DFTCalc: Reliability centered maintenance via fault
tree analysis (tool paper)

Dennis Guck!, Jip Spel' and Mariélle Stoelinga'

! Formal Methods and Tools, University of Twente, The Netherlands
d.guck@utwente.nl, j.j.spel@student.utwente.nl, m.i.a.stoelinga@utwente.nl

Abstract. Reliability, availability, maintenance and safety (RAMS) analysis is
essential in the evaluation of safety critical systems like nuclear power plants and
the railway infrastructure. A widely used methodology within RAMS analysis are
fault trees, representing failure propagations throughout a system. We present
DFTCALC, a tool-set to conduct quantitative analysis on dynamic fault trees
including the effect of a maintenance strategy on the system dependability.

Keywords: Dynamic fault trees, maintenance, reliability, context-dependent reduction

1 Introduction

Maintenance is a crucial aspect in reliability engineering: good maintenance, consisting of
timely inspections, spare management, renewals and repairs, reduces the number of fail-
ures and extends the system life time. The trend in maintenance is reliability-centered.
To achieve higher reliability and reduce costs, it is commonly agreed that essential com-
ponents should be maintained more intensively than less crucial ones, rather than the
usual practice of subjecting all components the same maintenance regime. Challenge here
is to identify the crucial components and determine the optimal maintenance strategy.
The tool DFTCALC provides important support here: given an advanced maintenance
strategy and a system model given as a fault tree, DFTCALC computes standard relia-
bility measures like the system reliability, availability, and mean time to failures.
Technically, DFTCALC is realized via stochastic model checking of interactive
Markov chains, yielding a flexible and efficient framework by exploiting state space
generation via bisimulation minimisation. A first version of DFTCALC was reported in
[1] concerning fault tree analysis only. This paper reports the extensions of DFTCALC
with preventive and corrective maintenance models and their analysis. To handle the ad-
ditional complexity, we have implemented context-dependent model-generation, which
significantly reduces the state space. We show the application of DFTCALC on standard
case studies from the literature, as well as industrial cases from railway engineering.

Paper organization. Section 2 introduces fault trees and maintenance, Section 3 their
analysis in DFTCALC, Section 4 the case studies, and Section 5 concludes the paper.

2 Fault trees and maintenance

Fault trees. Fault trees are a popular graphical method for RAMS (reliability, avail-
ability, maintenance, and security) analysis [14]. A fault tree (FT) is a tree (or rather a
directed acyclic graph, since sub-trees can be shared) describing how component failures
propagate through a system and may lead to system failures. The FT leaves repre-
sent component failures, called basic events (BEs), and are equipped with probability

2 or more relay cabinets are failing

[‘2 relay cabinets fz\il] [2 high voltage cabinets fail] [2 cabinets are failing with different causes

r 1
m . m [1 relay cabinet tailm] [1 high voltage cabinet iailn]

Fig. 1. Example FT of relay cabinet failures.

distributions modelling the component’s failure behaviour over time. Failure times are
often modelled as exponential probability distributions; that is, the probability that the
component fails within time ¢ is given by P[X < t] = 1 — e~*!. Here, the parameter
A € RT is known as the component’s failure rate. Additionally, leaves are given a dor-
mancy factor « € [0,1] that reduces the failure rate of a component when dormant, i.e.
not in use. Thus, the probability for dormant component to fail within time ¢ is given
by P[X < t] = 1 — e . Apart from exponential distributions, DFTCALC supports
phase-types, i.e., probability distributions given by absorption times in Markov chains,
which can be used to approximate any probability distributions with arbitrary precision.

The FT gates model failure propagation. The static gates OR, AND, VOT (k) model
respectively that a gate fails if one, all, or k of their inputs fail. The dynamic gates
PAND, SPARE, FDEP provide support for common reliability patterns like sequencing,
spare management and functional dependencies, and are known as dynamic fault trees
(DFTs). Their behaviour is as follows: A PAND-gate fails if the inputs fail from left to
right, otherwise no failure occurs. A SPARE-gate contains a primary input, and one or
more spare inputs. If the primary input fails, then a spare gets activated and takes over
its functionality. If all spares have failed as well, then the SPARE-gate fails. An FDEP-
gate contains a trigger input, which triggers the failure of all its dependent events.

A wide variety of qualitative and quantitative DFT analysis techniques are available,
see [12] for an overview. Qualitative techniques include cut sets and cut sequences;
quantitative techniques compute important system measures like the system reliability
(What is the probability that the system fails during its mission time 7'7); the availability
(What is the percentage of time that the system is up in the long run?), and mean time
to first failure (What is the expected time until the first failure occurs?).

Ezample 1. The fault tree in Fig. 1 describes an instance of the failure behaviour of a
redundant relay cabinet system, used on an operated railway track [7]. It has been pro-
vided by the RAMS consultant Movares. The top level OR-gate describes the disruption
of several relays on an operated track. The system fails, if there are at least 2 relay
or high voltage cabinet failures, as modelled by the VOT(2)-gates. Besides, the system
can also fail if a combination of one relay and high voltage cabinet failure occurs, as
modelled by the AND-gate.

Maintenance. Maintenance comprises a combination of inspections, repairs, renewals
and spare management. Two types are distinguished: preventive maintenance refers to
actions that prevent failures. Components are inspected, and based on their condition,
(partial) renewals or repairs are performed, putting the component in a better con-
dition. Preventive maintenance can be further divided into condition-based (e.g., the
replacement of car tires when their profile is too low) and usage-based maintenance (e.g.

Manual | Web-Tool

ShowResult ShowPlotand toredataset
[permaink [l plotselcted atasesin combinedplot Jl Downioad elcted atasets

(a) DFT input interface. (b) Dependability measures interface.
Fig. 2. DFTCALC web interface.

inspection every 10.000 car miles). Corrective maintenance is carried out after a failure
has occurred, replacing or repairing the broken component. Corrective maintenance may
trigger preventive maintenance. For example, when a broken train is in the garage, addi-
tional inspections commonly take place. Regular fault trees, whether static or dynamic,
do not incorporate such maintenance strategies: the component failure rates assume a
certain maintenance regime and once a BE fails, it remains failed.

3 DFTCalc

DFTCALC provides efficient tool support for quantitative analysis of dynamic fault trees
and is available at http://fmt.ewi.utwente.nl/puptol/dftcalc via a web interface,
depicted in Fig. 2. The tool takes as inputs a DFT in Galileo format [13] and a main-
tenance model. It computes the most common dependability metrics, being the system
reliability over a time interval [T}, T»], the system availability, and the mean time to first
failure, which are outputted textually as well as graphically. Technically, DFTCALC is
realized via stochastic model checking, via a compositional translation of each DFT ele-
ment to an input/output interactive Markov chain where the dependability metrics are
internally expressed as CSL formulas.

Maintenance in DFTCalc. We include maintenance in the FT framework by redefin-
ing the BEs behaviour. We handle condition-based maintenance, inspections, repairs, and
spare management.

The condition of a component is modelled by different degeneration phases, similar
to extended fault trees [5]. In Fig. 3(a), the first phase s; represents the component in
perfect condition; subsequent phases represent degraded conditions, until the component
is broken in s,,. A threshold is given after which an inspection will trigger a maintenance
procedure. Inspections are modelled by an inspection module (IM), which handles several
BEs, see Fig. 3(b). Thus, if the IM inspects a BE and applies a maintenance procedure,
then the BE is set back to a less degraded mode — in Fig. 3(a) to its initial condition.
We handle repairs via repair units (RUs) as presented in [7]. A RU caters for several
BEs, and determines in which order the BEs are getting repaired. Further, the BE gets
a repair time assigned which is described by an exponential distributed delay.
Analysis. As formal semantics of DFTs, and thus the basis for the quantitative analysis,
input/output interactive Markov chains (I/O-IMCs) are used. I/O-IMCs are an exten-
sion of interactive Markov chains (IMCs) [9] by adding input and output signals to the

http://fmt.ewi.utwente.nl/puptol/dftcalc

preventive new inspection cycle!

mainenance? Tiew inspection cycle!
preventive
mainenance?
preventive
threshold?

threshold? threshold?

threshold!

Active Degenerated Degenerated Failed Down

(a) Basic component with inspection threshold. (b) Inspection module.

Fig. 3. Inspection modules as I/O-IMCs.

action set. An I/O-IMC consists of a number of states which are connected via two types
of transitions, interactive and Markovian. The interactive transitions are labelled with
signals, which are used to communicate between components. The Markovian transitions
are labelled with rates A representing an exponential distributed delay.

State space generation DFTCALC implements the compositional aggregation ap-
proach presented in [2]. Compositional aggregation provides a method to translate a
DFT into an I/O-IMC while keeping the state space small. First, each element of the
DFT is translated into an I/O-IMC. Then the obtained I/O-IMCs are iteratively com-
posed and minimised until a single I/O-IMC remains.

This approach enables us to define I/O-IMCs for corrective and preventive mainte-
nance. The repairable BEs as well as the RU are equivalent to the models presented in
[7]. The IM as well as the new BEs for preventive maintenance are depicted in Fig. 3.

Context-dependent state space generation. The state space generation by com-
positional aggregation provides already a scalability of several orders of magnitude [2].
However, for large industrial case studies there is a demand for even more reduction.
Therefore, we investigate context-dependencies in the component translation from DFT
modules to I/O-IMCs. Instead of translating a DFT element directly into an I/O-IMC
based on the semantics from [2], we differentiate between active and inactive elements
and eliminate superfluous signals beforehand. Consider an AND-gate with two inputs.
In the standard semantics, the full behaviour will be described, including the inactive
behaviour of the components. However, if the component is active from the start, all the
inactive behaviour can be discarded, which reduces the state space of the component.

Implementation. DFTCALC combines several state-of-the-art model checkers to pro-
vide a DFT analysis tool, see Fig. 4. The generation of the DFT, including the compo-
sitional aggregation, is done using the CADP tool set [6]. The generated I/O-IMC can
be translated to the Markov Reward Model Checker (MRMC) [10], or to the Interactive
Markov Chain Analyzer (IMCA) [8]. Finally, the requested dependability metrics, which
are (a) the reliability for one or more mission times 7', or (b) the probability on a system
failure during an interval [T7, T3], or (c) the mean time to failure, can be computed. A
complete description of DFTCALC can be found in [1].

We exploit the modular framework of DFTCALC and provide new templates for
the IM, RU, and BEs with phases, inspection signals, repair functionality and context-

DFTCALC

Reliability

-dft21ntc

beg2imcea

Fig. 4. The DFTCALC tool-chain.

104

Probability to fail
Probability to fail

Time (over years) Time (over years)
(a) Relay cabinets (b) Switches

Fig. 5. System reliability over time for different inspection intervals.

dependencies. Further, we adapted the generation of those FTs in the dft21lntc tool.
The inspection and repair functionality is implemented for static FTs, with AND- OR-
and VOT (k)-gates. The context-dependent behaviour detection based on the active and
inactive modes works for DFTs without maintenance. The RU is defined by the new
keyword ru, and the corresponding repair time of a BE is specified with repair=pu,
where p is the repair rate. The IM has the keyword KinspN where K is defined as the
number of inspection phases and N the rate of each phase. The threshold in the BE is
specified with interval=n, where n is the threshold. Further, each BE has a keyword
phases=k, where k represents the number of degeneration phases.

4 Experiments

We have conducted several case studies to demonstrate the applicability of DFTCALC;
all were run on a single core of a 2 GHz Intel Xeon with 22GB RAM running on Linux.
Modelling of maintenance strategies. Fig. 5 shows the effect of different mainte-
nance strategies on a set of FTs constructed by the RAMS consultancy firm Movares,
concerning a part of a major railway corridor in the Netherlands [7]. We consider two
systems, the relay cabinet whose abstract version is given in Fig. 1, and a railway switch.
To investigate the effect of corrective and preventive maintenance, each group of cabi-
nets is assigned to either a RU or a IM, following the following strategies: (a) without
maintenance; (b) corrective maintenance with repair times of one, two and seven days;
(c) preventive maintenance with inspection frequencies of once, twice, and four times
a year. We calculated the system reliability for a mission time of 10 years. The results
depicted in Fig. 5 show that increasing the inspection frequency significantly improves
the reliability. Lowering the repair times helps as well, but with less effect.

Analysis efficiency. Table 1 shows the impact of context-dependent state-space gen-
eration. Here, we use standard DFTs from literature: the multiprocessor computing
system (MCS) [11], the cardiac assist system (CAS) [3], the fault-tolerant parallel pro-
cessor (FTPP) [2], cascaded PAND system (CPS) [2] and an instance of a Sensorfilter
(SF) [4] case study. The results are shown in Table 1. While the final state spaces are
small, it is the size of the largest intermediate models that matter, since these determine
the amount of memory required. We observe that the maximal state space reduction
for the intermediate state space during generation lies between 72% and 96%, and the
state space reduction for the final state space lies between 3% and 33%. This points the
significance of distinguishing the active and inactive DFT part beforehand.

5

[Model [Gates[BEs[Smart detection[States[Transitions[Max States[Max transitions|

CAS 10 [10 [without [16] 36 [84 [304 |
[with [14 | 31 | 19 | 133]

MCS 10 [11 [without 18 37 6438 32202
with 12 31 220 803

FTPP-4] 21 |20 |without 72 312 45823 230596
with 66 306 7020 32200

CPsS 5 [12 [without [39] 71 [918 [3140 |
[with |38] 70 | 134 | 291]

SF 6 7 [without [15 36 [383 [1500 |
[with [14] 35 | 64 | 138 |

Table 1. Context-dependent state space reductions.

Conclusions and future work

This paper presented an extension of DFTCALC with preventive and corrective mainte-
nance as well as a way to reduce the state space w.r.t. context-dependent reductions. We
believe that the context-dependent generation will also have a high impact on the state
space of DFTs with maintenance. Further, future work is needed to apply maintenance
modules to the dynamic gates as well as to incorporate costs into the framework, to
optimise maintenance strategies w.r.t. reliability as well as costs.

Acknowledgement. This work has been supported by the STW-ProRail partnership
program ExploRail under the project ArRangeer (12238). We acknowledge our cooper-
ation with Movares in the ArRangeer project.

References

1.

10.
11.

12.
13.
14.

F. Arnold, A. Belinfante, F. Van der Berg, D. Guck, and M. Stoelinga. DFTCalc: a tool for
efficient fault tree analysis. In Computer Safety, Reliability and Security (SAFECOMP),
volume 8153 of LNCS, pages 293-301. Springer, 2013.
H. Boudali, P. Crouzen, and M. Stoelinga. A rigorous, compositional, and extensible frame-
work for dynamic fault tree analysis. IEEE Transactions on Dependable and Secure Com-
lZzlutmg, 7:128-143, 2010.

. Boudali and J. B. Dugan. A Bayesian network reliability modeling and analysis frame-
work. IEEE Transactions on Reliability, 55:86-97, 2005.
M. Bozzano, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and M. Roveri. Safety,
dependability and performance analysis of extended AADL models. The Computer Journal,
54:754-775, 2011.
K. Buchacker. Modeling with extended fault trees. In Proc. of the 5th Int. Symp. on High
Assurance Systems Engineering (HASE;{), ages 238-246, Nov. 2000.
H. Garavel, %‘ Lang, ﬁ Mateescu, an \g/ Serwe. CADP 2011: A toolbox for the con-
struction and analysis of distributed processes. International Journal on Software Tools for
Technology Transfer, pages 1-19, 2012.
D. Guck, J. P. Katoen, M. 1. A. Stoelinga, T. Luiten, and J. Romijn. Smart railroad
maintenance engineering with stochastic model checking. In Railway Technology: Research,
Development and Maintenance, volume 104 of Civil-Comp, page 299, 2014.
D. Guck, M. Timmer, H. Hatefi, E. J. J. Ruijters, amcf7 M. 1. A. Stoelinga. Modelling
and analysis of Markov reward automata. In Automated Technology for Verification and
Analysis (ATVA), volume 8837 of LNCS, pages 168—184. Springer, 2014.
H. Hermanns. Interactive Markov Chains: And the Quest for Quantified Quality. Springer-
Verlag, Berlin, Heidelberg, 2002.
J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins and
outs of the probabilistic model checker MRMC. Perf. Eval., 68(2):90-104, 2011.
S. Montani, L. Portinale, A. Bobbio, M. Varesio, and D. Codetta-Raiteri. A tool for au-
tomatically translating dynamic fault trees into dynamic Bayesian networks. In RAMS,
EagJes 434-441, 2006.

. J. J. Ruijters and M. I. A. Stoelinga. Fault tree analysis: A survey of the state-of-the-art
in modeling, analysis and tools. Elsevier Computing Surveys, 2015.
K. J. Sullivan, J. Bechta Dugan, and D. Coppit. rl?he Galileo fault tree analysis tool. In
29th Annual Int. Symp. on Fault-Tolerant Computing, pages 232—235. IEEE, 1999.
W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. % Haasl. Fault Tree Handbook. Office
of Nuclear Regulatory Reasearch, U.S. Nuclear Regulatory Commision, 1981.

	DFTCalc: Reliability centered maintenance via fault tree analysis (tool paper)

