
Temporal Verification in Secure Group Communication System Design

B. Fontan(*), S. Mota, P. de Saqui-Sannes(*), T. Villemur
LAAS-CNRS University of Toulouse

(*) ENSICA, France
{bfontan, desaqui}@ensica.fr, {smota, villemur}@laas.fr

Abstract

The paper discusses an experience in using a real-
time UML/SysML profile and a formal verification
toolkit to check a secure group communication system
against temporal requirements. A generic framework is
proposed and specialized for hierarchical groups.

1. Introduction

Secure Group Communication Systems, or SGCS
for short, capture complex problems in terms of
security, group management, and timeliness. Whether
security protocol verification and group management
have often been discussed – separately or not - in the
literature, little work has been published on formal
verification of SGCS against temporal requirements.

The paper proposes a formal modeling and
verification framework for checking an SGCS against
temporal requirements. The proposed modeling
language is TURTLE (Timed UML and RT-LOTOS
Environment [2]), based on the Unified Modeling
Language [14] and a subset of the System Modeling
Language (SysML [11]). TURTLE adds a formal
semantics to UML and SysML. It improves UML with
powerful temporal operators and extends SysML with
a language dedicated to temporal requirement
expression. Also, TURTLE is supported by a toolkit
which enables verification of distributed systems
against temporal requirements.

Without loss of generality, the paper discusses the
use of TURTLE on a specific SGCS where group
members are hierarchically organized. The running
example raises usual security problems, such as “Who
issues the cryptographic key and owns it?” Further,
operations such as group merging and member
reinsertion must be executed with hierarchical
principles in mind. This makes our example original
with respect to other systems published in the
literature.

The paper is organized as follows. Section 2

surveys related work. Section 3 introduces the
TURTLE modeling language and the formal
verification tools. Section 4 identifies the main
functions to be offered by an SGCS and depicts the
results in terms of use-case diagrams. Section 5
proposes a design architecture to model the previously
identified functions. Section 6 focuses on the SGCS
investigated in the framework of SAFECAST project
[8]. Section 7 concludes the paper.

2. Related work

2.1. Encryption keys

SGCS commonly achieve data protection by using
encryption keys [17] that may be asymmetric or
symmetric.

Asymmetric algorithms use a pair of public and
private keys. Their application to SGCS is hampered
by scalability problems (combinatory of keys) and by
the complexity of the asymmetric encryption
algorithms.

Therefore, much work on SGCS implements
symmetric algorithms with one group secret key shared
by the group’s members (cf. the Diffie-Hellman’s
algorithm [5] and its adaptation to groups).

2.2. Examples of SGCS

The Ensemble system [9] adds one security layer on
top of former ISIS and HORUS group communication
systems. Ensemble efficiently computes group keys,
offers several security policies at the application level,
and supports multiple partitioning.

The Secure Spread [1] system implements five key
generation protocols mostly based on Diffie-Hellman’s
group protocol algorithm. The user selects one protocol
depending on the security compromise algorithm that
is acceptable to him/her. The weak point is that Secure
Spread works only for servers that never fail.

International Conference on Emerging Security Information, Systems and Technologies

0-7695-2989-5/07 $25.00 © 2007 IEEE
DOI 10.1109/SECURWARE.2007.39

175

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

2.3. Formal verification of security protocols

So far, security protocols have essentially been
verified using rewriting rule techniques. Examples of
tools that use these techniques include CASRUL [4]
and AVISPA [3]. Though powerful in detecting security
flaws (in particular key management problems), these
tools do not take time into account. On the opposite
side, formal verification tools such as UPPAAL [15],
TINA [12] and TTool-RTL [13] [10] use timed
modeling techniques that enable formal verification of
temporal properties.

The remainder of this paper addresses TURTLE, the
UML/SysML language supported by TTool-RTL.

3. TURTLE

The TURTLE modeling language adds formality to
the Unified Modeling Language (UML [14]) and
borrows the concept of requirement diagrams from the
System Modeling Language (SysML [12]). Beyond
formality, the strength of the language stems from its
support by TTool [13], which is interfaced with the
formal verification tools RTL [10] and CADP [16].

3.1. Modeling in TURTLE

Modeling in TURTLE starts with a SysML-like
requirement diagram where temporal requirements
may be formally expressed and connected with
verification results in order to achieve traceability.

The output of the analysis phase is a use-case
diagram which defines the boundary and main
functionalities of the system. The use-cases are
documented by sequence diagrams structured by an
Interaction Overview Diagram.

The design phase uses one class/object diagram to
model the static architecture of the system and several
activity diagrams to describe the inner workings of the
objects. A class/objects diagram allows one to express
synchronization, parallelism, sequencing and pre-
emption between pairs of objects. Also, TURTLE
extends activity diagram with three temporal operators:
a fixed delay, a time interval, and a time-limited offer
(TURTLE objects indeed communicate by means of
rendezvous offers).

3.2 Use of formal verification tools

The use of TURTLE tools may be sketched as
follows. The designer first draws the requirement,
analysis and design diagrams using TTool [13]. The
RT-LOTOS code generator implemented by TTool

translates the TURTLE model into a RT-LOTOS
specification that may be verified by RTL (RT-LOTOS
Laboratory [10]). For bounded systems of “reasonable”
size, in particular the secure group communication
system discussed in this paper, RTL generates a
reachability graph that may be in turn minimized using
CADP [16]. The later outputs a quotient automaton
which gives an abstract view of the system’s behavior,
focusing on the system’s actions which are of interest
for the set of requirements to be verified. Note that
RTL and CADP are invoked from TTool’s interface.
Also, TTool indicates how the identifiers in the
quotient automaton relate to the identifiers used in the
TURTLE model.

4. Analysis

This section identifies the set of functions to be
provided by a SGCS after an active session started, i.e.
after each member in a group was attributed his/her
rights. The procedures used to give members their
rights and to set up groups are not discussed in this
paper, since they capture weaker requirements in terms
of interactivity and security.

The TURTLE analysis model of an active session
distinguishes between security and intra-group
functions, respectively. Fig.1 and Fig.2 depict the
corresponding use-case diagrams. The latter are
documented by scenarios expressed in terms of
sequence diagrams (not shown for space reasons).

4.1. Structuring groups using roles

The use of roles to structure groups was suggested
by the necessity to describe hierarchically organized
groups of Humans with clearly separate roles, as well
as groups where all members have the same role.

Each member participating to an active session has
a Member role which grants him/her access to a set of
predefined resources, rights and functions (Fig.2). One
member plays a special role as he/she heads one or
several groups. The so-called ChiefMember manages
the group and knows its current status.

During the key distribution phase, the Supervisor
role is hold by the person who is responsible for
creating and distributing the key. Meanwhile, other
members keep the Member role.

Groups’ composition dynamically evolves and roles
are introduced to handle that dynamicity. The
ConcernedMember role is given to one member who is
ready to enter a group, to exit from his/her group, or to
move up (down) in the hierarchy.

The so-called Administrator owns the right to

176

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

exclude one member and to make one member move
up or down in the hierarchy. The Administrator role
may be held by any authorized person, in particular the
group’s chief.

Besides exclusion, a member may also leave contact
with his/her group due to communication problems.
Then he/she may ask permission to come back by
playing the ConcernedMember role.

Finally, two actors named SO_PMR and Group
respectively model the communication medium and a
set of members belonging to the same group.

4.2. Group key management

This section addresses access control mechanisms,
source authentication mechanisms, integrity and
confidentiality in data exchanges inside the same
session. Again, groups may evolve dynamically. Also,
for the functions identified in figure 1, group keys are
symmetric. Asymmetric keys are used in other parts of
the system that are not addressed in this paper.

DistributeKey is the basic security function for
distributing a previously generated symmetric key. The
DistributeKeyPlane function specializes the
distribution for groups with one hierarchy level. The
DistributeKeyHierarchical function adapts the key
distribution mechanisms for N-level hierarchical
groups. Keys are generated in such a way lower-level
(higher level) messages may (not) be understood. Lists
of generated keys avoid the understanding of higher-
levels messages, whereas lower-level messages remain
understandable. The RenewKeyHierarchical function
supervises the key renewal process.

UseCaseDiagram_GCKM package SFC_GCKM {1/1}

SFC_GCKM:GCKM

DistributeKey

DistributeKeyPlane

DistributeKeyHierarchical

RenewMergedGroupKey

RenewKeyHierarchical

RenewPeriodicMergedGroup
 RenewBasePeriodicKey

<<include>><<include>> <<include>><<include>>
<<include>><<include>>

 : Member
<<actor>>

Supervisor : GCKM
<<subject>>

Fig.1. Use-case diagram for security functions

Security is improved by renewing keys on a
periodic basis, and more precisely every N hours (this
function is implemented by RenewBasePeriodicKey).
Note that RenewMergedGroupKey and Renew
PeriodicMergedGroup are left for further study.

4.3. Intra-group functions

The functions identified by the use-case diagram in
Fig.2 manage one group from inside. Dynamicity is
handled.

UseCaseDiagram_GMM package SFC_GMM {1/2}

SFC_GMM:GMM

ExcludeGroupMember

Downgrade

ConnectMember

Upgrade
 Reinstat

Join

Reconnect

Leave

<<extend>><<extend>>

<<extend>><<extend>>

<<extend>><<extend>>
<<include>><<include>>

<<include>><<include>>

<<extend>><<extend>>

 : Administrator
<actor>

 : ChiefMember
<actor>

 : ConcernedMember
<actor>

SO_PMR : Medium
<<actor>

 : Group
<actor>

Fig.2. Use-case diagram for intra group functions

Basically, a member may join a group, leave it, and
move up or down in the hierarchy. The Join, Leave,
Upgrade, and DownGrade use-cases have been defined
accordingly. Reconnect may be used in case of
connection loss, and Reinstat further applies when the
member had previously been excluded. The
aforementioned functions use ConnectionMgtMember
to make a member connect to one group. Finally,
ExcludeGroupMember is used to exclude a member for
ever.

5. Design

Previous section identified group key management
and intra-group functions to be implemented by a
hierarchically organized SGCS. That analysis is
followed by a design step where the system’s
architecture and the objects’ behaviors are defined.

To our knowledge, no design pattern has so far been
published for security systems [1]. In this paper, we
propose the 4-layer architecture depicted by Fig.3.

177

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

Layers 1 and 2 handle secure communication
operations. Layers 3 and 4 respectively manage
communication keys and groups. The members
connected to the system are located at the application
layer.

5.1. Secured broadcasting services

The Medium layer offers elementary multipoint
broadcasting functions. It implements three basic
services: a point to point communication service, a
multipoint service “1 to N” and a “1 to all”
broadcasting service.

The Security Operators layer, or SO for short, use
hashing functions to guarantee integrity, encryption to
achieve confidentiality, signature to guarantee
authentication, and an index to prevent from replay and
repudiation.

5.2. Management services

The Group Communication Key Management
layer, or GCKM for short, manages session keys in
order to make group communication secure. Key
renewal includes key generation and distribution. One
key is generated for one specific hierarchical level
inside a communication group. Key renewal must
always maintain the security properties of the system,
even when the roles evolve or when one member enters
(resp. exits) a group.

Fig.3. Generic architecture

The Group Membership Mechanisms, or GMM for
short, manages groups. It controls their structure, their
evolution and dynamicity. GMM includes the intra-
group functions identified in section 4.3. One service is
created per function. The resulting set of services
works using the underlying session key management
mechanisms and the roles which grant rights to

members.

So far, discussion has not been targeted to a SGCS
in particular. Next section discusses the use of
TURTLE in the framework of SAFECAST project [8].

6. SAFECAST project

The SAFECAST project [8] addresses secure group
communication systems in the context of operation
theatres where first-aid services, firemen, and
policemen cooperate to achieve a security mission in
common. The challenge is to create, dynamically make
evolve, and command coherent groups of Humans,
despite of heterogeneous origins and specific
hierarchical rules.

6.1. Architecture and mechanisms

The architecture as well as the security and group
management protocols developed in the framework of
SAFECAST project have been proposed under the
assumption that people engaged on operation theatres
are equipped with mobile terminals that securely
transmit voice and data over a multicast radio network
(Private Mobile Radiocommunication, or PMR for
short). Groups evolve dynamically, which makes
online update of security elements a necessity.

The most important mechanism implemented by the
upper layer is session key management. The dynamic
nature of the groups makes it necessary to manage keys
using a cryptographic, symmetric, contributive and
distributed algorithm. Diffie-Hellman’s algorithm [5]
has been extended to a group context. The algorithm is
exclusively used by group chiefs to generate the
session key. The latter is broadcasted to other
members. The session key is used by the encryption
and decryption operations implemented by the physical
layer. The index used to prevent from replay contains
each member’s identity.

The project considers a radio medium with rate and
range values that are common in ad-hoc PMR
networks. The middle rate class has a 100 kb/s rate and
a 100 km range.

5.2. Verification against temporal requirements

The SAFECAST system has been modeled in
TURTLE relying on the architecture depicted by Fig.3.
Groups include up to seven members. The TURTLE
model includes eight security and group management
functions (1. Key Generation and Distribution. 2. Join.
3. Leave. 4. Reconnection. 5. Reinstallation. 6.

Security Operators SO

Medium

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #1

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #2

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #N

…

Secure multicast services

Management services

Security Operators SO

Medium

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #1

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #2

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #N

…

Security Operators SO

Medium

Security Operators SO

Medium

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #1

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #1

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #2

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #2

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #N

Group Membership
Mechanisms

GMM

Group
Communication

Key
Management

GCKM

User #N

…

Secure multicast services

Management services

178

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

Exclusion. 7. Upgrade. 8. Downgrade).
The prime objective of modeling the SAFECAST

system in TURTLE was to check the system against a
set of temporal requirements which constraint security
requirements. As suggested by Tab.1, examples of
temporal requirements include the amount of time
taken to set up a function, the user’s reaction time
depending on the group’s configuration, and the
amount of time allowed to detect that messages are not
exchanged in a normal way.

Each requirement is expressed in a SysML
requirement diagram. A SysML requirement is a block
[7] characterized by four attributes: (1) an identifier;
(2) a text (an informal description of the requirement);
(3) a type: “functional”, “non-functional”, or
“performance”; (4) a risk level: “low” or “high”.

Requirements are first expressed in an informal
way. Formal requirements are then derived from the
formal ones and expressed in a chronogram style, using
a so-called “TRDD” (Timing Requirement Description
Diagram). Fig.4 depicts an example for the following
requirement: “Access Time for a Multimedia Group
must remain below 350 ms”. The TRDD contains two
observations points “Begin_MA” and “End_MA” that
define the borders of the valid temporal interval (350
ms). For a delay value ranging between 0 and 350 ms,
the requirement is met (denoted by the OK interval).
The delay values that exceed 350 ms correspond to a
requirement violation (denoted by KO interval).

The TRDDs serve as starting point for automatic
requirement verification using the TURTLE toolkit [7].

Fig.4. Requirement Diagrams for Access Time for a

Multimedia Group

The multipoint broadcast radio PMR included in the
SAFECAST system leads to work with time
constraints ranging from milliseconds to hours. In
Tab.1, duration is expressed in ms.

First column in Tab.1 lists the requirements to be
verified by the SAFECAST system.

Second column in Tab.1 associates an upper
temporal bound with each requirement. The eight

subsequent columns list the functions investigated for
the middle-rate radio network (100 kb/s).

Letters T and F respectively indicate whether a
temporal requirement is satisfied or not. An empty box
indicates that the requirement does not apply. For
instance, on second line, the average delay for entering
into an encrypted communication should remain lower
than 1000 ms. The requirement applies to the Join,
Reconnection and Reinstallation functions. We
formally verified that the temporal requirement is met
by the three functions.

For each function, the TURTLE environment
computed a duration that is indicated by the Duration
obtained line. For instance the Key Generation and
Distribution function takes 121 ms when it is
implemented over the middle-rate PMR network.

Tab.1. Temporal Requirement verification results

As shown by Tab.1, all the services but one meet
their expected limit duration when the system is
deployed over a middle-rate PMR network. The
exception is multimedia access, for which downgrade
and reinstat raise temporal violations. The reason is
that the access time for a multimedia group must
remain below 350 ms, whereas an upper bound of
60 000 ms is accepted for text communications.

Tab.1 indicates that both reinstat and downgrade
have a total access time equal to 482 ms, which is not
too far from 350 ms. The SAFECAST project partners
agreed on relaxing temporal constraints without
modifying the security protocols implemented to
achieve security, authentication, confidentiality and no-
repudiation.

7. Conclusions

Secure group communication systems, or SGCS for
short, capture complex design problems in terms of
security flaws, group management, and timeliness. The
SGCS designed in the framework of SAFECAST
project further introduces hierarchically organized

TRDD= TRDD_F_M_A_T

Begin_MA
End_MA

350

OK KO

TRDD_F_M_A_T

Limit
Duration

(ms)

G
en&

D
ist

Join
Leave
R

econn
U

pgrade
D

ow
ngrade

R
einstat

Exclude

Delay for Settinga an Encrypted Communication (< 350 ms) 350 T
Average Delay for Entering in an Encrypted Communication (< 1s) 1 000 T T T
Highest Delay for a Late Arrival in an Encrypted Communication (< 2s) 2 000 T T T
Delay for Detectingan Integrity Violation (< 10 s) 10 000 T T T T T T T T
Delay for Detectinga Replay (< 10 s) 10 000 T T T T T T T T
Access Time for a Multimedia Group (< 350 ms) 350 T T T F F
Access Time for a Text Group (< 1 m) 60 000 T T T T T
Highest Delay for Excludinga Member by an Administrator (< 1 h) 3 600 000 T
Best Delay for Excluding a Member by an Authorized Member (< 1 m) 60 000 T

Duration obtained (ms)

 121
 296
 222
 323
 323
 482
 482
 145

F
T Property Satisfied

Property NOT Satisfied

Medium Rate (100 kb/s)

Functionnality
Requirements

179

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

groups that must cooperate on the same operation
theatre.

The level of complexity reached by the
SAFECAST SGCS has convinced the project’s
partners to use formal modeling techniques and
verification tools. The partners also agreed on the
necessity to use two complementary verification tools.
The AVISPA tool was selected to specifically address
security issues. A security flaw was identified [3] and
fixed. On the other hand, relying on former experience
[6] in applying the TURTLE language and tools to
security protocols, it was decided to use TURTLE to
check the SAFECAST system against temporal
requirements. It has been established that the
SAFECAST SGCS does not work correctly over a
low-rate PMR network. By contrast, the middle-rate
PMR network is appropriate as soon as multimedia
services are not implemented. This result has been of
high importance in making design decisions for the
final product.

The modeling framework proposed in the paper is
not limited to the SAFECAST system. The functions
identified in Fig.1 and Fig.2 are generic, and so is the
architecture depicted by Fig.3. These diagrams will be
the starting point for further study on group key
management mechanisms. Novel group merging and
splitting operations are also to be investigated.

Finally, the challenge in terms of verification tool is
to cope with groups of hundreds - if not thousands -
members. Recent work on translating TURTLE models
into Time Petri Nets (instead of RT-LOTOS) will
make it possible to interface TTool [13] and TINA [12]
and thus to benefit from TINA’s performances.

8. Acknowledgements

This work has been carried out in the framework of
SAFECAST project. SAFECAST has been funded by
the RNRT (Réseau National de Recherche en
Télécommunications). Acknowledgements are due to
all the project partners for fruitful discussions on the
SAFECAST system and the use of verification tools.

The TURTLE models were verified using TTool and
RTL. TTool has been developed by Ludovic Apvrille.
RTL was developed by various people at LAAS-
CNRS, in particular Jean-Pierre Courtiat and
Christophe Lohr.

9. References

[1] Amir Y., Nita-Rotaru C, Stanton J, Tsudik G. Secure
Spread: An integrated Architecture for Secure Group
Communication, IEEE Transactions on Dependable and
Secure Computing, Sept 2005.

[2] Apvrille L., Courtiat J.P., Lohr C., de Saqui-Sannes P.,
TURTLE: A Real-Time UML Profile Supported by a Formal
Validation Toolkit, IEEE Transactions on Software
Engineering, Vol. 30, No , pp 43-48, July 2004.

[3] Bouassisa M.S, Chridi N, Chrisment I, Festor O.,
Vigneron L., Automatic Verification of a Key Management
Architecture for Hierarchical Group Protocols. Proceedings
of SAR'06, 2006.

[4] http://www.loria.fr/equipes/cassis/softwares/casrul/
[5] Diffie W., Hellman M. E., New Directions in
Cryptography. IEEE Transactions on Information Theory,
Vol. 22, n. 6, p. 644-654 (196).

[6] Fontan B., Mota Gonzalez S., Villemur T., de Saqui-
Sannes P., Courtiat J.P., UML-Based Modeling and Formal
Verification of Authentication Protocols, IEEE International.
Symposium on Secure Software Engineering, Washington
DC, USA, March 2006.

[7] Fontan B., Apvrille L., de Saqui-Sannes P., Courtiat J.-P.,
Real-Time and Embedded System Verification Based on
Formal Requirement, IEEE Symposium on Indus. Embedded
Systems (IES'06), Antibes (France), October 2006.

[8] RNRT project SAFECAST. http://rnrt-safecast.org/

[9] Rodeh O., Birman K.P., Dolev D., “The Architecture and
Performance of Security Protocols in the Ensemble Group
Communication System: Using Diamonds to Guard the
Castle”. ACM Transaction on Information and System
Security, Vol. 4, No. 3, August 2001, pp. 289-319.

[10] RTL, http://www2.laas.fr/RT-LOTOS/index.html.en.

[11] SysML (System Modeling Language), Object
Management Group, http://www.sysml.org/

[12] TINA, http://www.laas.fr/tina/

[13] Ttool, http://labsoc.comelec.enst.fr/turtle/ttool.html.

[14] UML (Unified Modeling Language), Object
Management Group, http://www.uml.org/

[15] UPPAAL, http://www.uppaal.com/

[16] VASI, CADP, http://www.inrialpes.fr/vasy/cadp/

[17] Zou X., Ramamurthy B., Magliveras S.S., Secure Group
Communications over Data Networks, Springer, 2005.

180

Authorized licensed use limited to: UR Rhône Alpes. Downloaded on January 8, 2009 at 10:19 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

