of abstract interpretation techniques in
the context of mCRL2 (cf. [23]).

5 Conclusion and Future Work

Our general aim is to have a process algebra-based software development envi-
ronment where both formal verification and production of an executable system
is possible. In this paper we looked at a possibility to bring formal verification
with mCRL2 to ToolBus scripts.

We presented a translation scheme from Tscript to mCRL2. This trans-
lation makes it possible to apply formal verification techniques to Tscript.
We aim at an automated translation tool from Tscript to mCRL2, which will
make it possible to verify Tscript in a fully automated fashion, and to explore
behavioral properties of large software systems that have been built with the
ToolBus.

The following issues remain as future work.

– Although the translated mCRL2 model is similar in size to the original
ToolBus script, its underlying state space may be too large for formal
verification. The issues with unbounded data types, timing, and growing
note queues due to asynchronous communication, mentioned in Section 4,
have to be further addressed.

– The mCRL2 model generated from a particular ToolBus script can be
checked for deadlocks, livelocks and some other standard properties. For the
analysis of more specific behavioral details one would need properties for-
mulated by the developer of this particular script. Alternatively, a reference
mCRL2 model of the tools that communicate with the original script can be
considered as an environment for the generated mCRL2 model. Putting this
environment model in parallel with the generated mCRL2 model could lead
to a more detailed analysis of the external behavior of the original ToolBus
script.

References

1. Bergstra, J., Klint, P.: The ToolBus coordination architecture. In Proc. COOR-
DINATION’96, LNCS 1061, Springer (1996) 75–88

2. Bergstra, J., Klint, P.: The discrete time ToolBus - a software coordination archi-
tecture. Sci. Comput. Program. 31(2-3) (1998) 205–229



7

3. Bergstra, J., Klop, J.W.: Process algebra for synchronous communication. Infor-
mation and Control 60(1-3) (1984) 109–137

4. Groote, J.F., Mathijssen, A., Reniers, M., Usenko, Y., van Weerdenburg, M.: The
formal specification language mCRL2. In: Proc. Methods for Modelling Software
Systems. Number 06351 in Dagstuhl Seminar Proceedings (2007)

5. Bergstra, J., Heering, J., Klint, P.: Module algebra. J. ACM 37(2) (1990) 335–372
6. Garavel, H., Mateescu, R., Lang, F., Serwe, W.: CADP 2006: A toolbox for the

construction and analysis of distributed processes. In Proc. CAV’07, LNCS 4590,
Springer (2007) 158–163

7. Wing, J.: Writing Larch interface language specifications. ACM TOPLAS 9(1)
(1987) 1–24

8. Guaspari, D., Marceau, C., Polak, W.: Formal verification of Ada programs. IEEE
Trans. Software Eng. 16(9) (1990) 1058–1075

9. Zhao, J., Rinard, M.: Pipa: A behavioral interface specification language for As-
pectJ. In Proc. FASE’03, LNCS 2621, Springer (2003) 150–165

10. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
overview of AspectJ. In Proc. ECOOP’01, LNCS 2072, Springer (2001) 327–353

11. Larsson, D., Alexandersson, R.: Formal verification of fault tolerance aspects. In
Proc. ISSRE’05, IEEE (2005) 279–280

12. Diertens, B.: Simulation and animation of process algebra specifications. Technical
Report P9713, University of Amsterdam (1997)

13. Diertens, B.: Software (re-)engineering with PSF III: An IDE for PSF. Technical
Report PRG0708, University of Amsterdam (2007)

14. van den Brand, M, de Jong, H., Klint, P., Olivier, P.: Efficient annotated terms.
Softw., Pract. Exper. 30(3) (2000) 259–291

15. Klint, P.: A meta-environment for generating programming environments. ACM
TOSEM 2(2) (1993) 176–201

16. van den Brand, M., van Deursen, A., Heering, J., de Jong, H., de Jonge, M.,
Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder, J., Vinju, J., Visser,
E., Visser, J.: The ASF+SDF Meta-Environment: a Component-Based Language
Development Environment. In Proc. CC’01, LNCS 2027, Springer (2001) 365–370

17. Fokkink, W., Ioustinova, N., Kesseler, E., van de Pol, J., Usenko, Y., Yushtein, Y.:
Refinement and verification applied to an in-flight data acquisition unit. In Proc.
CONCUR’02, LNCS 2421, Springer (2002) 1–23

18. Blom, S., Ioustinova, N., Sidorova, N.: Timed verification with µCRL. In Proc.
PSI’03, LNCS 2890, Springer (2003) 178–192

19. Wijs, A.: Achieving discrete relative timing with untimed process algebra. In Proc.
ICECCS’07, IEEE (2007) 35–46

20. Alur, R., Dill, D.: A theory of timed automata. Theor. Comput. Sci. 126 (1994)
183–235

21. Alur, R.: Timed automata. In Proc. CAV’99, LNCS 1633, Springer (1999) 8–22
22. Groote, J.F., Reniers, M., Usenko, Y.: Time abstraction in timed µCRL a la

regions. In Proc. IPDPS’06, IEEE (2006)
23. Valero Espada, M., van de Pol, J.: An abstract interpretation toolkit for µCRL.

Formal Methods in System Design 30(3) (2007) 249–273


