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Abstract
The thesis discusses using ISO standard formal language LOTOS (Language of Temporal Ordering

Specification) for formally specifying and analysing digital circuits. The study serves two-fold: it exam-
ines the possibility of extending applications of LOTOS outside its traditional areas, and provides a new
formalism to aid designing correct hardware.

Digital circuits are usually classified into synchronous (clocked) and asynchronous (un-clocked) cir-
cuits. The thesis addresses both of them. LOTOS models for signals, wires, components and component
connections are established, together with the behavioural models of digital components in synchronous
and asynchronous circuits. These formal models help to build the rigorous specifications of digital cir-
cuits, which are not only valuable documentation, but also the bases for further analysis. The inves-
tigation of the thesis shows that LOTOS is suitable for specifying digital circuits at various levels of
abstraction. Compared with other formalisms, it is especially efficient on higher level modelling. But
there is also a gap between LOTOS models and real world hardware, which is the result of the differ-
ence between inputs and outputs of systems being abstracted away in LOTOS. The gap is bridged by
introducing input receptive or input quasi-receptive specifications.

Two analysis approaches are investigated in the thesis, namely formal verification and conformance
testing. Verification intends to check the correctness of the formal model of a circuit, it is exhaustive and
can ensure the correctness of the model being checked. While testing is applied to a physical product or a
formal or informal model, it can never be exhaustive but are very useful when a formal model is difficult
to build.

Current LOTOS verification techniques support the three common verification tasks, i.e. requirements
capture, implementation verification and design verification. In this thesis, model checking is used to
fulfill the tasks. It is found that verification of synchronous circuits is relatively straightforward since
LOTOS tools can be directly used. For verifying asynchronous circuits, two conformance relations are
defined to take the different roles of inputs and outputs into account. Compared with other hardware
verification approaches, the approach presented in this thesis has the advantage of finding bugs at early
stages of development, because LOTOS can be used in higher level modelling. Moreover, LOTOS is
supported by various verification techniques, which are complementary to each others and give more
chances to detect design faults.

The thesis explores a new direction of applying formal methods to digital circuit design. The basic
idea is to combine formal methods with traditional validation approaches. LOTOS conformance testing
theory is employed to generate test cases from higher level formal specifications. The test cases are then
applied to commercial VHDL (VHSIC Hardware Description Language) simulators to simulate lower
level circuit designs. Case studies reveals that the approach is very promising. For example, it can detect
bugs which cannot be captured by examining a formal model.

Timing characteristics are important factors in digital design. To be able to specify and analyse timed
circuits, ET-LOTOS is exploited. Two important timing characteristics in digital circuits, namely delays
and timing constraints are identified. Timed specifications of digital circuits are the composition of these
timing characteristics and functionality. Based on the formal specifications, rigorous analysis can be
applied. The method is valuable in discovering subtle design bugs related to timing, such as hazard, race
conditions, and can also be used for analysing speed performance of digital circuits.
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1 A counter-example generated by Aldébaran . . . . . . . . . . . . . . . . . . . . . . . . . 46
2 Test suite for JK flip flop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3 Two test cases for Single Pulser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4 Test suite of FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5 Test suite of Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6 Hazards in the 2-to-1 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7 The components of synchronous circuits in the DILL library . . . . . . . . . . . . . . . . 103
8 The components of asynchronous circuits . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9 Timed components in the DILL library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
10 Selected LOTOS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
11 Seclected ET-LOTOS syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

vii



1 Introduction

1.1 Motivation

This thesis is concerned with using ISO standard formal language LOTOS (Language Of Temporal Or-
dering Specification, [ISO89]) to formally specify and analyse digital circuits. It has a two-fold purpose:
examining the possibility of applying LOTOS outside its traditional area, and providing new theories and
tools to aid designing correct hardware.

LOTOS has been widely and successfully used to specify communication systems such as standards
for OSI (Open Systems Interconnection [ISO94]). This is not surprising since LOTOS was developed for
this purpose. It has also been used in related area such as Open Distributed Processing [ISO95]. However,
LOTOS might claim to be a general-purpose language for specifying concurrent systems, so it is valuable to
investigate the applicability of the language outside its original field. Digital circuits are complex systems
which involve intensive concurrency. The application of LOTOS in this new area will help to discover the
strengths and limitations of the language.

Although digital logic design is well understood, guaranteeing the correctness of a circuit is still a very
hard problem. Formal methods provide a solution by systematically and exhaustively analysing circuit
behaviour to prove the correctness or pinpoint the bugs. Many formalisms have been used to model dig-
ital circuits, including HOL (Higher Order Logic [MGG93, SRI91], process algebra [MM92], automaton
[HHK96, BCM�92], functions [O'D95] and Petri Nets [Rei85, YK98]. As an internationally standard-
ised formal language, LOTOS should be more easily accepted by industry. It is more expressive than most
formalisms developed for academic research, and is supported with theory and tools that allow various
analysis methods, some of which are not possible with other hardware specification approaches. The use
of LOTOS is alternative and complementary to the existing methods for designing correct hardware.

Following the initial investigation of the subject in [TS94], the approach presented in this thesis is
named DILL (DIgital Logic in LOTOS).

1.2 Context of the Research

1.2.1 Design Procedure for Digital Circuits

Design of digital circuits is a complicated process which involves many different steps. Figure 1 depicts a
typical design flow [GDKW92] used in industry.

Design starts with an initial idea, which is abstract and may be recorded in diagrams or a natural lan-
guage. Human designers have to build a specification of the idea in some higher-level description language,
such as Verilog [IEE95], VHDL [IEE93], LOTOS, or other formalism such as finite state machines etc.

This higher level circuit specification is then refined to a register transfer level (RTL) specification by
human designers or high level synthesis tools. Typically an RTL specification contains two parts: datapath
and control logic. The datapath is built from elements such as registers, multiplexers, adders, multipliers,
etc. The control logic provides necessary control signals and timing for the datapath.

Logic synthesis tools are then applied to generate a description of the control logic in the form of
a netlist of gates. These gates correspond to a set of logic equations and may not be physically imple-
mentable.

Given these gates, technology mapping replaces them with the implementable gates in a certain library.
It also combines small gates to make larger ones as long as they are available in the library. Components in
datapaths are usually mapped into the descriptions at transistor level directly, using the tool called a module
generator.

The lowest level description is the layout of the circuit. Modules and gates are placed and connected
by using placement and routing tools. The layout can be sent for fabricating to get the final product.

The design procedure inevitably involves iterations, either because performance requirements are not
met or errors appear after a transformation. Human mistakes contribute most of the errors, but other
sources are also possible, such as deficiencies in synthesis algorithms or software bugs. Although many
steps in the design flow can be done automatically, human design is unavoidable. For example, high level
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synthesis is still an area of current research and not widely used in industry. Logic synthesis is a well-
established technique but is not suitable for regular blocks such as RAM (Random-Access Memory), PLA
(Programmable Logic Array) and complete microprocessors because of the speed and area inefficiency.

Validation tools are therefore necessary for detecting design errors. Checking the correctness of a higher
level circuit specification against an initial design idea is termed specification validation, and examining
the correctness of the design at RTL and gate level (including the netlist description and the implementation
netlist) is termed circuit validation. Layout validation tools are dedicated to the circuit specified at layout
level. While testing usually refers to the activity of detecting fabrication deficiencies in final products.

At present, simulation is still the predominant approach of validating digital designs in industry. Test
vectors are fed into an executable description of the circuit; the behaviour of the circuit is compared with
that of a reference model, or simply analysed by observing the outputs. The procedure for obtaining
test vectors is called test generation. Most test vectors for simulation are created by experienced testing
engineers. Test vectors for testing fabrication bugs are usually generated automatically, with the assumption
that only certain kinds of faults may occur in the process of manufacturing.

The thesis supports earlier stages of the design procedure. More precisely it mainly concerns the
correctness of logic designs rather than the correctness of layout or fabrication. Automatic synthesis of
circuits is excluded from the scope of the thesis either, but some related work of hardware synthesis from
LOTOS specification can be found in [HYKT94]. The shaded parts in figure 1 are therefore in the scope
of the thesis. In other words the thesis investigates how to specify circuits at behavioural, RTL, and gate
levels. With respect to validation, it covers specification validation, circuit validation and test generation.

1.2.2 Formal Methods in Digital Circuit Design

Today's digital circuits are so large and complex that testing engineers can no longer create all the vectors
required in order to examine circuits adequately with simulation approach. Moreover simulation run time
has increased even faster than circuit size. For larger chips, it is measured in days or even weeks. The
iterations in the design process require that every change should be checked thoroughly, but time pressure
forces only a subset of test vectors to be used for each revision. This exposes the design to a great risk of
errors.

The weakness of simulation spurs research in applying formal methods in digital designs. Formal
methods refers to `mathematically-based languages, techniques and tools for specifying and verifying
systems'[CW96]. In other words, it contains two aspects: formal specification and formal verification
(or verification for short). Formal specification uses a language or notation with a mathematically-defined
syntax and semantics to describe a system and its desired properties. Formal verification is the approach
to prove the correctness of the specification. The advantages of verification over simulation are that it
is exhaustive in the sense that all the behaviour of the model of a system will be checked, and that it is
faster than simulation in many cases since the result might be obtained after a single run of the verification
program.

Although formal verification has been the main theme of using formal methods in hardware design,
it is not possible without proper specifications. But formal specification is not just the base for verifica-
tion; writing things down precisely itself is valuable: a deeper understanding of the specified circuit can
be obtained, and the inconsistencies, ambiguities or flaws in the initial idea can be discovered. These
incompletenesses will become very difficult and expensive to detect when they are transformed to lower
level designs. Specification also serves as a permanent documentation of the requirements, the behaviour
and the implementation of a circuit. It is a precise and convenient bridge between the various parties in-
volving in the design, implementation and use of the circuit. So far many formalisms have been used to
specify digital hardware, including HOL, process algebra, automata, functions, and Petri Nets. Apart from
specifying circuits in a formal language or notation, an alternative approach is to provide formal semantics
for an ordinary hardware description language (HDL), but usually only a subset of an HDL is suitable for
formalization. The most popular industry HDLs, namely VHDL, Verilog and ELLA [MC93], have been
studied using this method [KB95, Gon95, BGMW95].

There are essentially two approaches to formal verification of digital circuits: model checking and the-
orem proving. Model checking is a technique that is based on constructing a finite model of a system and
checking that whether a desired property holds on the model. The check is performed by an exhaustive
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state space search. Since the model is required to be finite, model checking is guaranteed to terminate. Two
styles exist for model checking. In temporal logic model checking, properties are specified in a temporal
logic [Pnu77] and a circuit is modelled as a finite state transition system. Efficient search procedures have
been developed to see if temporal logic formulae hold on the model. In conformance checking, both de-
sired properties and the implementation of a circuit are modelled as automata or labelled transition systems
(LTS). Then the two models are compared to determine whether or not the implementation conforms to
the properties. Various notions of conformance have been investigated, such as language inclusion [FK97]
and observational equivalence [Mil89]. The advantages of model checking lie in that it is completely auto-
matic and fast, and that it produces counterexamples when verification fails, which is particularly useful in
practice. The disadvantage of model checking is the state space explosion problem. Many approaches have
been proposed to tackle this problem, such as BDD (Binary Decision Diagrams [Bry92]) and localization
reduction [FK97].

Verification by theorem proving relies on expressing both the system and properties as formulae in
some mathematical logic. This logic is given by a set of axioms and inference rules. Theorem proving
is the process of finding a proof of a property from the axioms and inference rules. The benefits of this
approach are that it is general and can deal with systems with infinite state space. But generating a proof
automatically is very difficult in theory and in practice. In addition, theorem proving is able to prove
correctness but is unable to pinpoint the errors in incorrect designs. These two limitations prevent this
method from being used widely in industry.

Although substantial progresses in formal verification has been achieved over the last decade, the size
of the circuit which can be successfully analysed by verification is still considerably smaller than the
size of the circuit which can be manufactured. Simulation is still the most broadly adopted approach in
industry. One of the new research areas is to combine the traditional simulation-based validation with
formal methods, as suggested in [Dil98]. An approach proposed in this thesis is in line with the idea.
Unlike in the current design flow, where test vectors are written by experienced test engineers, they are
generated automatically from a formal specification of the behaviour of the circuit. These test vectors are
then used as stimuli in a conventional simulation environment. Compared to the traditional method, the
approach saves human resource and time in designing test cases, and guarantees reasonable coverage of the
generated test vectors. Compared to formal verification, it avoids building the state space of a lower level
specification of the circuit, which is much larger than the state space of a higher level specification. This
makes it possible to find bugs which cannot be found by checking some formal models. It is hoped that the
results of thesis will encourage more research in a similar area.

1.3 Advantages of Using LOTOS in Digital Circuit Design

Compared to traditional HDLs, the formal basis of LOTOS supports rigorous specification and analysis in
a way that semi-formal languages (e.g. VHDL) do not. The semantics of current HDLs used in industry is
based on simulation, which offers little help for thorough analysis of a circuit behaviour. Although formal
semantics has been defined for some of these languages, it usually covers only a small subset of a language,
and the subset is much less expressive than the original one.

LOTOS can be used in a wide-spectrum manner at a number of levels of abstraction. This allows
a consistent formalism to be used during hardware design, from the high-level architecture down to the
component or gate level. Refinements between levels can be checked using standard LOTOS verification
techniques.

Designed for industry usage, LOTOS is more expressive than most formalisms created for research,
such as CSP (Communicating Sequential Processes [Hoa85]), CCS (Calculus of Communicating Systems
[Mil89]), CIRCAL (Circuit Calculus [MM92, Mil95]). In fact, the research reported here is inspired by the
success of CIRCAL, a process algebra designed for specifying and analysing digital circuits. Compared to
CIRCAL, LOTOS specifies digital circuits not only at relatively lower levels (e.g gate level, RTL level) but
also at higher levels, such as algorithmic or system requirement level. LOTOS is therefore more suitable
for specifying real-world circuits.

The formal basis of LOTOS allows verification of hardware designs. LOTOS inherits a well-developed
theory of equivalences and relations from the field of process algebra and has a well-developed theory of
testing and test derivation (e.g. [Bri87]). This offers interesting alternatives to other validation approaches.
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Being an international standard, LOTOS is well supported by general-purpose toolsets such as CADP
(Cæsar/Aldébaran Development Package [FGM�92]), LOLA (LOTOS Laboratory [QPF89]) and LITE
(LotoSphere Integrated Tool Environment [van91]). All these tools can be directly used for hardware
verification or simulation, therefore efforts on tool development can be substantially reduced.

LOTOS is neutral with respect to whether a specification is to be realized in hardware or software. At a
high level of abstraction, the same specification may ultimately be implemented in either way. This allows
LOTOS to be used for hardware-software co-design [SLM�96]. LOTOS is thus more general than a pure
hardware description language.

1.4 Thesis Structure

Chapter 2 comprises two parts. It first briefly introduces the specification language LOTOS. Then gives
an overview of DILL. This includes some general considerations for DILL system, and the basic modelling
techniques used, e.g. how to represent signals, wires, components, and how to write specifications of the
behaviour and structure of a circuit. This chapter serves as a starting point for the remaining chapters in
the thesis.

Chapter 3 presents the specification of digital circuits in DILL. Synchronous circuits and asynchronous
circuits are both considered. For specifying synchronous circuits, their typical structure is described first,
then the models of the components in the structure are presented. The chapter also illustrates how to
specify circuits at different levels of abstraction. For specifying asynchronous circuits, different types
of asynchronous circuits are introduced. In this chapter only those which assume unbounded delays are
considered. Besides basic logics gates, other common components used in asynchronous circuits are also
specified. Finally the chapter introduces the concept of input receptiveness and input quasi-receptiveness,
which are important for faithfully modelling the behaviour of asynchronous circuits.

Chapter 4 goes one step beyond specification. It presents the DILL approach to verifying digital cir-
cuits. Three common verification tasks, i.e. requirements capture, implementation verification and design
verification are introduced. In DILL, equivalence and preorder checking of two LTSs are employed for
implementation verification, and ACTL (Action based Computation Tree Logic [DV90]) temporal logic
model checking is used for the other two tasks. A synchronous benchmark circuit, the Bus Arbiter, is spec-
ified and verified to illustrate the approach. The chapter also discusses the differences between verifying
asynchronous and synchronous circuits. Two novel relations between LTSs are then defined for implemen-
tation verification of asynchronous circuits. As will be discussed, these relations provide intuitive criteria
of correctness of asynchronous circuits. A verifier VeriConf is also implemented for checking the relations.
Part of this chapter has been published in [JT99b].

Chapter 5 explores a new direction in applying formal methods to digital circuit design. The founda-
tion of the chapter is the theory of testing input-output transition systems (IOLTSs) [Tre96], an extension
of traditional LOTOS testing theory. Following the introduction of the theory, the chapter illustrates the
suitability of applying it to generating test cases for digital circuits. To achieve satisfactory coverage of the
test cases, an algorithm based on a transition tour of the state space graph is developed and implemented
in a test generation tool TestGen. A testbench is also developed to supply these tests to a conventional
VHDL simulator automatically. Finally a benchmark circuit, the BlackJack Dealer, is studied to examine
the approach. Part of this chapter has been published in [JT99a].

Chapter 6 uses ET-LOTOS (Enhanced Timed-LOTOS [LL94]) to write circuit specifications which
contain quantitative timing magnitudes. Timing information is abstracted away in the previous chapters,
but it is a critical factor in deciding the correctness of circuits as well as their performance. This chapter
first identifies the important timing characteristics in digital circuits, namely timing constraints and delays.
Various timing constraints and delays are then specified in ET-LOTOS, including setup time, hold time,
period of clock, pure delay, inertial delay, etc. The chapter also develops a model for timed specification
of circuits, which has a nice property that the untimed components in previous chapters are a special case
of the timed ones. This chapter uses the tool TE-LOLA (Time Extended LOTOS Laboratory [PLR95])to
specify and analyse timed specifications of circuits.

Chapter 7 summarizes the thesis and presents some overall conclusions.
Appendix A contains the glossary.
Appendix B summarize the components in DILL library.
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Appendix C contains the syntax of LOTOS.
Appendix D contains the syntax of ET-LOTOS.
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2 LOTOS and Overview of DILL

This chapter briefly introduces the formal specification language LOTOS and gives an overview of the DILL

approach. General considerations in the DILL approach are explained, followed by the discussion of the
basic modelling approach adopted. This includes how to model signals, wires and digital components, as
well as how to specify the behaviour and structure of circuits.

2.1 A Brief Introduction to LOTOS

LOTOS is a formal language standardised by ISO in 1989 (ISO 8807) for the design of OSI services and
protocols. The name reflects the fact that LOTOS describes a system by defining the order in which the
events of the system may occur. LOTOS is made up of two parts. The first part is used to specify system
behaviour and is derived from process algebra, mainly from CCS and CSP. The second part defines abstract
data types and is based on the language ACT ONE [EM85]. The process algebra aspect of LOTOS is called
basic LOTOS, the combination of basic LOTOS with data types is termed full LOTOS. The following
sections present the aspects of the language which are required in the thesis.

2.1.1 Basic LOTOS

In LOTOS a system and its components are represented as processes. A process interacts with its environ-
ment through gates, and displays its behaviour in terms of permitted sequences of actions. These actions,
termed events in the LOTOS terminology, are the results of the interactions of a process and its environment.
Each event is associated with a gate, namely the gate at which the event happens.

The behaviour of a system is described in LOTOS by a behaviour expression, a language construct in
which the sequences of allowed events are defined. Behaviour expressions can be illustrated as behaviour
trees. In these trees, a node represents a state of a system. An arc between nodes represents a transition
which causes the system to move from one node to another, and is labelled with the corresponding event.
For clarity, arrows may be added to arcs to indicate the beginning and the end states of transitions. See
figure 2 for an example of a behaviour tree, which is a two-key system designed by Quemanda [Tur93].
LOTOS provides the following basic operators to build language constructs:

� Inaction (stop)

Inaction models a situation where a process is unable to interact with its environment. It is also called
deadlock. In behaviour trees, inaction corresponds to a node that does not lead to any arcs.

� Action Prefix (;)

Action prefix is used when an event must occur before other behaviour expressions. If a is an event
and B is a behaviour expression, a; B denotes that a must happen before behaviour B. In behaviour
trees, action prefix is illustrated with two nodes and an arc which is labelled with the action.

� Choice ([])

The choice operator denotes that two alternative and exclusive behaviours can happen. If B1, B2 are
behaviour expressions, B1 [] B2 behaves as B1 or B2 depending on whether the next event provided
by the environment is the initial one of B1 or B2. If the two have the same initial event, the system
behaves non-deterministically. Choice is represented by branches in behaviour trees.

� Internal Events (i)

Internal event i is a special LOTOS event which represents the actions that are internal to a system
and therefore invisible to its environment. Internal events may also introduce non-determinism.

� Termination (exit)

Exit models the successful termination of processes. The interpretation of exit is that a special
success event (called �) takes place before stop.
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Figure 2: A LOTOS behaviour expression and its behaviour tree

� Parallel Composition (j[]j)

If B1, B2 are behaviour expressions and g1, g2, � � �, gn represent gates, then B1 j �g��g�� � � � �gn� j
B2 represents that events at the gates that belong to g�� g�� � � � � gn can occur only with the partici-
pation of both B1 and B2. Other events take place with the participation of B1 or B2 alone. In other
words, g�� g�� � � � � gn are the gates at which B1, B2 synchronize. For example a; b; stop j �b� j c; b;
stop can either behave as a; c; b; stop or c; a; b; stop.

There are two special cases for parallel composition, namely pure interleaving (jjj) and full synchro-
nization (jj). jjj is the shorthand for j �� j, i.e. no synchronisation is required, each system behaves
at its own pace. While jj is the shorthand for j �g��g�� � � � �gn� j, where g�� g�� � � � � gn are all the
gates appearing in B1 and B2; this means that B1 and B2 have to synchronize at all the gates.

LOTOS supports multi-way synchronisation, meaning that more than two processes can synchronize
at a gate. If P [a, b, c], Q [a, c], R [a, b] are three processes representing three components of a
system, then P [a, b, c] j �a� j Q [a, c] j �a� j R [a, b] says that events at gate a can happen only with
the participation of processes P, Q and R.

� Hiding (hide)

otosThe hide operator provides the mechanism of abstraction. If B is a behaviour expression, hide
g1, g2, � � �, gn in B makes gates g1, g2, � � �, gn invisible to the environment. Interactions on these
gates therefore become internal events.

� Sequential Composition (��)

Sequential composition represents temporal ordering of behaviour. If B1, B2 are behaviour ex-
pressions, then B1 �� B2 expresses that B2 occurs after B1, provided that the special event � has
appeared in B1. Recall that action prefix is used to represent the temporal ordering of events (not
behaviour expressions).

� Disabling (��)

Disabling represents that the behaviour of a system is disrupted by an exceptional circumstance. If
B1, B2 are behaviour expressions, then B1 �� B2 behaves like B1 until the initial event of B2 happens,
then it behaves like B2. If B1 terminates successfully, B2 does not apply.

Figure 2 gives an example of a behaviour expression and its behaviour tree, quoted from [Tur93].
A process declaration can then be written based on these language constructs to represent the behaviour

of a system. It is delimited by the reserved words process and endproc. A process is made up of a name,
a possible formal gate list, a possible formal parameter list, and a behaviour expression. In the behaviour
expression of a process, it is allowed to declare nested processes to introduce sub-systems, which are
preceded by the reserved word where. Reserved words exit or noexit are used to indicate if the process
can terminate successfully or not. The following is an example of process declaration.

process P [a, b, c] : noexit � 1

P1 [a, b] 2
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j�a�j 3

P2 [a, c] 4

5

where 6

process P1 [aa, bb] : noexit � 7

aa; bb; P1 [aa, bb] 8

enproc 9

10

process P2 [aa, cc] : noexit � 11

aa; cc; P2 [aa, cc] 12

endporc 13

endproc 14

When a process is instantiated, actual gates and parameters should be provided. For example P1 [a, b]
in line 2 is the instantiation of the declaration P1 [aa, bb] in line 7. Note that P1 and P2 refer to themselves
respectively, this is a way to express recursive behaviour in LOTOS. This example does not illustrate the
parameter lists since LOTOS data type are required to introduce formal and actual parameters.

A specification is a special process which represent the whole system, more details about specifications
will be presented in section 2.1.3.

2.1.2 Data Types

LOTOS models data as abstract data types (ADT). The word abstract refers to the fact that properties of a
data type are defined by the specifier rather than predefined in the language. In other words no particular
implementation of data types are implied by the language.

A data type is defined by three parts: sorts define the sets of values of the data type, operations declare
the operators to manipulate the data values, and equations define the semantics of the operations by stating
which expressions are considered equal. In LOTOS, a type may be extended to define a new one by adding
new sorts, operations or equations, and several types may also be combined to form a more complex one.

There are effectively no predefined data types in LOTOS. But commonly required data types can be
included from the standard library defined in ISO 8807. These standard data types include Boolean, Bit,
NaturalNumber, Set and String etc. The following is a small example which defines two constants and
two logic operations. It is an extension of the data type Bit defined in the standard library. Note that LOTOS

allows overloading of operators. (* *) introduces comments in LOTOS.

library
Bit (* including the type Bit in library *)

endlib
type BitOp is Bit (* define a new type BitOp *)

sorts BitOp (* the new sort is called BitOp *)
opns (* declare operations *)

and : � BitOp (* and is a constant of sort BitOp *)
or : � BitOp (* or is a constant of sort BitOp *)

and , or : Bit � Bit (* and, or are binary, infix operators *)
eqns (* define the equations *)

forall b : Bit (* variable b has the sort Bit *)
ofsort Bit (* the range of the equations has the sort Bit *)
b and 0 = 0;
b and 1 = b;
b or 0 = b;
b or 1 = 1;

endtype (* end of the type definition *)
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2.1.3 Full LOTOS

The combination of basic LOTOS with data types makes LOTOS more expressive. The following lists some
of the language constructs which are offered by full LOTOS.

Action prefix may be associated with experiment offers and selection predicates. There are two kinds
of experiment offers: value offers are in the form ! v where v is a value expression, while variable offers
are in the form ? x: s where x is a variable of a sort s. A selection predicate may follow experiment offers
to impose conditions on the value being offered. For example G ? x : Bit [x = 0]; is an action prefix in
which ? x : Bit is the experiment offer and [x = 0] is the selection predicate, meaning than an event occurs
at gate G and it offers a variable of sort Bit which should be equal to 0.

An event can take place only when the experiment offers provided by each participating process can
match each other. The most common matching used in DILL is value passing, where a value offer matches
a variable offer. Consequently the variable receives the value supplied by the value offer. For example G ?
x : Bit can match G ! 0 and x receives value 0.

Apart from the selection predicates mentioned above, Guards also impose conditions on the behaviour
of a system. For example [x = y] � � B indicates that behaviour B occurs only if x is equal to y.

Parameterised exit and sequential composition allow values to be conveyed from one successfully ter-
minating behaviour expression to the subsequent one. In the following behaviour expression, the input x is
either delivered to the output or not depending on the value of x. The parameter of exit may also be any,
in which case any value of the sort is allowed to be conveyed.

(input ? x : Bit; exit (x))
��

(accept y : Bit in
[y = 0] � output ! y; exit

[y = 1] � exit
)

A local value definition associates values with free variables in a behaviour expression. It resembles the
assignment statement in ordinary programming languages. For example, let x : Bit = newIp in B associates
variable x with the expression newIp in behaviour expression B.

A specification may comprise two parts. In the optional global type definition part, data type definitions
which are accessible to the overall behaviour expression, other data type definitions and processes are
specified. The reserved word behaviour introduces the behaviour part of a specification, which is made
up of a behaviour expression and some other possible process declarations, the later being referred in the
former. The difference between a specification and a process is actually only syntactic, for example, there
is no global data type definitions in a process and a specification is ended by the reserved word endspec
instead of endproc. The following is a sketch of a complete LOTOS specification.

specification Spec [a, b, c ,d] : noexit

type type1 is (* begin the global data type definitions *)
sorts � � �
opns � � �
eqns � � �

endtype (* type1 *)

type type2 is
� � �
endtype (* type2 *)

� � �
behaviour (* begin the behaviour part *)

P1 [a, b, c]
j�a�j
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P2 [a, b, d]

where
process P1 [a, b, c] � � �

process P2 [a, b, d] � � �

endspec (* spec *)

2.1.4 Semantics of LOTOS

The operational semantics of LOTOS is defined in terms of Labelled Transition Systems (LTSs). Informally
each LOTOS process can be seen as a set of states, with arcs connecting them. These arcs are transitions
between the states and are labelled with actions. For basic LOTOS actions are simply the gate names.
While for full LOTOS they are pairs consisting of a gate name and a string of data values.

Definition 2.1 (Labelled Transitions System)
An LTS is a quadruple hS�L� T� s�i where S is a set of states, L is a set of observable actions, T �
S � �L� f�g��S is the transition relation, and s� � S is the initial state. The class of transition systems
with actions in L is denoted by LT S�L�.

A transition in T is also denoted as s
�
� s� if �s� �� s�� � T . The special action � 	� L represents an

unobservable (or internal) action. In LOTOS syntax,this unobservable action is named i.

To translate a LOTOS specification to a LTS, LOTOS inference rules are applied. The inference rules
actually define the meaning of LOTOS operators in terms of LTSs. For example, behaviour B = i; B' has
the following inference rule, meaning the process B can make a transition of i then behave like B'. Here B
and B' are behaviour expressions.

B
i
� B�

More complicated inference rules has the form:

P�� � � � � Pn
Q

meaning that given P� up to Pn, Q may be derived. For example, the choice operator of LOTOS B 	
B���B� is defined by two rules, where B�� B� and B are behaviour expressions and a is an action.

B�
a
� B�

B
a
� B�

B�
a
� B�

B
a
� B�

In the rest of the section, common notations which are employed in the thesis are defined.

Definition 2.2 Let p 	 hS�L� T� s�i be an LTS with s� s� � S, let �i � L � f�g� ai � L. L� denotes the
set of all finite action sequences of L and � � L�. The following definitions then apply:

s
��������n
�� s� 	def 
s�� � � � � sn � s 	 s�

��
�� s�

��
�� � � �

�n
�� sn 	 s�

s
��������n
�� 	def 
s� � s

��������n
�� s�

s
��������n

	�� 	def not 
s� � s
��������n
�� s�

s
�
� s� 	def s 	 s� or s

� ������
�� s�

s
a
� s� 	def 
s�� s� � s

�
� s�

a
� s�

�
� s�

s
a������an	� s� 	def 
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2.2 Overview of DILL

2.2.1 General Consideration

A complete circuit design involves considerations of all requirements such as functionality, timing, power
consumption, layout, etc. DILL is designed to address functionality and timing only, which are the most
essential aspects that determine the correctness of a circuit and which are specifiable in LOTOS.

Digital logic circuits can be divided into two categories: synchronous circuits and asynchronous cir-
cuits. The main difference between them is whether clock signals are employed. Under the control of a
global clock signal, synchronous circuits are relatively easy to design so they are the mainstream of to-
day's digital devices. But asynchronous circuits are attracting growing interest because of the potential
advantages over their synchronous counterpart. LOTOS is general enough to specify both kinds of circuits,
therefore DILL addresses both of them.

The procedure of designing digital circuits can be divided into several steps, as has been shown in
figure 1 in chapter 1. Designs at each step can be regarded as a specification at a distinct abstraction level.
In most cases, a lower level specification is the structural implementation of the one at the level above it.
This requires DILL to support two styles of specifications: behavioural and structural specifications. A
behavioural specification looks at a system as a black box; it specifies the behaviour of a circuit exhibited
on its interface to the environment. Comparatively, a structural specification provides the inner structure
of a circuit; it specifies how a circuit is built by connecting components.

Each component in a structural specification may also be decomposed into smaller components. But
this does not mean components can be decomposed infinitely. In fact the lowest level components specified
in DILL are basic logic gates, such as And, Or and Inverter gates etc. In other words, basic logic gates
have only behavioural specifications in DILL and cannot be decomposed into, for example, the netlist of
transistors.

DILL is intended to be used in real hardware design practice. Therefore it should be easy for design
engineers to use it. Because the syntax and semantics of LOTOS are quite different from those of traditional
programming languages, many new users find it is difficult to write LOTOS specifications. DILL has a thin
layer above LOTOS which makes the specification easier. The layer is written in the m4 macro processing
language [Tur94].

Component reuse has been a major theme in software engineering for many years. However, in formal
methods there has been little identification of useful specification components using these. A component-
based style allows components to be specified and verified individually. Larger combinations of trusted
components can then be verified more easily. This architectural view of a system is elaborated in [Tur93],
and had a great influence during the development of the DILL project. DILL comes with a large library
which contains the specifications of common digital components, such as basic logic gates, flip flops,
registers, adders, etc. These specifications have been carefully validated and can be directly used in spec-
ifications by referring to the names of the components. Tables 8, 7 and 9 in appendix B summarises the
components in the current DILL library.

2.2.2 Underlying Modelling Approach

This section gives the underlying modelling approach of DILL. Many of the models, including those
of signals, wires, components. were developed in [TS94]. These models are re-presented here for the
completeness of the thesis.

Ports
Every digital circuit has ports through which it accepts inputs and produce outputs. The ports act as the

interface of the circuit to its outside environment. DILL abstracts them as LOTOS gates. � Normally each
LOTOS gate represents a physical port, but it is also possible that a group of ports are modelled as a single
LOTOS gate, especially in higher level modelling.

Components and Circuits
A component is a behavioural unit. It could perhaps be modelled as an ADT operation on input values.

However, the dynamic behaviour of a logic circuit is often important, so it is better to use LOTOS behaviour

�Since `gate' has both a hardware meaning and a LOTOS meaning, the term is qualified when necessary.
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expressions. More importantly, the `wiring up' of components specified using ADTs would not be easy.
In DILL, components are modelled by LOTOS process declarations that have formal gate parameters for
ports. Specific components are then process instances.

Real components have a fan-out (the maximum number of inputs that can be connected to an output).
This is a technology restriction that is best ignored in a specification (though a static analysis could deter-
mine whether fan-out limits have been complied with). Real components also have a fan-in (the maximum
number of outputs that can be connected to an input) that is also technology-dependent.

A circuit can be seen as a special component, th one that is at the highest level of specifications.
Signals
In reality, digital signals take on a range of analogue values (e.g from 0 to 5 volts) but thresholds are

set so that they may be treated as logic 0 or 1. As a signal changes from one value to another, it may pass
through an intermediate state that is neither logic 0 nor 1. It might therefore seem that an `ill-defined' state
should be allowed for signals. This, however, is not necessary as an ill-defined signal level should always
be transient and therefore should be ignored. As a workable abstraction, signals are regarded strictly as
bits.

Logic design proceeds on the basis of binary signals. As an implementation matter there is a choice of
how logic 0 and 1 correspond to electrical signals. Normally 0/1 corresponds to low/high, called positive
logic. However, negative logic may also be used, with 0/1 corresponding to high/low. This is an imple-
mentation decision that depends on the components available. DILL only concerns logic values of signals,
thus logic 0 and 1 may correspond to either low or high level in real circuits.

Signals are represented as LOTOS events. There is a choice of whether a continuous signal (a level)
or a discrete change in signal (an edge) should be modelled as a LOTOS event. LOTOS, like most spec-
ification languages, only deals with discrete events. The initial consideration is that only signal changes
are modelled. To be a good reflection of real hardware, the direction of a change is explicitly specified by
giving the newly established level (e.g. g!1 for a transition from 0 to 1 on port g). As will be discussed in
chapter 4, modelling signal changes produces difficulties for verifying synchronous circuits. For this kind
of circuit, it is assumed that, for each signal, in each clock cycle there is just one stable level and this stable
signal level is modelled as a LOTOS event.

In DILL, input signals are usually modelled as events with variable offers while output signals are
modelled as events with value offers. For example, Ip ? newip : Bit is regarded as an input signal that
occurs at input port Ip, while Op ! 1 is an output signal which takes place at port Op. In fact, LOTOS

does not differentiate inputs and outputs so there are more possibilities in specifications. Op ? newop : Bit
[newop = 1] is the same output signal as the above, though it is a variable offer that is used.

Wires
Wires or tracks between components are not normally represented explicitly in DILL. In most cases,

transmission delays on wires are negligible so representing wires explicitly would unnecessarily complicate
a circuit specification. To `wire up' two ports their LOTOS gates are merely synchronized – events at
connected ports are matched.

The case where wires are grouped (e.g. a bus) is so common that DILL provides the MWire (multi-wire)
short-hand notation for this. For example, MWire(8,D) represents an 8-bit data bus D. However since only
the ports of components and not the wires are specified, this really stands for the eight ports D7, D6, � � �,
D0.

Bit and BitArray
To represent the values of signals, data types have to be defined. The LOTOS standard data type Bit is

exploited, with the extension of common logic operations such as and, or, exclusive or, etc. A new data type
BitArray is also provided in the DILL library to represent the signal values on multi-wires. Operations of
BitArray include concatenation, logical functions and comparison functions. A multi-bit signal represented
by BitArray can also be treated as a set of individual one-bit signals. Further operations could be defined
by for specific circuits.

Connecting Components (Structural Specification)
Connecting components is modelled as synchronisation of sub-components at the connected ports. As

pointed out in section 2.1.1, LOTOS supports multi-way synchronisation, so it can model the situation where
more than two ports are connected. If Inverter[Ip, Op] is the LOTOS process modelling an inverter, and
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And2[Ip1, Ip2, Op] is the process modelling a 2-input and gate, the structure in figure 3 is then specified
as:

And2[A, B, C] j�C�j (Inverter[C, D] j�C�j Inverter[C, E])

Note that LOTOS gate C, which models the connecting port C, synchronizes three processes. This is
impossible in other process algebra such as CCS where synchronisation is strictly two-way.

In this circuit, C is a port which has no connection with the outside environment. In other words, if
the behaviour of the circuit is examined by just looking at its interface (the input and output ports), what
happens on C is not visible. In LOTOS, such events are abstracted as internal events i by hiding them. This
helps to define a new process that can be reused by other circuits. For example, figure 3 can be defined as
a new 2-input, 2-output nand gate.

process Nand2 [A, B, D, E] : noexit �
hide C in
And2[A, B, C] j�C�j (Inverter[C, D] j�C�j Inverter[C, E])

endproc

If more than one output port of components is connected, the real hardware and its DILL model may
behaviour differently. In real hardware, when used properly, connecting several components can implement
the logic functions and or or, depending on the technology used to build the components. This is termed
wire-and and wire-or. But in LOTOS, connecting outputs will almost always result in deadlock. In DILL

wire-and and wire-or have to be transformed into explicit and and or gates. This does not impose too much
restrictions since connecting outputs is often prohibited in digital design to avoid damaging devices.

Multiple Components
MComp (multi-component) is similar to MWire and serves as a short-hand for a group of related compo-

nents. This is useful where a regular structure of identical components is required, as in modelling registers
or memories. MComp takes a count, a list of ports connecting component instances, and a component defi-
nition. The use of arithmetic operators after port names is particularly necessary to ensure that components
are connected correctly.

Suppose that the LOTOS process DFlipFlop[D,C,Q,QBar] models a D (delay) flip-flop. (Convention-
ally D is the data input, C is the clock input, Q is the output and Qbar is the negated output.) MComp(4,C=,
`DFlipFlop[D,C=,Q,QBar]') represents a 4-bit register with a clock signal common to each of the flip-
flops. (The `=' after C means that this port name should be used literally without indexing.) In LOTOS

terms, this short-hand stands for:

DFlipFlop[D3,C,Q3,QBar3]
j�C�j

DFlipFlop[D2,C,Q2,QBar2]
j�C�j

DFlipFlop[D1,C,Q1,QBar1]
j�C�j

DFlipFlop[D0,C,Q0,QBar0]

MComp, together with MWire and BitArray result in compact descriptions of repeated structures that
help DILL to be used in practice.

Behavioural Specification
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Figure 4: Structure of Reset Set Latch and its truth table

A behavioural specification specifies what a component should do rather than how it is constructed.
Writing a behavioural specification of a circuit is comparable to writing an application program using
ordinary programming languages. Roughly speaking, there are two ways of specifying behaviour. One
takes advantage of ADTs and the other uses behaviour expressions. In the sequel, the former approach is
referred to as the data oriented style and the later is the behaviour oriented style. Either can be used at the
specifier's convenience. In the data oriented style, data types are defined for the functions required (e.g.
addition, subtraction, shift, etc.), then in the behavioural part of the specification, a local value definition
(let � � � in) is used to refer to the data operations. Specifications in the data oriented style usually have
shorter codes and smaller state spaces, but as can be imagined, defining equations in abstract data types is
very difficult for many operations. In the behaviour oriented style no extra data is required. Functionality
of a circuit is directly specified in the behavioural part of its specification. Guards are intensively used to
distinguish different states of a circuit, so that the proper values of outputs can be decided. The behaviour
oriented style may produce longer specifications and larger state spaces, but it can be used for all kinds of
circuits. The following gives the fragments of two specification of an RS latch (Reset-Set latch, figure 4).
Note that the examples serve as illustration of the two different specification styles and are not necessarily
perfect.

The specification in the data oriented style:

let newQ:Bit = R nor QBar, newQBar:Bit = S nor Q in
( Q ! newQ; exit jjj Qbar ! newQbar; exit)
� � �

The specification in the behaviour oriented style is as follows:

[(R eq 0) and (S eq 0)] �

(Q ! oldQ; exit jjj Qbar ! oldQbar; exit)

[(R eq 1) and (S eq 0)] �

(Q ! 0; exit jjj Qbar ! 1; exit)

[(R eq 0) and (S eq 1)] �

(Q ! 1; exit jjj Qbar ! 0; exit)

[(R eq 1) and (S eq 1)] �

Error; � � �

2.3 Conclusion

This chapter introduced LOTOS and gave an overview of the DILL approach. General considerations in
DILL were explained, together with the underlying modelling approach adopted in DILL. It can be seen
that LOTOS can be used to model digital circuits in a very natural manner, due to the clear correspon-
dences between the concepts in LOTOS and the elements in digital circuits. For example there are close
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correspondences between LOTOS gates and circuit ports, LOTOS events and digital signals, processes and
components. For the illustration purpose, the circuit specified in this and the following chapters are rela-
tively small. But this does not mean that DILL can only cope with small circuits. Some components in the
DILL library (see appendix B) are much larger than those illustrated in the thesis. In [JT97], there is also a
case study of specifying a CPU in both behavioural and structural styles. The CPU is made up of several
sub-parts including instruction decoder, ALU (Arithmetic and Logic Unit) and registers. This case study
reveals DILL's capability of dealing with large circuits.
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3 Specification of Digital Logic Circuits

This chapter describes DILL models of digital components in synchronous and asynchronous circuits.
Background knowledge is first introduced, including the differences between the two kinds of circuits,
some potential advantages of asynchronous circuits, and the delay and environment models. It is followed
by a presentation of the model of basic logic gates developed in [TS94], which was the first component
model developed in the DILL approach. The chapter then focuses on how to specify synchronous and
asynchronous circuits respectively. Synchronous circuits are typically made up of combinational logic
components and storage elements, with the basic logic gates and D flip flop being the representatives of
them. It is discovered that the model of basic logic gates in [TS94] is not suitable to be used in modelling
synchronous circuits. A new model is therefore designed. The model for storage elements are also given in
the chapter. These two models make it possible to specify any synchronous circuits in the structural style.
The chapter also discusses the guildlines for specifying the behaviour of synchronous circuits. For speci-
fying asynchronous circuits, different classes of asynchronous circuits are first introduced. Since LOTOS

abstracts away timing characteristics of systems being specified, only those classes which assume un-
bounded delay models are addresses in this chapter. Basic logic gates are again employed as the illustrative
examples. Towards the end of the chapter, it is revealed that when LOTOS events model signal transitions
in digital circuits, there is a gap between the behaviour of LOTOS specifications and the behaviour of real
circuits. As a result, LOTOS specifications represent only part of possible behaviour that the real circuits
may exhibited. A solution for the problem is proposed by introducing input quasi-receptive specifications.
Throughout the chapter examples and case studies are presented to illustrate the approach.

3.1 Background

3.1.1 Synchronous Circuits and Asynchronous Circuits

Before defining synchronous and asynchronous circuits, the concepts of combinational circuits and sequen-
tial circuits are required. A circuit whose outputs are purely determined by its current inputs is termed a
combinational circuit. If outputs are decided not only by current inputs but also previous inputs, it is a
sequential circuit. Sequential circuits contain storage elements such as latches or flip flops to remember
information related to previous inputs. This is mainly achieved by feeding back outputs to inputs. The RS
(Reset-Set) latch in figure 4 is one such storage element.

Basically, two kinds of sequential circuits exist. In a synchronous sequential circuit (synchronous
circuit for short), there is a global clock which controls all storage elements in the circuit. Only when
particular points of the clock cycle come can storage elements change their states and consequently cause
changes of outputs. Input changes before such points cannot directly influence states of a circuit. An
asynchronous sequential circuit (or asynchronous circuit for short), on the other hand, does not have a
global clock, so any new input may result in changes of states and outputs. Clocked and unclocked circuits
are alternative names for these two kinds of circuits to clearly reflect their main difference.

But this difference is not always evident since some circuits combine both features. It is not rare that a
circuit can be controlled by more than one clock signal. As a result its storage elements change its states at
different times. This is normally regarded as a synchronous circuit. But in this thesis, only those circuits
with one global clock are considered. Some other circuits may have several local clocks controlling several
parts of the circuits, but other parts and their connections are still asynchronous. Again this kind of circuit
is not in the scope of the thesis.

The mainstream of today's digital device is synchronous. Controlled by a global clock signal, the
behaviour of a synchronous circuit is actually discrete: the circuit is assumed to have a finite number of
states, and after one or more time units, it changes its state from one to the other. This effectively filters
out the influence of transient signal transitions between two time instants. As a consequence, designing
synchronous circuits is substantially simplified since there is no need to consider hazards, the transient
signal transitions which are caused by the propagation delay of digital components.

Asynchronous circuit design, on the other hand, is more complicated because hazards have to be com-
pletely eliminated before a design is completed. This is unfortunately a very hard task and prevents asyn-
chronous circuits from being widely used. Nevertheless, there has been a resurgence of interest in asyn-
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chronous design methodology recently due to several potential benefits of removing global clocks. Among
others, the following are some of the benefits of asynchronous circuits [DN95]:

Absence of clock skew: The difference in arrival times of a clock signal at different parts of a circuit is
referred to as clock skew. Typically, clock skew is accommodated by longer clock cycles, which
results in reduced maximum clock frequency. As VLSI systems become smaller, denser and faster,
clock skew becomes increasingly severe and deskewing becomes harder and more expensive [DN95].
Asynchronous circuits get rid of this problem by eliminating the concept of global clocks.

Potential for low power: Power consumption is a major concern in the markets for portable equipment,
where battery life is crucial. In synchronous systems, the global clock toggles clock lines, charging
and discharging capacitance throughout the system, even in portions unused in current computations.
In asynchronous systems, circuit components are activated only when necessary, and remain idle at
other times without dissipating significant power.

Potential for high performance: Synchronous circuits have to be designed for worst-case conditions be-
cause clock cycles are adjusted according to the slowest operations that might be required, even
though in most cases operations complete in much shorter time than the worst case. Asynchronous
systems can be optimized for the average-case conditions, with each operation taking as long as
required for any particular situation.

Better technology migration potential: Asynchronous design approaches allow a system to be designed
as a set of sub-systems communicating via interfaces. Since there is no global synchronization, com-
ponents in an asynchronous circuit can be easily substituted by faster ones (as long as interfaces are
compatible), without changing functionalities of the original ones but improving the performance
dramatically. By contrast, in synchronous systems, overall performance depends on worst-case
conditions and therefore it is often the case that in order to improve the speed potential of a new
technology, reorganization of the whole system is required to deal with new worst-case conditions.

The recent active study of asynchronous circuits has resulted in very large scale designs, including
asynchronous processors such as AMULET [FPJ�94] by Manchester University, Counterflow pipeline
processor[SSM94] by SUN Labs, TITAC [NUK�94] by Tokyo Institute of Technology, and STRiP [Dea92]
by Stanford University.

3.1.2 Delay and Environmental Models

Delay models are the abstractions of delay characteristics of components comprising a circuit. A compo-
nent has bounded delay if an upper and lower bound for the delay magnitude is known. Otherwise it has
unbounded delay, which means no bound is known except that it is finite. The unbounded delay model is
more robust than the bounded one. That is to say, a circuit designed under the assumption of unbounded
delay can usually work correctly when the actual delay model is bounded, but not vice versa.

Delays can also be characterized as pure or inertial [Ung69]. Suppose the delay of a digital component
is D. If a component has pure delay, all input changes will have an effect on output. In other words, outputs
follows inputs after delay D. If the component has inertial delay, output will respond only to input changes
which have persisted for time D. As a result, input pulses whose width is less than D will be absorbed by
the component. This reflects the fact that short pulses contain insufficient energy to trigger a state change
in a real component. Figure 5 gives these two basic delay models, as can be seen, pure delay does not
alter a waveform, while inertial delay may do so by eliminating short glitches, i.e. the narrow pulses in a
waveform.

A useful digital circuit should inevitably have interactions with its outside world. A circuit and its
environment forms a closed system, called a complete circuit. If the environment must wait for a circuit
to stabilize before providing new inputs to the circuit, the two interact in fundamental mode [Ung69].
Otherwise the interaction is termed input/output mode, meaning that the stability of a circuit is not required
before it is allowed to receive further inputs. Input/output mode is more robust than fundamental mode.

The concepts of delay and environment model are especially important for asynchronous circuits, be-
cause an asynchronous circuit designed with certain delay and environment assumptions normally cannot
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work correctly with others. In contrast, synchronous circuits tend to have more unified delay and envi-
ronment models. Because clock cycles are calculated according to the maximal delay of components, all
synchronous circuits are actually based on the bounded delay assumption. The environment of synchronous
circuits can be regarded as for the fundamental mode since the effects of inputs before stabilization of cir-
cuits are filtered out or delayed by means of clock signals.

3.2 The First Model of Basic Logic Gates

Specifying basic logic gates is very important in DILL not only because they are the most basic build-
ing blocks of both synchronous and asynchronous circuits, but also because they are representative. Be-
havioural specifications of other higher-level components follow the same specification method.

In this section, the model of basic logic gates developed in [TS94] was presented and examined. This
is the first component model developed in DILL approach. The initial idea was to have a common model
that could be used in both synchronous and asynchronous circuits. Although this appears straightforward,
the model was obtained after considerable thought. The main difficulty is that since the model is intended
to be general, little can be assumed about the environment. The resultant model is a faithful representation
of logic gates in the real world. The following takes as example a 2-input gate Nand2. Specifications of
other logic gates are almost identical except that different logic operators are used in the let expression. A
Nand2 gate with both initial inputs of 0 and output of 1 can be instantiated as Nand2 [Ip1, Ip2, Op] (0, 0,
1).

process Nand2 [Ip1, Ip2, Op] : (dtIp1, dtIp2, dtOp : Bit) noexit �
Ip1 ? newdtIp1 : Bit [newdtIp1 ne dtIp1]; (* one input is changed*)
Nand2 [Ip1, Ip2, Op] (newdtIp1, dtIp2, dtOp) (* repeat behaviour *)

Ip2 ?newdtIp2 : Bit [newdtIp2 ne dtIp2] (* other input is changed *)
Nand2 [Ip1, Ip2, Op] (dtIp1, newdtIp2, dtOp] (* repeat behaviour *)

let newdtOp : Bit = Apply (Nand, dtIp1, dtIp2) in (* new Output *)
[newdtOp ne dtOp] � Op ! newdtOp; (* Output Change *)
Nand2 [Ip1, Ip2, Op] (dtIp1, dtIp2, newdtOp) (* repeat behaviour *)

endproc (* Nand2 *)

There are several key points implied in this process:
In lines 2, 5, and 8, events occur only when they have value changes ( achieved by LOTOS selection

predicates and guards). This implies that LOTOS events model signal transitions. LOTOS events can only
deal with discrete actions. Modelling continuous signal levels would result in infinite events in a finite
period.
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Because the three sub-behaviour expressions in the process are combined by the choice operator [],
inputs and output can occur at any time as long as there are value changes. That inputs are always allowed to
change is termed input receptiveness in some literature [Dil89]. As will seen in section 3.4.5, receptiveness
is very important for correctly modelling components in asynchronous circuits.

In this model, an input change may pre-empt a pending output. For example, if initially Ip1, Ip2, Op are
0, 1, 1. After Ip1 changes from 0 to 1, Op can change to 0. However, if Ip2 changes to 0 before Op changes,
the newest value on Op will still be 1. In other words, the potential 1 to 0 change on Op is pre-empted.

Pre-empting potential output indicates that an input change comes earlier than the propagation delay
allows. This actually follows the assumption of the inertial delay model discussed in section 3.1.2.

In short, the first model of basic logic gates models signal transitions as LOTOS events. It is specified
in the inputs receptive manner, and assumes the components have inertial delay model, which implies that
pending outputs may be pre-empted.

3.3 Specifying Synchronous Circuits

3.3.1 Structure of Synchronous Circuits

The general structure of a synchronous circuit is shown in Figure 6. It is made up of two parts: combi-
national logic and storage elements. The former part does logic calculation, and the latter stores states of
a circuit. Combinational logic provides the primary outputs and internal outputs according to the primary
inputs and internal inputs. Internal outputs are then fed into storage elements to produce internal inputs.
Since these storage elements are controlled by a clock signal, changes of the internal inputs are synchro-
nised with the clock, in other words they are changed only at particular moments of the clock cycle (usually
its transitions). This allows internal outputs to settle down, filtering out transient signal transitions caused
by propagation delays of the combinational logic. Consequently, primary outputs are not influenced by
these transient signals either.

It is easy to see that for a synchronous circuit operating correctly, designers must ensure that the clock
cycle is slower than the slowest combinational logic so that the whole circuit can settle down before it
changes its state. This can be done by analysing timing characteristics of the components used in circuits.
The untimed version of DILL cannot of course confirm if this clock constraint is met or not. However
as discussed elsewhere (chapter 6), timed LOTOS can specify such constraints. Instead, sections 3.3.3
and 3.3.5 will show that properly modelling storage components and the environment can ensure that
synchronous circuits specified in DILL fulfill the clock condition automatically.

In the practice of synchronous design, primary inputs are usually synchronised with a clock signal.
This makes designing and analysing synchronous circuits much easier. DILL incorporates this practice into
its synchronous circuit model, assuming that primary inputs have already been synchronised with the clock
signal.

Apart from this, the DILL synchronous model has two more restrictions. It is important that there
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is no cyclic connection within the combinational logic, and storage elements have to be specified in a
behavioural style. These restrictions are related to the way components are modelled, for otherwise a
DILL specification might deadlock while a real circuit could still work. This will be discussed further in
sections 3.3.2 and 3.3.3.

3.3.2 Basic Logic Gates in Synchronous Circuits

In this section, the DILL specification of basic logic gates is re-investigated in the context of synchronous
circuits. Although it is a good representation of real-world logic gates, the model discussed in section 3.2
makes it very difficult to analyse the behaviour of synchronous circuits.

Suppose the example in figure 7 is a combinational stage of a certain circuit. Initially Ip1, Ip2, Op are
0, 0, 1. After the input sequence Ip1!1, Ip2!1, Ip1!0, Op may either remain at 1 or change to 0 then back to
1, which depends on whether Ip1!0 comes before or after the output int of the And2 gate, i.e. whether the
change on Ip1 is faster or slower than the propagation delay of the And2 gate. In the first case, Ip1 is a fast
input change so the pending output is pre-empted, consequently Op stays at 1. While in the second case,
the output of the And2 gate occurs before Ip1!0, so it is possible for the Inverter to change to 0 then back to
1. If the clock cycle of a synchronous circuit is slow enough to allow the Nand2 gate settle down, the 1, 0,
1 is only a temporary transition. The two different behaviour does not necessarily to be distinguished since
only the settled signal level can influence the behaviour of the whole circuit. The problematic thing is that
there appears no way to 'sense' when the combinational logic has settled down, which makes automatic
analysis of circuits almost impossible. This suggests that a new model of basic logic gates is needed which
takes the characteristics of synchronous circuits into account.

As discussed, in each clock cycle only the settled level of each signal is of interest. Consider figure 6
again. Suppose that there is an environment which offers each primary input an event once and only once
within a clock cycle. (This is reasonable because DILL assumes that the primary inputs are synchronised
with the clock.) Suppose further that storage elements produce an output once in each clock cycle either
(see section 3.3.3). Under this condition, if a basic logic gate is modelled in such a way that output events
happen only after all inputs occur, then each output event happens exactly once as well. Moreover if input
events model settled signals, so do the output events. In this way, transient signal transitions resulting from
different arrival times of different input events can be filtered out.

Note that this model requires each signal to appear once in a clock cycle. In other words, no matter
if the value of this signal changes or not, there should be an event offer in the corresponding clock cycle.
LOTOS events thus no longer model signal transitions on wires, but rather signal levels. For instance, the
LOTOS event Ip!0 means that in a certain clock cycle the signal level on wire Ip is 0. (A similar argument
applies for Ip!1). The level on the same wire during the previous cycle could be 0 or 1, but the event itself
does not give any information about its previous level.

Following the way that basic logic gates are modelled, every wire in a synchronous circuit has just
one associated event offer during a clock cycle. This answers why there is no need to worry about the
infiniteness resulting from modelling LOTOS events as signal levels. Usually if an event represents a signal
level, there will be an infinite number of events during an arbitrary time interval because the level is a
continuous variable. However for the case of synchronous circuits, whose progress is actually in discrete
steps, settled signal levels constitute discrete variables.

To illustrate the above idea, a re-specification of Nand2 gate is given below. Note that inputs are
interleaved, i.e. they can occur in any order. It might appear that the order of input events could be fixed
since it does not influence the functionality of a component. This would result in a smaller state space
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when circuits are verified. Unfortunately this could cause deadlock when components are connected. For
example, suppose that components A and B each have two inputs. Imagine that the fixed order of inputs
is IpA1 before IpA2, and IpB1 before IpB2. This would lead to deadlock if the components share inputs,
with IpA1 connected to IpB2 and IpA2 connected to IpB1. For this reason, DILL insists on fully interleaved
inputs.

process Nand2 [Ip1, Ip2, Op] : noexit �
( Ip1 ?dtIp1 : Bit; exit (dtIp1, any Bit) (* allow one input *)
jjj

Ip2 ?dtIp2 : Bit; exit (any Bit, dtIp2)) (* allow other input *)
�� accept dtIp1, dtIp2 : Bit in (* accept both inputs *)
( Op !(dtIP1 nand dtIp2); (* output nand of inputs *)

Nand2 [Ip1, Ip2, Op]) (* repeat behaviour *)
endproc (* Nand2 *)

In contrast to the specification in section 3.2, the above process does not concern delay aspects of logic
gates. A signal propagating through an inertial delay component or a pure delay one can have only the
same stable level, and only this stable level is of interest in synchronous circuits. Details of the delay types
are therefore better to be abstracted away. Another difference is that inputs are no longer receptive. This
appears unrealistic, but in the context of synchronous circuits, every input has only one stable level during
a clock cycle, so it is not necessary to make it receptive.

Because inputs and outputs alternate in this model, there should be no cyclic connection within a
combinational stage, for otherwise a DILL specification would deadlock. This arises because feedback
connections make inputs and outputs dependent on each other. Figure 8 gives examples of such cyclic
connections, with the right hand one being a common building block of latches and flip-flops. This is why
storage elements cannot be specified in the structural style.

3.3.3 Specifying Storage Elements

A storage element can store one logic value (1 or 0). The stored value is decided by the inputs of the
element during the effective instant of a clock cycle (for example, a positive transition of the clock) and
remains unchanged until the next effective instant comes. Temporary input changes between these two
effective instants , which are regarded as hazards, do not have effects on the value held in storage elements.

Storage elements are modelled in the behavioural style. The following takes as example one of the
simpler storage elements: a D flip flop (DFF). A DFF (Delay Flip-Flop) has input D, clock input Clk and
output Q (some may also have the inverted output). Here the DFF is assumed to be positive edge triggered,
which means that output Q changes to the same level as D after the Clk changes from 0 to 1. Unlike the
specification of basic logic gates, storage elements have states associated with them, which is reflected in
value parameters dtD.

process DFF [D, Clk, Q] (dtD, dtClk : Bit) : noexit �
D ? newdtD : Bit; DFF [D, Clk, Q] (newdtD, dtClk) (* input new data *)

Clk ? newdtClk : Bit; (* input clock pulse *)
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( [(dtClk eq 1) and (newdtClk eq 0)] � (* ignore -ve pulse *)
DFF [D, Clk, Q] (dtD, newdtClk) (* continue behaviour *)

[(dtClk eq 0) and (newdtClk eq 1)] � (* react to +ve pulse *)
Q ! dtD; (* output stored data *)
DFF [D, Clk, Q] (dtD, newdtClk)) (* continue behaviour *)

endproc (* DFF *)

Suppose there is an internal output feeding into this flip-flop. If the clock signal is not constrained, it
is possible that the clock moves to the next cycle before the combinational logic has settled down. The
model of a synchronous circuit must exclude this possibility. After a positive-going transition of the clock
signal, if the D input of the flip-flop has not occurred yet then the next positive-going transition of clock
signal must not occur. This is ensured by the following constraint on the D flip-flop specification. Process
Cons DFF deals with the initial state of the flip-flop, where the D input and Clk input can occur in any
order. However, after the first positive edge of the Clk signal, the next positive edge has to wait for the D
signal to ensure its previous combinational stage has settle. This is specified in process Cons DFF Aux.
The return of Clk to 0 is allowed either before or after the D event. Thus there are two possibilities in
Cons DFF Aux. It is attractive to specify Cons DFF in the same way as Cons DFF Aux, i.e. it appears
reasonable to assume that the clock arrives after the data input D has settled down from the initial state.
However, this will result in specification deadlock when two DFFs are connected in series. In other words,
when the Q output of the first DFF is the D input of the second. Suppose this shared port is called QD,
then QD should wait until Clk has happened for the first DFF, while it should happen before Clk for the
second one. Deadlock is therefore inevitable. The full specification of a D flip-flop combines DFF and
Cons DFF, i.e. DFF j � D, Clk � j Cons DFF [D, Clk].

process Cons DFF [D, Clk] (dtClk : Bit) : noexit �
D ?newdtD : Bit; (* input new data *)
Cons DFF [D, Clk] (dtClk) (* continue behaviour *)

Clk ?newdtClk : Bit; (* input clock pulse *)
( [(newdtClk eq 1) and (dtClk eq 0)] � (* react to +ve pulse *)

Cons DFF Aux [D, Clk] (newdtClk) (* after one clock pulse *)
[(newdtClk ne 1) or (dtclk ne 0)] � (* ignore other pulses *)

Cons DFF [D, Clk] (newdtClk)) (* continue behaviour *)
where

process Cons DFF Aux [D, Clk] (dtClk : Bit) : noexit �
D ?newdtD : Bit; Clk !0; Clk !1; (* input before -ve pulse *)
Cons DFF Aux [D, Clk] (1) (* continue behaviour *)

Clk !0; D ?newdtD : Bit; Clk !1; (* input after -ve pulse *)
Cons DFF Aux [D, Clk] (1) (* continue behaviour *)

endproc (* Cons DFF Aux *)
endproc (* Cons DFF *)

3.3.4 Specifying Circuit Behaviour

Specifying behaviour of a whole circuit uses a clock cycle-by-cycle basis. In each clock cycle, output
behaviour is specified according to inputs and internal states. Essentially a synchronous circuit is a storage
element, but may have more complicated logic and more internal states. Clock signals can be implicit at
the highest level of specification because no connection is required at this level. In fact, it is found that it
is more convenient to make clock signals implicit during high-level specification. Moreover, smaller state
spaces result due to implicit clocks.
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3.3.5 Case Study: Specifying a Single Pulser

In this section, a small synchronous circuit called the single pulser is specified in behavioural and structural
styles. The single pulser is a standard hardware verification benchmark documented in [SK96]. The simple
behaviour and small size of its design make it a good example for illustrating the DILL approach.

A Single Pulser is a clocked-sequential device with a one-bit input P In and a one-bit output P Out. It
deals with a debounced switch that is on (true) in the down position and off (false) in the up position. The
goal is to devise a circuit to sense the switch being turned on, asserting an output signal lasting one clock
cycle. The system should not allow additional outputs until the user has turned the switch off.

The description does not make clear when the output pulse should be asserted: on pressing the switch
(P In from false to true), or releasing the switch (P In from true to false)? For convenience, the first case
is termed positive triggered and the other one is negative triggered.

In the following, the input P In is assumed initially in the off position and the clock signal is implicit.
In each clock cycle, if there is an active edge �on signal P In, P Out is asserted. Otherwise, if P In does
not change or is not going an active edge, P Out should be 0. This ensures P Out is asserted only at active
edges of P In, and lasts for just one clock cycle.

process SP [Ip, Op] : noexit � (* Single Pulser *)
i; SP P [Ip, Op] (0) (* +ve triggered implementation *)

i; SP N [Ip, Op] (0) (*-ve triggered implementation *)
where

process SP P [Ip, Op] (dtI: Bit) : noexit �
Ip ?newI : Bit; (* get new input *)
( Op !1 [(dtI eq 0) and (newI eq 1)]; (* output 1 on 0 �1 input *)

SP P [Ip, Op] (newI)

Op !0 [not ((dtI eq 0) and (newI eq 1))]; (* else output 0 *)
SP P [Ip, Op] (newI) )

endproc (* SP P *)
process SP N [Ip, Op] (dtI: Bit) : noexit �

Ip ?newI : Bit; (* get new input *)
( Op !1 [(dtI eq 1) and (newI eq 0)]; (* output 1 on 1 �0 input *)

SP N [Ip, Op] (newI)

Op !0 [not ((dtI eq 1) and (newI eq 0))]; (* else output 0 *)
SP N [Ip, Op] (newI) )

endproc (* SP N *)
endproc (* SP *)

Figure 9 shows a design for the single pulser that is given in the benchmark. The clock is hidden in the
structural specification:

hide Inp, N Find, Find, Clk in
((DFF j�N Find, Inp�j (Inverter j�Find�j And2)) j�Clk, Inp�j DFF)
j�P In, Clk, P Out�j
Env [P In, Clk, P Out]

The Env process serves as the environmental constraint on the circuit. It permits P In to come before each
positive-going clock transition, and allows the next clock cycle to come only after P Out has occurred. The
constraint between P In and Clk ensures that P In is synchronised with Clk, and the constraint between
Clk and output respects the slow-clock requirement: P Out must settle down before the next positive going
clock transition. These assumptions are not automatically guaranteed by the circuit specification, but they
are required by the DILL synchronous circuit model. In outline, Env is specified as follows:

�For positive triggered single pulser, the active edge is the positive edge of the P In, it is the negative edge of P In if the single
pulser is negative triggered.
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process Env [P In, Clk, P Out] : noexit �
(P In ?dtPIn : Bit;

Clk !1;
(Clk !0; exit jjj P Out ?dtPOut : Bit; exit)

) �� Env [P In, Clk, P Out]
endproc

3.4 Specifying Asynchronous Circuits

3.4.1 Classes of Asynchronous Circuits

Unlike synchronous circuits, which have a unified structure, asynchronous circuits exhibit a variety of
forms due to the different delay and environment assumptions made. An asynchronous circuit can only
behave correctly when these assumptions are met.

Delay insensitive circuits (DI): DI circuits [Udd86] are the most robust class in the asynchronous circuit
family since they take the most pessimistic view about delays and the environment. Delays on
both components and wires are assumed to be unbounded, and the environment is in input/output
mode (see section 3.1.2). DI circuits can operate correctly regardless of delay magnitudes on wires
and components, as long as they are finite. Martin [Mar90] has proved that the class of purely DI
circuits designed using single-output gates is limited, which means that most meaningful DI circuits
cannot just be built purely from basic logic gates. Some special components [MFR85] are therefore
designed.

Quasi delay insensitive circuits (QDI): QDI circuits augment the delay model of DI circuits with the
isochronic forks assumption [Mar90]. Isochronic forks are forking wires on which the difference
of delay magnitudes is negligible, as shown in figure 10 where delays on w1 and w2 are regarded
as equal. This seems the weakest compromise to pure DI circuits to build practical circuits using
single-output gates [Mar90]. QDI circuits assume input/output mode environment.

Speed-independent circuit (SI): Design of SI circuits was pioneered by Muller [MB59]. In this class
of circuits, gates are assumed to have unbounded delay while wires have zero delay. If all gates
have just one output, SI and QDI are actually identical, see section 3.4.2 for more detail. SI circuits
assume input/output mode environment.
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Fundamental mode Huffman circuits: A Huffman sequential circuit [Ung69] can be modelled as a com-
binational logic block with a subset of outputs feeding back to inputs to hold states. Gates and wires
are assumed to have bounded delay, and the environment is in fundamental mode. In its most basic
form, only one input is allowed to change each time, and the next input change has to wait until the
circuit is stable. Obviously this kind of circuit is not so useful in real designs as the speed of circuits
can be very slow.

Burst mode circuits: Burst-mode circuits [DCS93]) are an extension of fundamental Huffman circuits.
They allow one or more input bursts to occur at each state. Inputs in a burst may occur in any order,
and the circuit does not react until the entire input burst has finished. The next input burst can come
only after the specified output burst has completed, and the circuit has been stable. In fact burst-mode
systems still require the fundamental mode assumption, but only between different input bursts.

Micropipeline: Ivan Sutherland introduced the concept of micropipeline in his 1988 Turing Award lecture
[Sut89]. A micropipeline can be divided into two parts: a control part which assumes an unbounded
delay model and thus could be implemented, for example, in DI circuits; and a datapath part which
adopts a bounded delay model. Between two stages of a micropipeline, a bundled data protocol is
applied: the delay on data wires must be less than that on control wires so that stable data is transfered
from one stage to the other before the corresponding control signals occur.

Specifying bounded delay needs a formalism which supports quantitative timing specification. This
chapter mainly studies those classes assuming unbounded delays, namely the DI, QDI and SI circuits.
Chapter 6 deals with specifying bounded delays using ET-LOTOS.

3.4.2 DILL and Speed Independent Circuits

Among different classes of asynchronous circuits, speed independent circuits match the modelling tech-
niques of DILL most closely: in speed independent circuits, propagation delays of components are un-
bounded. In LOTOS the interval between the occurrence of two concatenated events is also unbounded. In
DILL wiring up two ports is done by synchronising the LOTOS events, which actually assumes that delay
on the connecting wires is negligible, an assumption which is also adopted by SI circuits.

The other circuits with unbounded delay models, namely DI (delay insensitive) and QDI (quasi-delay-
insensitive), can be easily changed to SI circuits by inserting artificial delay components. In figure 11,
a DI circuit(figure 11 (A)) can be remodelled as an SI circuit (figure 11(B)) by inserting artificial delay
components on each wire. Note that in the figure lowercase letters represent delays on wires or components.
Actually, as unbounded delay plus unbounded delay is still unbounded, so most of the wire delays can be
accumulated with their preceding components. Only forks and components with more than one outputs
should be otherwise treated, as shown in figure 11(C). Figure 11(D) is the SI representation of figure 11(A)
when it is regarded as a quasi delay-insensitive circuits. Since h 	 i and k 	 l, only wires from the
components with multi-outputs are inserted with additional delay components. Figure 11(D) also shows
that if every component has a single output, QDI and SI are identical.

Speed independence is closely related to the concept of semi-modularity. Under the delay model of
speed independent circuits, if no components in a circuit can ever receive an input which can change the
level of pending outputs, the circuit is termed semi-modular [BM91, BZ97]. For instance, suppose a two-
input And2 gate has a pending output 1. If it receives a 0 input on one of its inputs before the output 1 is
produced, the And2 gate is not semi-modular since this 0 input might change the pending output from 1 to
0. Non-semi-modularity indicates that at least one component in a circuit has speed dependent behaviour.
In the above example, after receiving the input 0, the output of the And2 gate depends on its speed: a faster
gate can produce 1 followed by 0, while a slower one can only produce 0. Semi-modularity is usually
regarded as a basic characteristic of speed independent circuits [BBM94, KKTV94].

3.4.3 Basic Logic Gates in SI Circuits

Unlike the case of modelling synchronous circuits, modelling asynchronous circuits requires that LOTOS

events represent signal transitions since every transition may influence the behaviour of circuits.
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Figure 11: Modelling DI, QDI as SI

The specification in section 3.2 is one of the possible models of the basic logic gates in SI circuits. It
is only suitable for those gates exhibiting inertial delay, since it allows new inputs to pre-empt pending
outputs. If inputs which may result in the pre-emption are prohibited, it becomes a model which satisfies
the requirement of semi-modularity. Take the example of the Nand2 gate. Suppose its inputs and output
Ip1, Ip2, Op are initially 1, 1, 0. After Ip1 changes to 0, its output should change to 1 accordingly. If,
before the output happens, Ip1 changes back to 1, then the new output will eventually be 0. The model in
section 3.2 allows the change on Ip1, resulting in speed dependent behaviour. If this input is not allowed, a
new model of basic logic gates which respects semi-modularity can then be obtained:

process Nand2[Ip1, Ip2, Op] ( dtIp1, dtIp2, dtOp : Bit) : noexit �
let newOut : Bit = dtIp1 nand dtIp2 in (* potential output *)
(Ip1 ? new1 : Bit [(new1 ne dtIp1) and (* signal transition *)

((dtOp eq newOut) or (* no new potential output *)
((dtOp ne newOut) and (* there is potential outputs *)
((new1 nand dtIp2) eq newOut)))]; (* but it won't be changed *)

Nand2[Ip1, Ip2, Op] (new1, dtIp2, dtOp) (* continue behaviour *)

Ip2 ? new2 : Bit [(new2 ne dtIp2) and (* signal transition *)
((dtOp eq newOut) or (* no new potential output *)
((dtOp ne newOut) and (* there is potential output *)
((new2 nand new1) eq newOut)))]; (* but it won't be changed *)

Nand2[Ip1, Ip2, Op] (dtIp1, new2, dtOp) (* continue behaviour *)

Op ! newOut [dtOp ne newOut]; (* new output produced *)
Nand2[Ip1, Ip2, Op] (dtIp1, dtIp2, newOut)) (* continue behaviour *)

endproc
Compared to the specification in section 3.2, the only difference is the selection predicates behind input

events. Here the constraint of semi-modularity is required. An input offer can only happen when there is
no potential output, or even though there is such output, the new input will not alter it ((new1 nand dtIp2)
eq newOut).

A question is raised as there are two models of basic logic gates for SI circuits: which one is better?
The one in section 3.2 is a full specification of logic gates in the sense that it specifies the behaviour under
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all possible input situations (i.e. it is input receptive). But it requires that the specified hardware has inertial
delay characteristics. When the assumption cannot be guaranteed, the model may not be a suitable one.
As for the model above, it is a partial specification in the sense that it does not allow certain input events
to happen at some times. More precisely, those inputs which may alter potential outputs are prohibited.
This is the stricter model of the two, and can be used for checking if a circuit is really semi-modular or not.
For some components, such as the other basic building blocks of SI which will be introduced in the next
section, full specifications are not available since these components are not yet as standard as basic logic
gates. Different implementations of the components may have different behaviour under the unexpected
inputs, in which case partial specifications are the only choice.

3.4.4 Other Basic Building Blocks of SI Circuits

Besides basic logic gates, there are other `basic' building blocks for constructing SI circuits. These ele-
ments are `basic' in the sense that they are normally not decomposed into smaller units in logic designs,
although their implementation may be based on smaller units such as basic logic gates or transistors. These
elements are assumed to satisfy some properties such as speed independence or delay insensitivity by
themselves. The followings gave a few of them and their DILL specifications.

Wires are most simplest components. They are not needed for SI circuits as delay on wires are assumed
to be zero. But when DI or QDI circuits are transformed to SI, some of the wires should be explicitly
specified to introduce delays. Suppose the input of a wire is A and output is B, When a wire is not
stable, i.e. there is a pending output, the input has to wait until the output changes, otherwise the
component will not be speed independent.

process Wire [A, B] (dtA : Bit) : noexit �
A ? newA : Bit [dtA ne newA]; (* accept input *)
B ! newA; (* output *)
Wire [A, B] (newA) (* continue *)

endproc (* Wire *)

For the rest of the components, a shorthand notation is exploited to save space. In the notation
a process definition is prefixed with ':=', and every LOTOS gate can represent either positive or
negative signal transitions. For example, the Wire component now looks like:

Wire [A, B] � A; B; Wire [A, B]

Fork components are also necessary when a DI or QDI circuit is transformed to SI. A fork has one input
Ip and two output Op1, Op2. The value on input Ip is fanned out to Op1 and Op2. Because of the
delay on wires,the two outputs may occur at different times. New input has to wait until both outputs
have been produced.

Fork [Ip, Op1, Op2] � Ip; (Op1; exit jjj Op2; exit) �� Fork [Ip, Op1, Op2]

C-Elements are very important elements in asynchronous design. A C-Element serves as a transition
synchroniser in asynchronous design because the output can only change after both inputs have
changed. For this reason, it is sometime also called Join Element. Precisely, a C-Element has two
inputs A, B and an output C. C changes to 1 when both inputs have changed to 1, and changes to 0
when both of them have changed to 0.

C-Element [A, B, C] � (A; exit jjj B; exit) �� (C; C-Element [A, B, C])

Merge components `merges' signals on the input ports to the output. Each merge component has two
inputs Ip1, Ip2 and one output Op.

Merge [Ip1, Ip2, Op] �
Ip1; Op; Merge [Ip1, Ip2, Op] Ip2; Op; Merge [Ip1, Ip2, Op]
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Selectors nondeterministically produce output on either Op1 or Op2 after receive an input. A selector has
one input Ip and two outputs Ip1, Ip2.

Selector [Ip, Op1, Op2] �
Ip ; ( i; Op1; exit i; Op2; exit)�� Selector [Ip, Op1, Op2]

Sequencers have three inputs Ip1, Ip2, N and two outputs Op1, Op2. They wait for a signal on at least one
of the Ipi (i=1, 2) inputs. Having received input signals on Ipi (i=1, 2) and N, the sequencer produces
a signal on output Opi (i=1, 2).

Sequencer [Ip1, Ip2, N, Op1, Op2] �
(S1 [Ip1, Op1] jjj S2 [Ip2, Op2]) j�Op1, Op2�j S3 [N, Op1, Op2]
where
S1 [Ip1, Op1] � Ip1; Op1; S1 [Ip1, Op1]
S2 [Ip2, Op2] � Ip2; Op2; S2 [Ip2, Op2]
S3 [N, Op1, Op2] � N; (i; Op1; S3[N, Op1, Op2] i; Op2; S3 [N, Op1, Op2])

Latches are the storage elements in asynchronous circuits. A latch has three inputs Ip1, Ip12, C, and two
outputs Op1 and Op2. It waits for a signal on exactly one of the Ipi (i=1, 2) inputs and a signal on the
C input. In contrast to a Sequencer, the environment must guarantee mutual exclusion of the inputs
Ipi (i=1, 2). Having received input signals on Ipi (i=1, 2) and C, a latch produces a signal on output
Opi (i=1, 2).

Latch[Ip1, Ip2, C, Op1, Op2] �
((Ip1; exit jjj C; exit) �� Op1; Latch [Ip1, Ip2, C, Op1, Op2])

((Ip2; exit jjj C; exit) �� Op2; Latch [Ip1, Ip2, C, Op1, Op2])

RGD Arbiters have four inputs r1, d1, r2, and d2 and two outputs g1 and g2. For each i in 1,2, signal
starts with ri, followed by an acknowledgment of gi, then concurrently di and ri. The intervals from
g1 to d1 and from g2 to it d2 are mutually exclusive. RGD stands for Request (ri), Grant (gi), and
Done (di).

When a RGD Arbiter receives two requests, it will grant exactly one of them (and delay the other).
The specification leaves the choice open.

RGD [R1,G1, D1, R2, G2, D2] �
(S1 [R1, G1] jjj S2 [R2, G2]) j�G1, G2�j S3 [G1, D1, G2, D2]
where

S1 [R1, G1] � R1; G1; S1 [R1, G1]
S2 [R2, G2] � R2; G2; S2 [R2, G2]
S3 [G1, D1, G2, D2] � (i; G1; D1; S3[G1, D1, G2, D2])

(i; G2; D2; S3[G1, D1, G2, D2])

3.4.5 Input Receptiveness

For convenience, the thesis has so far used the terms input events and output events. The more accurate
phrases however should be events corresponding to input ports (or output ports). Since LOTOS never
makes a difference between input and output events in its semantics, all events are treated equally. In
LOTOS, communication between processes is based on symmetric synchronisation at a gate. Thus an event
can happen only when all processes offer events at this gate. If, however, one of the processes is not able
to do so, other processes just wait there, or participate in other events if possible. In the second case, the
event does not occur.

As is well known, digital hardware makes a clear difference between inputs and outputs. Signals come
to inputs and are produced on outputs. A component can never refuse input signals, and output signals it
produces can never be blocked by others.
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Figure 12: Two wires in series

If LOTOS events model physical signal transitions, as has been done for specifying asynchronous cir-
cuits, a DILL specification and the real circuit may have different behaviour when inputs are allowed to be
refused. In section 3.4.3, behaviour of basic logic gates was defined for only desirable input situations. It
is assumed that undesirable inputs are not allowed in order to respect the requirement of semi-modularity.
This follows the convention of writing LOTOS specifications that only desirable behaviour is specified.
There is no need to specify undesirable behaviour because it cannot happen even though proposed by en-
vironment. When this convention is used in the context of digital circuits, an input transition which will
definitely happen in real world but will not happen in a DILL specification. Consequently, the behaviour of
a DILL specification is just a subset of real behaviour, so analysis based on the specification is not exact.
Especially if no problem is found in a DILL model, it does not necessarily mean that there is no problem
in the real circuit.

To be more concrete, think about a very simple circuit which just has two wires connected in series as
shown in figure 12(a). The specification of wires is according to section 3.4.4, which is a partial specifica-
tion. The circuit is not speed independent under the environment shown in figure 12(b), because if a second
a comes before the first wire produces its output b, the behaviour of the circuit is undefined. However from
experience there is no way to highlight this speed dependency since the circuit behaviour (figure 12(c)) is
observationally equivalent to figure 12(b). The reason is that the DILL specification can refuse the second
input a when the first wire is not ready to accept it, while the real circuit cannot.

When a specification is input receptive, in other words when every input is allowed in all states, the
DILL model can represent the real circuit faithfully. However input receptive specification is not available
for most of the basic building blocks of SI circuits as behaviour with unexpected inputs is unknown. One
way to shorten the gap is by explicitly introducing stop behaviour when unexpected inputs happen. Here
unexpected inputs are regarded as `evil' and their appearance means something is wrong in the circuits,
which is indicated by deadlock. Another possible way is to treat an unexpected input as `benign'. For
example, when it happens a circuit does nothing but just stays in the same state. For SI circuits, the former
solution seems better considering that unexpected inputs are usually undesirable ones. Thus this solution
is adopted in DILL when partial specification cannot meet validation requirements.

Finally, it should be pointed out that input receptiveness is not so important in synchronous circuits
because in most cases, the environment can guarantee there is no unexpected input.

3.4.6 Input Quasi-Receptiveness

Analysing SI circuits based on partial specifications of building blocks has the disadvantage of not being
exact. If more accuracy of analysis is sought, input quasi-receptive specification of these blocks should be
used.

Informally, a DILL specification is input quasi-receptive if it can always participate in all input events,
except when it is in a deadlock state. Before a formal definition of input quasi-receptiveness is given,
consider the simple example of the wire component.

Apparently, specification of wire in section 3.4.4 is partial in that input A is not allowed when the wire
wants to produce its output. An input quasi-receptive specification can thus be obtained by adding a choice
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Figure 13: LTS with internal events

option when there is a potential output. The choice option is made up of forbidden input events followed
by a deadlock state.

process Wire [A, B] (dtA : Bit) : noexit �
A ? newA : Bit [dtA ne newA]; (* new input *)
(B ! newA; exit (newA) * new output *)

(* or *)
A ? newnewA : bit [newnewA ne newA]; (* forbidden input *)
stop) (* deadlock *)
��

accept newA : Bit in
Wire [A, B] (newA) (* continue *)

endproc (* Wire *)

However, for those components which can not be simply specified using sequence (;) and choice ([])
operators, such as Sequencer or Latch in section 3.4.4, writing an input quasi-receptive specification is not
straightforward. In this case, a partial specification is used to generate the corresponding LTS (Labelled
Transition System). An LTS is actually a LOTOS specification in form of sequence and choice operators,
therefore input quasi-receptive specification can be obtained by modifying the LTS. Precisely, for each
state which cannot participate in all input events, outgoing edges are added which are labelled with these
missed inputs and which lead to deadlock state. An example is shown in figure 13(a) and (b). Note that in
the figure the input set is Ip1, Ip2.

This method works very well for LTSs without internal events i. But for those containing i events,
things become very subtle. For example in figure 13(c), state s1 cannot engage in event Ip2, but one cannot
simply think that Ip2 is rejected in this state, as the component may decide to accept it at state s2 through
an internal event. Such kinds of peculiar situation may not be the intention of specifiers, but can appear in
an LTS through hide operations.

Notice that when a specification is understood from the point of view of input receptiveness, internal
events seems to lose their necessity. Take the example of the RGD arbiter. Internal events are used to indi-
cate that the component will decide which outputs (g1 or g2) should be produced, and that its environment
has no influence on this decision. If the internal events are omitted, the environment can choose which
output to accept and which one to refuse. However, if the environment is input receptive, which means it
can always receive all inputs (the outputs of the RGD), it loses its selective power. Whichever the output
produced by the RGD, the environment just accepts it. In other words, no matter if the internal events are
specified or not, the environment cannot affect the decision made by the RGD.

Based on this observation, LTSs with internal events are determinised before outgoing edges are added
(figure 13(d)) to obtain input quasi-receptive specifications

Definition 3.1 (Deterministic LTS) An LTS p 	� S�L� T� s� � is deterministic if � s � S, s 	
i
� and �

a � L, s after a contains at most 1 element.
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Definition 3.2 (Determinization of LTS) Let p 	� S�L� T� s� � be an LTS. P(S) is the powerset of S.
The deterministic LTS pd 	� Sd� L� Td� s�d � can be obtained by:

Sd 	def P�S�nf
g

Td 	def fq
a
� q� j a � L� q� q� � Sd� q

� 	 fs� � S j 
s � q � s
a

	� s�gg

s�d 	def fs� � S j s�
�

	� s�g

Now, the formal definition of input quasi-receptive can be given.

Definition 3.3 (Input Quasi-Receptive) Let L be partitioned into LI and LU , and let c 	� S�L� T� s� �
be a deterministic labelled transition system. c is input quasi-receptive if for every state s � S, either for
all a � LI � LU , s 	

a
�, or LI � fa j s

a
�g. If c is not a deterministic LTS, it should be determinised

according to the previous definition.

From the above definition, an LTS is input quasi-receptive if after determinization, all its states, except
the terminal ones, can engaged in all the events in LI .

3.4.7 Case Study: Specifying a FIFO

In this section, an asynchronous FIFO (First In First Out) is specified. The FIFO has two inputs InT, InF
and two outputs OutT, OutF. Its input and output data conform to dual rail encoding in which representing
one bit needs two signal lines. When InT (OutT) is 1 and InF (OutF) is 0, the transmitted (received) data
is 1. Similarly when InT (OutT) is 0 and InF (OutF) is 1, the transmitted (received) data is 0. When the
signal on both lines is 0, it indicates idle, which means no valid data on the lines. Lines have to be reset to
idle between two transmissions.

Suppose a FIFO with one stage (figure 14(a)) is initially empty. It can accept either 1 or 0 by raising
InT or InF. The accepted data can be delivered to its environment by output ports. After one successful
transmission, the raised input and output ports return to 0 to wait for other data. The behaviour of one stage
can be easily specified:

process Stage [InT, InF, OutT, OutF] :noexit �
InT ! 1 of bit; OutT ! 1 of bit; (* transmit 1 *)
InT ! 0 of bit; OutT ! 0 of bit; (* go to idle *)
Stage [InT, InF, OutT, OutF] (* continue *)

InF ! 1 of bit; OutF ! 1 of bit; (* transmit 0 *)
InF ! 0 of bit; OutF ! 0 of bit; (* go to idle *)
Stage [InT, InF, OutT, OutF] (* continue *)

endproc
The behaviour of a FIFO of more than one stage can be obtained by composing several stages. For

simplicity, a FIFO with two stages (figure 14(b)) is specified with:

process SpecFIFO [InT, InF, OutT, OutF]
hide i1, i2 in
Stage [InT, Inf, i1, i2]
j�i1, i2�j
Stage [i1, i2, OutT, OutF]

endproc
A possible implementation of one stage is given in figure 15. Apart from the data path, there are

another two lines controlling the data transmission. Req comes from the environment of a stage; it indicates
that environment has valid data to transfer. The Ack line goes to the environment, indicating that the
stage is empty and is thus ready to receive new data. Both of these control signal are high active. The
implementation use two C-Elements and a Nor2 gate. Initially both Req and Ack are 1. When there is valid
data on InT or InF, it is passed to OutT or OutF. At the same time, Req should be reset to 0 until InT or InF
returns to the idle state. After receiving data on OutT or OutF, the Ack reset to 0 indicates that the stage
is full. When the data on output lines is fetched, output returns to the idle state and is ready for the next
transmission. The corresponding DILL specification of this cell is as follows:
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process OneCell [InT, InF, OutT, OutF, Req, Ack] : noexit �
(CElement [InT, Req, OutT] (0 of Bit, 1 of Bit, 0 of Bit)
j�Req�j

CElement [InF, Req, OuTF] (0 of Bit, 1 of Bit, 0 of Bit)
)
j�OutT, OutF�j

Nor2 [OutT, OutF, Ack] (0 of Bit, 0 of Bit, 1 of Bit)
endproc

To ensure a FIFO works correctly, the environment has to be coordinated. For example, it should
provide correct input data according to the dual rail encoding. To make things easier, it is convenient to
think about the environment in two parts: EnvF and EnvB. EnvF is a data provider which is always ready
to produce data. EnvB is a data consumer which can always accept data.

process EnvF [Req, InT, InF] : noexit �
InT ! 1 of bit; Req ! 0 of bit; InT ! 0 of bit; Req ! 1 of bit; (* provide 1 *)
EnvF [Req, InT, InF] (* continue *)

InF ! 1 of bit; Req ! 0 of bit; InF ! 0 of bit; Req ! 1 of bit; (* provide 0 *)
EnvF [Req, InT, InF] (* continue *)

endproc

process EnvB [Ack, OutT, OutF] : noexit �
OutT ! 1 of bit; Ack ! 0 of bit; OutT ! 0 of bit; Ack ! 1 of bit; (* accept 1 *)
EnvB [Ack, OutT, OutF] (* continue *)

OutF ! 1 of bit; Ack ! 0 of bit; OutF ! 0 of bit; Ack ! 1 of bit; (* accept 0 *)
EnvB [Ack, OutT, OutF] (* continue *)

A two-stage FIFO can then be implemented:

process TwoStages [InT, InF, OutT, OutF] : noexit �
hide Req, X1T, X1F, X1R, Ack in
EnvF [Req, InT, InF]
j�Req, InT, InF�j
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OneCell [InT, InF, X1T, X1F, X1R, Req]
j�X1T, X1F, X1R�j

OneCell [X1T, X1F, OutT, OutF, Ack, X1R]
j�Ack, OutT, OutF�j

EnvB [Ack, OutT, OutF]
endproc

In the next chapter, the implementation will be verified against its specification. When speed inde-
pendence needs to be verified, each building block, including the environment, should be specified in the
input quasi-receptive style. The DILL library already contains such specifications of basic building blocks.
EnvB QR is the input quasi-receptive specification of EnvB. EnvF has no inputs so there is no need to
modify it.

process EnvB QR [Ack, OutT, OutF] : noexit �
OutT ! 1; (Ack ! 0 ; (OutT ! 0; (Ack ! 1; EnvB QR [Ack, OutT, OutF]

OutT ! 1; stop
OutF ! 1; stop)

Ack ! 1; stop
OutF ! 0 ; stop)

OutT ! 0; stop
OutF ! 0; stop)

OutF ! 1; (Ack ! 0; (OutF ! 0; (Ack ! 1; EnvB QR [Ack, OutT, OutF]
OutT ! 1; stop
OutF ! 1; stop)

Ack ! 1; stop
OutT !0; stop)

OutT ! 0; stop
OutF ! 0; stop)

Ack ! 0; stop
endproc (* EnvB QR *)

3.5 Related Work

Hardware Description Languages (HDLs) were initially designed to cope with the inefficiency of circuit
diagrams when the size of circuits became more and more large. They were subsequently used in simu-
lation, synthesis and verification of digital logics. The most popular HDLs used in industry are perhaps
VHDL, Verilog and ELLA. These languages are very expressive and can give very detailed models of real
hardware circuits. But circuits described in these languages cannot be formally analysed because there is
no formal semantics associated with them.

Some formal languages are specifically designed for specifying circuits, such as Ruby [JS90], CIRCAL,
Synchronous Transitions [Sta97], DI-algebra [JU93] and so on. Many other general purpose formal lan-
guages or notations are also applied in the area of hardware specifications. To name a few, these includes
HOL [HG92], CSP [Hoa85], Occam [TTW97], and trace theory [Dil89]. Some of them can just deal with
synchronous circuits, such as Ruby and HOL. Others are mainly employed to tackle asynchronous circuits,
such as DI-algebra and CSP. CIRCAL and Synchronous Transition have been used in both areas. Among
these formalisms, DILL most closely resembles CIRCAL in that both have a behavioural basis in process
algebra, and both have been used in synchronous and asynchronous circuit designs. In fact, DILL was
inspired by the success of CIRCAL. However, the integrated data types in LOTOS makes it much more
expressive than CIRCAL. In the authors' experience, DILL can be used successfully at a variety of abstrac-
tion levels. However, CIRCAL appears to be less effective at higher levels. For example, describing the
behaviour of a synchronous circuit in CIRCAL requires the corresponding Mealy or Moore machines to be
defined manually, and then translated into the CIRCAL notations. This makes CIRCAL almost impossible
to specify relatively complicated behaviour.
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3.6 Conclusion

This chapter provides the LOTOS models of synchronous and asynchronous circuits. The models are the
basis of further analysis of digital circuits.

Specification of basic logic gates represents the basic modelling technique for DILL. In this chapter
there were four different models developed for basic logic gates. Initially a unified model was preferred
because it can be used in both synchronous and asynchronous circuits. This idea resulted in the specification
in section 3.2. However, later investigation revealed that the same components may need different models
in different environments. One of the such examples are the models in 3.2 and 3.4.3, with the latter being
specially developed for validating semi-modularity of asynchronous circuits. As will be seen in chapter 6,
a timed model of basic logic gates will also be provided for analysing behaviour related to quantitative
timing.

Process algebra, such as CCS, CSP, Circal, and LOTOS have been used in specifying and analysing
digital circuits for many years. However, the thesis is the first one which clearly points out the gap between
the behaviour modelled by process algebras and the behaviour of real circuits. Moreover, it reveals that
when an event models a signal transition, the behaviour of a LOTOS specification is just a subset of the
behaviour of a real circuit, resulting the analysis based on LOTOS models being inaccurate . The author of
[Gop92], who used CCS to model asynchronous circuits, also realised the gap, but the solution proposed
is not complete: to get a specification which is similar to the input quasi-receptive style employed here, all
components are still specified in normal style but their inputs are preceded with an artificial wire which is
input quasi-receptive. This solution cannot deal with all the unexpected input situations and thus has limited
usage. In [CT97], CCS also used to specify and analyse asynchronous circuits. The authors suggested to
use the 'quenching' specifications to bridge the gap. This solution is actually identical to the first model
of basic logic gates discussed in section 3.2, where the pending outputs can be pre-empted by new inputs.
Their solution is therefore covered by this thesis.

In this thesis, in order to discover violations of speed-independence (or really semi-modularity), com-
ponents are specified in input quasi-receptive style or if possible, input receptive style. Except for explicitly
using stop, there is an alternative solution which is similar to the one used in chapter 6, that is using an
extra gate Err to indicate violation. This unfortunately would result in much bigger state space comparing
with the solution adopted here, simply because every component should have an extra Err gate and these
gates interleave with each other. In chapter 6, analysis is mainly achieved by simulation and testing, state
space is not a severe problem in these two validation methods.
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4 Verification of Digital Logic Circuits

This chapter applies formal verification techniques to verifying DILL specifications of digital circuits. In
section 4.1, background knowledge about formal verification of LOTOS specificatinos was introduced, with
the focus on the temporal logic ACTL (Action based CTL [DV90]) and relations between LTSs. ACTL will
be used to express properties of circuits, and relations will be used to compare specifications at different
abstraction levels. The following sections, section 4.2 and section 4.3, present how the DILL specifica-
tions of synchronous and asynchronous circuits are verified respectively. Verifying synchronous circuits is
straightforward, thanks to the DILL model developed in section 3.3. Conventional verification techniques,
such as model checking and equivalence checking, can be conducted using general LOTOS tools. Verifying
asynchronous circuits needs more consideration, such as the input receptiveness of components and the
importance of the environment of asynchronous circuits. These extra considerations are necessary mainly
because input and output signals are different in real circuits but are treated equally in the LOTOS model.
In section 4.3.3, new relations between LTSs are defined by taking the difference between inputs and out-
puts into account. Throughout the presentation of the chapter, examples and case studies are provided to
illustrate the approaches.

4.1 Background

This section gives the preliminary knowledge required to verify DILL specifications.

4.1.1 What is to be verified

Formal verification comprises techniques used to prove the correctness of the models of a real-world sys-
tem. According to [Sta93] there are mainly three different verification tasks when talking about verification
of circuits:

1. Verifying that a circuit specification is what it should be, termed requirements capture

2. Verifying that a given implementation behaves identically to a given specification, termed implemen-
tation verification

3. Verifying important properties of a given implementation, termed design verification

In the phase of requirements capture, higher level specifications of circuits are analysed to see if they
satisfy some requirements. Requirements capture can be performed either formally or informally, depend-
ing on how the requirements are expressed. In figure 1, it is also termed specification validation. Imple-
mentation verification involves comparing two specifications of the same circuit. By convention, the higher
level specification is termed the specification of a circuit, while the lower level one is the implementation
of the circuit. A relation has to be defined in order to compare the implementation with the specification.
Although task 2 emphasises the identity, weaker relations are also used in practice. Like implementation
verification, design verification also aims to verify the correctness of lower level implementations of cir-
cuits, but it focuses on the properties of implementations rather than their relationships with higher level
specifications.

The properties that different circuits possess may vary. For convenience these properties are divided
into different categories, such as freedom from deadlock, freedom from livelock, safety and liveness. In-
formally:

� deadlock means that a system can evolve into a state from which no further action is possible.

� livelock means that a system may get into an internal loop and make no further progress in terms of
visible inputs and outputs.

� a safety property means that nothing bad will happen during the progress of a system.

� a liveness property means that something good will eventually happen.
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To formally express these properties, formal specifications are required. Many hardware verification
systems formulate properties in a temporal logic or modal logic such as CTL (Computational Tree Logic
[CES86]), ACTL, HML (Hennessy-Milner Logic [HM80]) or �-calculus [Lar90]. Other formalisms are
also available. For example, to verify LOTOS specifications, LTSs are sometimes used to express properties.

The method of formally verifying whether a finite-state model satisfies some properties is termed model
checking. Efficient algorithms [BCM�92] have been developed for model checking temporal logic formu-
lae.

For implementation verification, a relation should be formally defined to indicate that in what sense an
implementation is correct with respect to a specification. LOTOS inherits abundant relations from process
algebra. Most of them belong to three categories: preorder, equivalence and congruence. An equivalence
holds when two specifications have exactly the same behaviour. A congruence relation requires that not
only are two specifications equivalent, but also one can substitute for the other in all circumstances. Based
on the way behaviour is observed, each category contains a spectrum of relations. Choosing a suitable
relation for verification is sometimes not easy. It needs reasonable knowledge of both specification and
implementation, and also depends on the intention of verification. As a rule of thumb, if a specification is
non-deterministic, then a preorder relation should be used when verifying one of its deterministic imple-
mentations. If an implementation is a refinement of a specification, e.g. by giving more detail about how
to build the system, an equivalence relation might be preferred. If the implementation is to be used within
a larger system, then a congruence relation has to be considered.

Properties and relations are also related. Some relations respect certain properties while the others do
not. For example, trace equivalence does not preserve deadlock freedom, while observational equivalence
does. Observational equivalence, on the other hand, does not preserve livelock freedom. This factor should
also be taken into account when conducting verification.

The existing LOTOS verification techniques and tools support all the three verification tasks mentioned
at the beginning of this section. For example, temporal logic model checking can be employed to fulfil
task 1 and task 3. Verification of equivalence or preorder relations, which has been intensively studied for
Labelled Transition Systems, can be used to solve task 2. When a property is expressed in the form of an
LTS, relation checking can also be used for task 1 and task 3. The following two sections introduce the
temporal logic ACTL and several relations used for verifying DILL specifications.

4.1.2 Temporal Logic and ACTL

In the preceding section, it was mentioned that modal and temporal logics are used to specify properties
of circuits. Modal logic is an extension of propositional calculus. In addition to the usual propositional
operators �����, etc. there are also modalities which express the `modes' of truth, such as necessarily
true or possibly true. Temporal logics extend modal logics with timing operators, which indicates when a
statement is true. Four temporal operators are commonly used in various temporal logics: X (is true at the
next time instant), F (is eventually true), G (is always true from now on) and U (is true until � � �).

Traditionally the properties of systems modelled in process algebra are expressed in the modal logic
HML and �-calculus. Both logics are interpreted over labelled transition systems (LTS), which is also the
semantic model of process algebra.

However, because the expressive power of HML is limited, and �-calculus requires exponential time
for model checking, this thesis employs the temporal logic ACTL to specify properties. It is shown in
[DV90] that ACTL is more expressive than HML, and the time complexity of ACTL model checking is
linear in both the length of formulae and the size of the models to be analysed.

Most temporal logics developed so far are state-based. These logics are interpreted over a Kripke
Structure. The structure is essentially a finite state-transition system of which each state is labelled with
a set of atomic propositions. All formulae refer to the states in Kripke Structure. Among such logics,
the most popular one is perhaps CTL, which has linear time for model checking and is adopted in many
well-known hardware verification tools such as SMV [McM93], VIS [BH�96], etc. But these state-based
temporal logics cannot be used to express the properties of LTSs, because in LTSs only transitions are
labelled and there is no proposition associated with states. ACTL was developed in [DV90] to overcome
the problem. The rest of this section describes it.
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Definition 4.1 (Path)
Let L � LT S �S, A, T, s0 �, a sequence (s0, a0, s1), (s1, a1, s2), � � � is called a path from s0 if there is
s0

a�� s1
a�� s2 � � �, of which ai�i 	 �� �� � � �� � A � � .

ACTL is analogous to CTL but interpreted over actions. In order to express the predicates over actions,
a small auxiliary logic of actions is needed. If A is the set of actions, then the action formulae a � A� f�g
� are defined by:

	 ��	 true j a j �	 j 	 � 	

The usual derived boolean operators are also allowed: there are true for ��a � �a�, false for �true,
a � a for ���a � �a� and so on.

Action formulae 	 are interpreted over the actions a (a � A � f�g) of an LTS model M = �S, A, T,
s0�. The satisfaction of an action formula 	 by an action a (a � A�f�g), denoted by a j	M 	 (or a j	 	

when model M is understood), is defined inductively by:

a j� true always�
a j� b iff a � b�
a j� �� iff a �j� ��
a j� � � �� iff a j� � and a j� ���

The syntax of an ACTL formula 
 is defined by the following grammar:

� ��� true j �� j � � � j EX�� j AX��

j E���U�� j E���U��� j A���U�� j A���U���

The satisfaction of an ACTL formula
 by a state s � S of an LTS M = �S, A, T, s0�, written s j	M 


(or s j	 
 when M is understood), can be defined inductively:

s j� true always�
s j� �� iff s �j� ��
s j� � � �� iff s j� � and s j� ���

s j� EX�� iff �s
a
� s� � T such that a j� � and s� j� ��

s j� AX�� iff �s
a
� s� � T� a j� � and s� j� ��

s j� E���U�
�� iff �s�� s��

a�
� s	

a�
� � � � � path�s�

�k � � such that sk j� �� and �i � ��� k 	 	�� si j� � and ai j� �

s j� E���U����� iff �s�� s��
a�
� s	

a�
� � � � � path�s�

�k � � such that sk j� �� and �i � ��� k 	 	�� si j� � and
�j � ��� k 	 
�� aj j� � and ak�� j� ���

s j� A���U�
�� iff �s�� s��

a�
� s	

a�
� � � � � path�s�

�k � � such that sk j� �� and �i � ��� k 	 	�� si j� � and ai j� �

s j� A���U����� iff �s�� s��
a�
� s	

a�
� � � � � path�s�

�k � � such that sk j� �� and �i � ��� k 	 	�� si j� � and
�j � ��� k 	 
�� aj j� � and ak�� j� ���

Besides the usual derived boolean operators, the following are some useful modalities:

h�i� � EX��

���� � �h�i��
EF�� � E�true�U��
AF�� � A�true�U��
EG�� � �AF���
AG�� � �EF���

Like in CTL, all the legal ACTL formulae are state formulae, which are true if the current state satisfies
the formula or false if otherwise. In the ACTL formulae, A and E are path quantifiers which define whether
a property of current state should be true for all its possible paths (A) or only for some path (E). The basic
temporal operators of ACTL are X and U; F and G are derived operators. The following gives the intuitive
meaning of several common ACTL formulae:

�The original ACTL does not include � in the action set.
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� EX�
 (i.e. h	i
) is true of a state if it has an action satisfying 	 and the action leads to a state
satisfying 
. This is also the diamond operator in HML.

� AX�
 is true of a state if the state can only do actions satisfying 	 and the actions lead to states
satisfying 
.

� �a�
 is true of a state if all its actions which satisfy 	 lead to states satisfying 
. This is also the Box
operator in HML.

� EF�
 is true of a state if some of its paths can begin with a series of actions satisfying 	 then reach
a state satisfying 
. If the state itself satisfies 
, then the formula is also true.

� AF�
 is true of a state if all its paths can begin with a series of actions satisfying 	 then reach a state
satisfying 
. If the state itself satisfies 
, then the formula is also true.

� EG
 is true of a state if there exists one or more paths on which all states satisfy 
.

� AG
 is true of a state if all the states on all its paths satisfy 
. It is also said that 
 is satisfied
globally.

4.1.3 Relations between LTSs

The operational semantics of LOTOS is defined based on labelled transition systems. In this section, several
common relations between LTSs are presented. More relations can be found in [Gla90, Gla93] and [Nic87],
where a spectrum of equivalent and congruent relations are compared in terms of distinguishing power.

Definition 4.2 (Strong Equivalence)
A relation, R � LT S�L� �LT S�L� is a strong bisimulation if �P�Q� � R implies, �a � L � � , that:

� if 
P � � P
a
� P � then
Q� � Q

a
� Q� with �P �� Q�� � R� and

� if 
Q� � Q
a
� Q� then
P � � P

a
� Q� with �P �� Q�� � R�

Two processes P, Q are strongly equivalent, written P � Q if there exists a strong bisimulation R such
that �P�Q� � R. The relation � is defined to be the largest strong bisimulation, i.e. the union of all strong
bisimulations.

Strong bisimulation equivalence can distinguish more processes than any other equivalent relations.
However it is usually too strong to be used in practice since it requires two processes to match each other
even on internal behaviour. For example process a; i; i; b; stop is not strongly equivalent to process a; i;
b; stop. Internal events are unseen to external observers, and thus are meaningless in most circumstances.

Definition 4.3 (Observational Equivalence)
A relation, R � LT S�L� �LT S�L� is a weak bisimulation if �P�Q� � R implies, �a � L � � , that:

� if 
P � � P
a
� P � then
Q� � Q

�a
� Q� with �P �� Q�� � R� and

� if 
Q� � Q
a
� Q� then
P � � P

�a
� Q� with �P �� Q�� � R�

Two processes P, Q are observationally equivalent, written P � Q if there exists an weak bisimulation R
such that �P�Q� � R. The relation � is defined to be the largest weak bisimulation, i.e. the union of all
weak bisimulations.

In the above definition, P
�a
� Q has the same meaning with P

a
� Q when a is not an internal event.

Otherwise it means the same as P
�
� Q. Recall that P

�
� Q is defined as P 	 Q or P

� ������
�� Q, and for

a � L, P
a
� Q is defined as 
s�� s� � P

�
� s�

a
� s�

�
� Q. From the definition, the internal events � may

be ignored when determining if two processes are observational equivalent or not. As an observer interacts
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with a system through its external interface, observational equivalence is often used for characterizing
systems.

Observational equivalence is not a congruence. Precisely it is not preserved by the choice operator of
LOTOS. For example, although i; b; stop � b; stop, it is not true that a; stop [] i; b; stop � a; stop [] b;
stop. The consequence is that if i; b is replaced by b; stop, the new system is not observationally equivalent
to the original one.

It is known that observational equivalence is a congruence with respect to other LOTOS operators such
as prefix (;), parallel (jjj, j �� � �� j) and hide [ISO89, Mou94]. In the DILL approach, composing compo-
nents is done by putting the processes in parallel, then hiding the internal connecting ports. Observational
equivalence can be used as a congruence in this circumstance. In other words, if two components A and B
are proved be observationally equivalent, then a circuit which contains the A component can be changed
to a new one by substituting A for B. The resultant circuit is still observationally equivalent to the original
one.

Observational equivalence can preserve deadlock freedom. If two processes are observationally equiv-
alent, they are both free from deadlocks or both possessing deadlocks. However, this equivalence cannot
preserve livelock freedom, or liveness properties.

Definition 4.4 (Branching Bisimulation Equivalence)
A relation R � LT S�L��LT S�L� is a branching bisimulation if �P�Q� � R implies, �a � L � � , that

� if 
P � � P
a
� P � then eithera 	 � and �P �� Q� � R� or


 a pathQ� Q�
a
� Q� � Q� with �P�Q�� � R� �P �� Q�� � R� �P �� Q�� � R� and

� if 
Q� � Q
a
� Q� then eithera 	 � and �P�Q�� � R� or


 a pathP � P�
a
� P� � P � with �P�� Q� � R� �P�� Q

�� � R� �P �� Q�� � R

Two processes P, Q are branching bisimulation equivalent, written P �b Q if there exists a branching
bisimulation R such that �P�Q� � R. The relation �b is defined to be the largest branching bisimulation,
i.e. the union of all branching bisimulations.

Branching bisimulation equivalence [Gla90] is stronger then observational equivalence but weaker than
strong equivalence. Essentially the definition is the same as observational equivalence. The difference is
that it compares the states not only at the start and finish of a � sequence, but also the states along the �
sequences. Branching bisimulation equivalence is a congruence and preserves liveness properties when
both processes are livelock free [DV90]. In other words, if two LTSs are free from livelock and are related
by branching bisimulation equivalence, they satisfy exactly the same set of liveness properties.

Definition 4.5 (Simulation Preorder and Simulation Equivalence)
A relation R � LT S�L��LT S�L� is a simulation if �P�Q� � R implies, �a � L � � , that:

� if 
P � � P
a
� P � then
Q� � Q

a
� Q� with �P �� Q�� � R�

The simulation preorder �s is defined as the largest simulation.
The simulation equivalence�s is defined by �s	�s ���s�

���

Definition 4.6 (Safety Preorder and Safety Equivalence)
A relation R � LT S�L��LT S�L� is a safety simulation if �P�Q� � R implies for �a � L � �

� if 
P � � P
a
� P � then
Q� � Q

a
� Q� with �P �� Q�� � R�

The safety preorder �s is defined as the largest safety simulation.
The safety equivalence �s is defined by �s	�s ���s�

���

Safety equivalence is named after its important feature: it preserves all safety property, i.e. if two LTSs
are related by safety equivalence, they satisfy the exactly same set of safety properties [BFG�91].

To verify hardware, testing equivalence/preorder and trace equivalence/preorder are also used. Because
they are not used in the DILL approach, the formal deldfinitions are not given here. Intuitively, two LTSs are
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Figure 16: Different equivalence relations with different strengths

testing equivalent if any possible observer, which is also modelled as an LTS, cannot distinguish them after
interacting with the two LTSs. This relation is weaker than observational equivalence. Trace equivalence
is the weakest equivalent relation between LTSs; it only requires that two LTSs have the same trace set.

Figure 16 gives the relative strength of these relations. In the figure R1 � R2 means that R1 is a finer
relation than R2, i.e. R1 is able to differentiate at least as many specifications as R2 is. Thus according to
this figure, if two relations are strong bisimulation equivalent, they must also be observational equivalent,
but not vice visa.

Note that when LTSs are deterministic, all the equivalence relations in the above figure coincide.

4.1.4 CADP

CADP (Cæsar Aldébaran Development Package [FGK�96]) is an automated toolset for analysing concur-
rent systems expressed in LOTOS or other formalisms whose semantics are based on LTSs. It is perhaps
the most comprehensive tool available to support LOTOS currently. CADP includes several tools each of
which fulfil a specific functionality. Cæsar.ADT and Cæsar compile the data part and the behaviour part
of a LOTOS specification respectively. The result is a finite state graph (i.e. an LTS) which describes the
exhaustive behaviour of the corresponding specification. Aldébaran performs verification using the LTS
or a network of LTSs (i.e. a finite state machine connecting several LTSs by LOTOS parallel and hiding
operators). It is able to either compare or minimize LTSs with respect to bisimulation or simulation rela-
tions. XTL (Executable Temporal Language) is a functional-like programming language that allows the
implementation of temporal logic operators. Several temporal logics such as ACTL have been embedded
in XTL. The tool with the same name can be used to perform model checking XTL formulae against LTS
models. To partially resolve the problem of state space explosion, CADP incorporates advanced verifi-
cation techniques such as compositional generation, on-the-fly comparison, and BDD (Binary Decision
Diagram) symbolic representation of LTSs. These techniques make it possible to verify relatively large
specifications.

CADP also supports customized verification tools. It provides a programming interface through which
the LTSs of LOTOS specifications can be manipulated. This interface is used to implement a verifier for
asynchronous circuits in chapter 4 and a test generation tool in chapter 5.
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4.2 Verification of Synchronous Circuits

In this section, the benchmark circuit single pulser will be investigated to demonstrate how synchronous
circuits are verified. The behavioural and structural specifications of this circuit have been given in sec-
tion 3.3.5.

As mentioned in section 3.3.5, the behavioural specification is non-deterministic since it allows two
different implementations: one asserts an output pulse when the button is pressed, the other asserts the
output when the button is released. The structural implementation given in the benchmark is deterministic;
in particular it produces the output pulse when the button is pressed. In the sequel, properties as well as the
relations between the two levels of specification will be verified by CADP.

4.2.1 Verifying Properties

First of all the basic properties, i.e. freedom from deadlock and livelock, are checked after the LTSs of both
specification and implementation are generated. It is found that they both satisfy the properties.

The implementation is also required to fulfil other properties. Two of them and their corresponding
ACTL formulae are listed below. In these formulae, an event with ellipsis means the corresponding signal
can either be 1 or 0. For example, Op� � � represents both Op ! 0 and Op ! 1. To make the formulae more
readable, �� �	�
 is used as a shorthand notation for the weak form of the Box (�) operator, meaning that
after the path of �� �	�, formula 
 should hold. Its equivalent ACTL formula is �E�true �U���
��.

Property 1: If there is a rising edge on input P In, eventually the output P Out becomes true.

AG�P In!0��� �P Out � � �����P In!1�A�truetrueUP Out��true�

A rising edge on P In refers to two clock cycles. In the first cycle it is 0, then it changes to 1 in the
second cycle. The above formula can be read as: for every state in the state space, after a rising edge
on P In, P Out ! 1 will be eventually reached.

Property 2: Whenever P Out is 1 it becomes 0 in the next cycle; and it remains 0 at least until the next
rising edge on P In.

Although there is the explicit expression of until in the above property, it cannot be written in one
until formula because ACTL is unfair. The 
�U
� operator in ACTL is known as strong until,
meaning that the formula is true only if 
� really takes place in a path. Since P In is an input signal,
it is possible that it remains at 0 forever. Such behaviour results in unfair paths in a model. Unfairness
of ACTL means that it cannot express assertions only on fair paths. In other words, a formula has to
be analysed on both fair and unfair paths, although the behaviour on unfair paths is not of interest.

Two formulae are used to capture this property. The first says that if P Out is 1 in a clock cycle, then
it must be 0 in the next cycle at least until the third clock cycle. The second formula says that if the
P Out is 0, it cannot change to 1 unless P In changes to 1.

AG�P Out!1����P In � � ��A�true��P Out��UP In���true�

The above formula can be read: for every state in the state space, after the path P Out ! 1, � �P In� � �,
there is P Out ! 0 or � until the next P in. . . .

AG�P Out!0��E�true�P In��UP Out��true�

The above formula can be read: for every the state in the state space, after P Out ! 0, there does not
exist a path such that after actions which are not P In ! 1, P Out ! 1 can be reached.

These two properties are verified to be true by CADP, taking just seconds for each of the formula.
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Figure 17: The LTSs of single pulser specifications

4.2.2 Verifying Relations between Two Levels

Most hardware verification tools provide the feature of model checking temporal logics. But circuits spec-
ified in DILL can also be analysed by checking the relations between specifications at different abstract
levels. This provides an alternative or complement to the temporal logic model checking approach.

Figure 17 shows the LTSs which are observationally equivalent to the DILL specifications. The LTS
which is strongly equivalent to the lower level specification has 97 states so it is not feasible to draw it
here. Since the higher level specification is more non-deterministic than the lower one, a preorder relation
instead of equivalence is considered. CADP can check only two preorder relations: simulation preorder
and safety preorder. It is revealed that the lower level specification satisfies the safety preorder but not
the simulation preorder when compared with the higher level specifications. Intuitively fulfilling safety
preorder can guarantee that all the external behaviour of an implementation is allowed by the specification.
Although safety preorder does not in general preserve deadlock and livelock, the implementation has been
verified free from them.

To gain more confidence in the circuit, consider the following verification approach. Because it has
already been known that the design of the circuit intends to implement a positive edge triggered single
pulser, a behavioural specification which deals with the negative edge triggered situation can be extracted
from the non-deterministic specification. The state graph of this specification, not surprisingly, is the
Sp P, which is part of the left branch of the Sp Beha (figure 17). It is evident that the implementation is
observationally equivalent to this deterministic specification. Therefore it is ensured that the circuit is a
correct implementation of the deterministic specification.

4.2.3 Case Study

In this section, the DILL approach is evaluated using another benchmark circuit in [SK96], a bus arbiter.
The purpose of the Bus Arbiter is to grant access on each clock cycle to a single client among a number
of clients requesting the use of a bus. The inputs to the arbiter are a set of request signals, each from a
client. The outputs are a set of acknowledge signals, indicating which client is granted access during a
clock cycle. The documentation also defines some properties that the Bus Arbiter must respect. They are
given informally and also in CTL (Computational Tree Logic). Besides listing the properties to be fulfilled,
the benchmark documentation also gives an arbitration algorithm in plain English. Finally the gate level
implementation of the Bus Arbiter is provided as a circuit diagram.

Higher-Level Specification in LOTOS

LOTOS supports specification at various levels of abstraction. Although the benchmark circuit has
been studied by many researchers, apparently there has not been a formal specification of the arbitration
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Figure 18: A bus arbiter with three cells

algorithm used in the design. With LOTOS, it is possible to provide such a higher-level specification. There
are two clear benefits of this formalization. Firstly, better understanding of the algorithm can be gained
from rigorous specification. Secondly, correctness of the algorithm itself can be ensured before the circuit
is built and verified. Flaws in the algorithm will be more time-consuming to correct if they are discovered
only after the implementation.

The arbitration algorithm embodied in the design is a round-robin token scheme with priority override.
Normally the arbiter grants access to the highest priority client: the one with the lowest index number
among all the requesting clients. However as requests become more frequent, the arbiter is designed to
fall back on a round-robin scheme, so that every requester is eventually acknowledged. This is done by
circulating a token in a ring of arbiter cells, with one cell per client. The token moves once every clock
cycle. If a client's request persists for the time it takes for the token to make a complete circuit, that client
is granted immediate access to the bus.

Translating the algorithm to LOTOS is quite straightforward. It is realized mainly by LOTOS value
expressions. For example each cell has two variables associated with it: token that indicates if the token is
in the cell, and waiting that indicates if the request of the corresponding client has persisted for a completed
token cycle. Circulating the token, (re)setting the waiting variable and so on correspond to LOTOS value
expressions. For an arbiter with three cells, the LOTOS specification has 79 lines (including comments) for
the behavioural specification.

Lower-Level Specification in DILL

The design of the arbiter consists of repeated cells. Each cell is in charge of accepting request signals
from a client, and sending back acknowledgments to the same client. Figure 18 shows an arbiter with three
cells. Figure 19 shows the design of each cell. The first cell is slightly different because it is assumed that
the token is initially in the first cell.

The principle of the circuit will not be explained in detail here. Briefly, the ti (token in) and to (token
out) signals are for circulation of the token. The to output of the last cell is connected to the ti input of
the first cell to form a token ring. The gi (grant in) and go (grant out) signals are related to priority. The
grant of cell i is passed to cell i+1, and indicates that no client of index less than or equal to i is requesting.
Hence a cell may assert its acknowledge output if its grant input is asserted. The oi (override in) and oo
(override out) signals are used to override the priority.

Because the components of each cell are in the DILL library, it is very easy to specify the process
describing a cell. The specification of an arbiter with three cells is obtained by connecting three such
processes. As for the Single Pulser, there is also an environment constraint in the structural specification to
meet the conditions of the synchronous circuit model discussed in section 3.3.

After both levels have been specified, it is time to verify the circuit. In the following section, all the
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three verification tasks mentioned in section 4.1.1 will be carried out. That is to say, the specification and
implementation are checked against several properties, and the equivalence between the two levels is also
examined.

Verification
The benchmark documentation provides three properties the bus arbiter should fulfil. The following

three formulae refer to client 0; the formulae for other clients have a similar form. Similar to the weak box
formula in the example of the single pulser, � � �	 � 
 is the weak diamond operator, the shorthand of
E�true�U�
�.

Property 1: No two acknowledge outputs are asserted in the same clock cycle (safety).

AG��EXAck����� ��Ack0!1 � true� � � �Ack2 ! 1 � true��

This formula is read: for every state in the state spaces, it is not the case that there exists an action
A0 !1 which can be followed by Ack1 !1 or Ack2 !1.

Property 2: Every persistent request is eventually acknowledged (liveness).

AG��Req0 ! 1�A�truetrueUReq����Ack���true��

This formula can be read: for every state in the state space, after the action Req0 !1, eventually Ack0
!1 will be reached, unless there is Req0 !0.

Property 3: Acknowledge is not asserted without request (safety).

AG��Req0 ! 0��E�true�Req���UAck���true��

This formula can be read: for every state in the state space, after the action Req0 ! 0, it is not the
case that there exists a path such that after an action which is not Req ! 1, Ack0 ! 1 can be reached.

To verify the higher-level specification against the temporal logic formulae, the LTS of the specification
was produced first. Cæsar generates an LTS with 3649 states and 7918 transitions. Aldébaran reduces this
to 379 states and 828 transitions with respect to strong bisimulation. Both generation and reduction take
seconds. The temporal logic formulae are then checked against the minimised LTS. Each is verified to be
true within 1 minute.

The real challenge comes when the lower-level DILL specification is verified. The state space is so
large that direct generation of the LTS from the LOTOS specification is impractical. As mentioned before,
there are several advanced techniques implemented in CADP to tackle the problem of state space explosion.
Nevertheless, using on-the-fly verification of the arbiter also fails after considerable run-time. CADP does

45



Signal Cycle1 Cycle2 Cycle3 Cycle4

Req0 1 1 1 0
Req1 0 0 0 1
Req2 0 0 0 0
Ack0 1 1 1
Ack1 0 0 0 0 or 1
Ack2 0 0 0

Table 1: A counter-example generated by Aldébaran

not currently support the direct generation of BDDs from LOTOS specifications, instead BDDs are only
used in several algorithms after the LTSs of LOTOS specifications are obtained.

Compositional generation was tried out to verify the arbiter. Basically the idea is that of `divide and
conquer'. A LOTOS specification is divided into several smaller specifications to make sure that it is
possible for Cæsar to generate an LTS for each of them. Then Aldébaran is used to reduce these LTSs
with respect to a suitable equivalence relation. The minimised LTSs are then combined using the LOTOS

parallel operator (and also the hide operator if necessary) to form a network of communicating LTSs (the
CADP term). At this stage, an LTS might be produced from the network, or on-the-fly verification might be
performed against the network. In order to get valid verification results, special attention must be given to
the equivalence relation that is used. The relation must be a congruence with respect to the compositional
operators, here the LOTOS parallel and hide operators. The relation must also preserve the properties to be
verified. This ensures that the resulting network of communicating LTSs will respect the same properties
as the original LOTOS specification.

Among the three properties proposed for the benchmark, the first and the third are safety properties
while the second is a liveness property. Safety equivalence [BFG�91] preserves all safety properties,
while branching bisimulation equivalence [vW89] preserves liveness properties when there is no livelock
in specifications. Both of these equivalences are congruences with respect to the parallel and hide operators.
These two equivalences are thus appropriate to compositional generation.

The design of the arbiter was divided into three pieces, one per cell of the arbiter. After about seven
minutes in total, an LTS which is safety equivalent to the LOTOS specification of the design was generated.
The two safety properties were verified to be true against this LTS, implying that the design also satisfies
these safety properties. Verification of the formulae takes just seconds. However generating the LTS which
is branching equivalent to the design takes a much longer time. To tackle the problem, an environment pro-
cess which restricts the order of input signals Req1, Req2, Req3 is applied to both levels of specifications.
This helps to reduce the state spaces dramatically. It makes it possible to verify that the implementation is
free from livelock and also satisfies the liveness property.

Observational equivalence is chosen for the implementation verification. As before, compositional
generation was exploited to generate the LTS for the design. This time each cell was reduced with respect
to observational equivalence since it is a congruence for the parallel and hide operators. After about eight
minutes in total, the LTS was generated. It was expected that this LTS would be observationally equivalent
to the one representing the higher-level specification. However Aldébaran discovered that they are not!
Table 1 is one of the sequences given as a counter-example. (The Aldébaran output has been rendered
more readable here.) This sequence indicates that in the first three clock cycles only client 0 requests the
bus; both the high-level specification and the low-level design grant access to this client. In the fourth cycle,
client 0 cancels its request but client 1 begins to request access. At this point the two levels of specifications
are different: the lower-level specification offers 0 for Ack1, whereas the higher-level specification offers 1
for Ack1.

After step-by-step simulation of the counter-example, it was soon discovered that the circuit does not
properly reset the oo (override out) signal to 0 in the following situation. Suppose a cell has been requesting
access, so its W register is set to 1. However the cell cancels the request in the very clock cycle that the
token happens to arrive. In this situation, because the client has already cancelled its request it should be

46



possible for another client to get the bus. However, the design sets the oo signal to override the priority as
if this client were still requesting. This prevents any other client from accessing the bus in this clock cycle.

Fixing the problem was much easier than finding it. The correction was to connect the Req signal to
the And gate that follows the W register. The output of the And gate guarantees that the oo signal is always
correctly set or reset according to the request signal in the current clock cycle. This modified design was
verified to be observationally equivalent to the higher-level algorithmic specification.

As mentioned in section 3.3, in DILL the inputs are assumed to be synchronized with the clock signal.
If the Req signal in figure 19 is not synchronized with the clock. In this case the problem discussed above
might not happen. As the benchmark documentation does not state if inputs are synchronized with the
clock or not, it is believed that the modified design is more robust.

4.3 Verification of Asynchronous Circuits

Although the method of verifying asynchronous circuits bears many similarities to that of synchronous
circuits, there are some differences due to the nature of asynchronous circuits and the modelling techniques
adopted by DILL. This section focuses on the differences rather than the similarities

4.3.1 Extra Considerations for Verifying Asynchronous Circuits

The main difference in modelling synchronous and asynchronous circuits is how to represent digital sig-
nals. In asynchronous circuits, LOTOS events model physical signal transitions. As has been discussed in
chapter 3, the consequence of modelling signal transitions is that the behaviour of structural specifications
may not model asynchronous circuits faithfully if the components in the specifications are not specified in
the input receptive way. In other words, the behaviour of such specifications is only the subset of all possi-
ble behaviour that a real circuit may exhibit. To solve the problem, input quasi-receptive specifications are
proposed in section 3.4.6.

So far, only those asynchronous circuits which assume unbounded delay models are specified in DILL.
In particular, DILL specifications have a direct mapping to speed-independent circuits. Recall that speed-
independent circuits assume zero delay on wires and unbounded delay on components. Therefore the
correctness of this kind of circuit is irrespective of the delay magnitudes of components. In practice, speed-
independent circuits are regarded as the same as semi-modular circuits, where no input should pre-empt
pending outputs. To pinpoint if a circuit is speed independent or not, each of its components should be
specified according to the requirement of semi-modularity, i.e. when an input can potentially pre-empt one
of its pending outputs, the input leads to the deadlock stop, indicating that erroneous behaviour occurs.

The correctness of asynchronous circuits is very sensitive to their environment. Suppose one wants to
know if a Repeater can be implemented by two Inverter gates in series. A straightforward way of verifying
the idea is to write both the specification and the implementation of the repeater, and then compare their
state graphs. There have been several models of logic gates developed in chapter 3, and many equivalence
relations have been discussed in section 4.1.3. But whichever gate model is used, it is discovered that the
implementation has more behaviour than the specification; in particular it can receive more inputs than its
specification does. As shown in figure 20. The Inverter in the figure is modelled according to the gate
model in section 3.2, which assumes that pending outputs can be pre-empted. The two level specifications
are not equivalent even in terms of traces. In fact, trace(S)� trace(I), i.e. they are related by trace preorder.
Intuitively this relation means that the implementation can do what the specification dictates, but it can also
do what is not given in the specification. In general this relation is too weak to be a good criterion.

It is a very common phenomenon that a structural implementation has much more behaviour than
the corresponding behaviour of its specification. This does not just happen in the DILL approach, but
also happens in many other methodologies such as those based on process algebra and trace theory. The
phenomenon makes it unrealistic to set the equivalence between specifications and implementations as the
correctness criterion. In fact an equivalence relation between two LTSs requires that they have the same
behaviour under all possible environments. This requirement is usually too strong since practical circuits
only operate in some expected environments. In most cases an implementation is only required to be correct
in these assumed environments.
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Figure 20: LTSs of the Specification and implementation of Repeater

The DILL modelling technique for synchronous circuits assumes a natural environment for all syn-
chronous circuits. The environment provides all inputs once during each clock cycle and it provides clock
cycle slowly enough to let all outputs settle down. Asynchronous circuits, on the other hand, can accept
any inputs at any time, so it is impossible to provide a unified environment for all circuits.

The features of asynchronous circuits have some implications for verification. As it is more difficult
to specify components in an input receptive or input quasi-receptive manner, verification of asynchronous
circuits may still be based on using components which are not input-receptive. But one should aware that
the result of the verification may not exact; in particular the result could be over optimistic in the sense that
some bugs cannot be discovered. Using components which are input quasi-receptive, on the other hand,
will result in a larger state space and thus make verification more difficult. Since for most asynchronous
circuits no explicit environment is given, assumptions about environments have to be made. The next
section elaborates this point.

4.3.2 Environment of Asynchronous Circuits

When an environment is not explicitly given, following the approach adopted by David Dill [Dil89] many
methodologies simply assume that the mirror of a specifications is the environment of its implementations.
The mirror of a specification S has the same behaviour as S, but its inputs are the outputs of S and its
outputs are the inputs of S. Moreover, it tends to be the most liberal environment an implementation can
expect. The reason behind this is that a behavioural specification actually indicates the environment of the
circuits. For instance, the specification of the Repeater expects its environment first to provide Ip, then
waits until Op has been produced by the circuit. David Dill's idea has been applied in approaches based
on trace theory and process algebra, such as in [ESB95, Gop92]. If the idea is to be adopted in the DILL

approach, since there is no difference between inputs and outputs in LOTOS, the mirror of the specification
is the specification itself. Suppose S stands for the specification and I represents the implementation, the
verification task then becomes comparing S jj I with S (because S jj S is still S), or checking if a logic
formula holds on S jj I.

But verifying S jj I is not always satisfactory. S jj I represents the joint behaviour of S and I. When
an implementation can accept more inputs than its specification does, S jj I restricts the considered inputs
only to those specified in the specification. This actually assumes that the environment does not provide
extra inputs, so the inputs which are only accepted by the implementation are ignored when verifying the
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joint behaviour. This is reasonable. But it also permits an implementation to produce more outputs than
a specification, since the extra outputs produced by the implementation may also be filtered out. This is
however not reasonable since under legitimate inputs, an implementation producing an unexpected output
is normally regarded as erroneous. Moreover, when a specification is non-deterministic, this method may
exclude correct deterministic implementation. Figure 21 illustrates the intuitive effect of composing a
specification with its implementation. S1 and I1 are the specification and the implementation of a circuit
respectively. If S1 is regarded as the environment of I1, then S1 jj I1 is the process to be verified. It can
be seen that the Ip2 branch will be ignored during verification. So will the Op2 branch. Although S1 jj I1
= S1, I1 is normally regarded as an erroneous implementation due to the extra Op2 transitions. The rest
of the LTSs in the figure illustrate the situation where a specification is non-deterministic. I2 is a correct
deterministic implementation of S2. But there is deadlock in S2 jj I2. S2 and S2 jj I2 are only related by
trace preorder, but in general this relation is too weak to be used in verification.

The key point here is the different roles of inputs and outputs in digital circuits. An implementation
passively accepts inputs so only those inputs available from the environment make sense. At the same
time it positively produces outputs, therefore the environment has no influence on the outputs. A LOTOS

specification however does not distinguish inputs and outputs. When it is used as the environment, it
restricts them equally.

When an implementation is specified in an input receptive or input quasi-receptive way, the difference
between inputs and outputs is actually made. If its environment is also receptive, then it is possible to detect
the extra outputs produced by an implementation: if an unexpected output is produced, the environment
will go to deadlock after receiving it. Figure 22 applies this idea to S1 and I1 in figure 21. E1 is the input
quasi-receptive environment obtained from S1. I1 QR is the input quasi-receptive form of I1. As seen, the
unexpected output Op2 can be detected since E1 jj I1 QR leads to deadlock after this output.

However, it is very hard to get the input quasi-receptive environment from a behaviour specification, es-
pecially when the specification is complicated or contains internal events. The thesis therefore provides an
alternative method for verifying asynchronous circuits. In section 4.3.3, relations which take into account
the difference between inputs and outputs will be defined. These relations do not require the receptiveness
(or quasi-receptiveness) of the environment or the implementation, and are intuitive criteria of correctness
of asynchronous circuits.
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4.3.3 Conformance and Strong Conformance

Although there have been many relations defined to characterise the relationship between two LTSs, they
are not very helpful for verifying asynchronous circuits, especially when the environments of a circuit is
not explicitly provided. In this section, two new relations, termed confor and strongconfor are defined to
compare an implementation with its specification. These relations take into account the difference of inputs
and outputs of a circuit, and are in fact inspired by the ioco relation suggested by Jan Tretmans [Tre96]
(University of Twente) for testing communication protocols. In chapter 5, more details about ioco will be
given.

Suppose a circuit has input set LI and output set LU . Spec and Impl are the specification and the
implementation of the circuit respectively. Spec may be partial in the sense that in some states it does
not accept some inputs, i.e. it is not input receptive. As discussed in chapter 3, an input is absent in a
state of a specification if the environment of the circuit does not provide this input, if the behaviour of the
circuit upon receiving the input is not of interest, or if the behaviour is undefined. Although all circuits are
potentially able to accept all their inputs at any time, most specifications are partial to avoid getting into too
much details. The implementation Impl may either be partial or total in the sense of input receptiveness.

Suppose sp is a state of Spec, and the corresponding state in Impl is im. To define the confor relation,
first consider the input transitions that sp and im can engage in. For convenience, it is also said that they
are the inputs which sp or im can accept. If an input ip is acceptable in sp, it means that the environment
may provide this input in that state. Therefore it is reasonable to require that ip is also accepted in im, for
otherwise the behaviour of the implementation upon receiving the input will be undefined. On the other
hand, if im can accept an input which is not acceptable by sp, this input and all the behaviour afterwards can
be ignored. Since the environment will never provide such an input, or even if the input is provided, such
behaviour is not of interest. In short, the input set acceptable in sp should be a subset of that acceptable in
im.

As far as outputs are concerned, intuitively if sp can produce op, it is expected that a correct imple-
mentation should also be able to produce it. If sp cannot produce a certain output, neither should its
implementation. However, when a specification is allowed to be non-deterministic, requiring that im pro-
duces exactly the same outputs as sp does tends to be too strong, since any deterministic implementation
is only able to produce a subset of the outputs dictated by its non-deterministic specification. In this case,
a suitable relation should allow output inclusion instead of output equality. The problem is that since an
empty set is included in any set, a circuit which `accepts everything but does nothing' may also be qualified
as a correct implementation, as shown in figure 23, where both I and I' are regarded as correct implementa-
tions of S. To overcome this weakness, a special action �, which is neither in L I nor in LU , is introduced to
indicate the absence of outputs. � is seen as an output action and, like any other output action, if � belongs
to the output set of im, it must be in the output set of sp for the relation to hold. In other words, im can
produce nothing only if sp can do so. When the � is considered, I' is no longer a legitimate implementation
of S.

In the above discussion, state im is compared with sp. sp and im are not the states in the LTSs of
the specification and the implementation, but all the possible situations that the circuits may be in after
a certain input-output sequence. Because � is also involved in the sequence, the state spaces of both
specification and implementation are transformed into automata which are explicitly labelled with �. The
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input-output sequences are actually the traces of the automaton of the specification. If the automaton of the
implementation cannot follow the sequence, i.e. the sequence is not the trace of the automaton, im will be
the empty set.

After discussing the informal meaning of the relation, the rest of the section gives the formal definitions.
Definition 4.7, definition 4.8 and definition 4.10 comes from [Tre96].

Definition 4.7 (Quiescent Trace and Quiescent State)
Let p � LT S �LI � LU �� LI � LU 	 


� A state s of p is quiescent, denoted by ��s�, if �� � LU � f�g � s 	
�
��

� A quiescent trace of p is a trace � which may lead to a quiescent state:

p� � �p after �� � ��p��

� out�s� 	def fx � LU j s
x
�g � f� j ��s�g

� out�S� 	def

S
fout�s� j s � Sg

� in�s� 	def fx � LI j s
x
�g

� in�S� 	def

S
fin�s� j s � Sg

A quiescent state is one that cannot perform any output transition or an internal transition. out(s) defines
all the output actions that a state can produce. This includes the quiescent `action' � which means the state
cannot produce any output. in(s) defines all the input actions that a state can accept.

Definition 4.8 (Suspension Trace)
Let p � LT S�LI � LU ��LI � LU 	 


� p
LU� p� 	def p 	 p� and�� � LU � f�g � p

�

	�

� The suspension trace of p are: Straces(p) 	def f
 � �L � LU �
� j p

�
�g

To define suspension traces, the transition relation � is extended with the refusal of output actions:
self-loop transitions labelled with LU expressing that no action in the output set can occur. The refusal of
output actions can also be expressed by � transitions. A suspension trace, consequently, not only contains
ordinary actions, but also �s. If L	 denotes L � �, then a suspension trace � � L�

	 .

Definition 4.9 (Conformance and Strong Conformance)
Let i � LT S�LI �LU �� and s � LT S�LI � LU ��LI � LU 	 
 then

i confor s �def �� � Straces(s) � out�i after �� 
 out�s after �� and
if i after� �� � � in�s after�� 
 in�iafter��

i strongconfor s �def �� � Straces(s) � out�i after �� � out�s after �� and
if i after� �� � � in�s after�� 
 in�iafter��

As will be seen in chapter 5, confor is quite similar to the ioco relation except that ioco assumes the
input receptiveness of implementations, so input inclusion is always satisfied.

The confor relation requires that after a suspension trace of s, the outputs that an implementation i can
produce are included in what s can produce, and if i can follow the suspension trace, the inputs that s can
accept are also accepted by i. strongconfor has the similar definition except that output inclusion is replaced
by output equality.

The confor and strongconfor relations are more easily observed if the LTSs of specifications are trans-
formed to suspension automata, where � is explicitly labelled.

Definition 4.10 (Suspension Automaton) Let L be partitioned intoLI andLU , and let p 	� S�L� T� s� ��
LT S �L� be a labelled transition system; P�S� denotes the powerset of S, i.e. the set of the subsets of
S; then the suspension automaton of p� 
p, is the labelled transition system hS	 � L	� T	� q�i � LT S�L	�,
where
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S	 	def P �S�nf
g

T	 	def fq
a
� q� j a � LI � LU � q� q

� � S	� q
� 	 fs� � S j 
s � q � s

a
	� s�gg

�fq
	
� q� j q� q� � S	 � q

� 	 fs � q j ��s�gg

q� 	def fs� � S j s�
�

	� s�g

An important property of a suspension automaton is that it is deterministic and the suspension traces
of a system p coincide with the traces of its suspension automaton 
p (the proof can be found in [Tre96]).
Moreover, for all � � L�, out�
p after �� 	 out�p after �� and in�
p after �� 	 in�p after ��. Therefore
checking the confor and strongconfor relations can be easily reduced to checking the trace inclusion relation
on the suspension automata. The key to generating a suspension automaton from an LTS is to build the
transition relation T	. From the definition, the first term of T	 determinises LTS, and the second term adds
� transitions to the states S	 which contains a quiescent state of S.

As an example, the suspension automata of the LTSs in figure 23 are illustrated in figure 24. Since
the LTSs are deterministic, their suspension automata are almost identical to themselves, except for the �
transitions. As can be seen, out(S Sp after Ip) = fOp1, Op2g, out(I Sp after Ip) = fOp1g, and out(I' Sp
after Ip) = f�g, therefore I confor S but not I' confor S. There is also not I strongconfor S. Normally confor
is used when a specification and an implementation are deterministic, and strongconfor is used when an
implementation is less non-determinisitic than a specification.

A verifier VeriConf developed by the author which checks the confor and strongconfor has been imple-
mented in the C language. This verifier was developed using the programming interface of CADP. Briefly,
CADP is exploited to generate LTSs of both specification and implementation. Then the verifier is used
to produce the suspension automata from the LTSs and to compare the automata according to the rela-
tions. This verifier has been successfully used in verifying several asynchronous circuits, including the two
examples given in the next section.

4.3.4 Case Studies

4.3.5 Asynchronous FIFO

In chapter 3, an asynchronous first-in-first-out buffer was specified. Designed for dual-rail datapaths, this
buffer has two inputs InT, InF and two outputs OutT, OutF. It is assumed to be empty initially. When 1
appears on InT or OutT, the data on the datapath is 1. When 1 appears on InF or OutT, the data is 0. Lines
should be reset to 0 between two transmissions. The specification will not be repeated here. Spec is the
behavioural specification of a FIFO with two stages. In the following, TwoStages represents the imple-
mentation using components which are not input receptive, EnvF, EnvB is the environment of TwoStages,
EnvF QR and EnvB QR are the environment specified in input quasi-receptive manner, and TwoStages QR
is the implementation which replaces all the components in TwoStages with their corresponding input
quasi-receptive components. Note that EnvF QR is actually identical with EnvF since EnvF has no input.
For this circuit, the following verification methods are applied:

� The liveness property is specified in ACTL and it is verified that the specification satisfies the fol-
lowing property.
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Property: If there is an input data 1, then outupt will become 1 eventually:

AG��InT ! 1�A�truetrueUOut��true��

The formula for data 0 is similar and is also verified to be true.

� In this example, the environment is explicitly given. It was verified that Spec � TwoStages jj (EnvB
j �� � �� j EnvF). Recall that � denotes the observational equivalence.

� For checking speed-independence, input quasi-receptive components are used. It was also verified
that Spec � TwoStages QR jj (EnvB QR j �� � �� j EnvF QR), which gives more confidence in the
design of the FIFO.

� The implementation TwoStages QR jj (EnvB QR j �� � �� j EnvF QR) also satisfies the liveness prop-
erty.

� Using VeriConf, it was established that TwoStages QR jj (EnvB QR j �� � �� j EnvF QR) strongconf
Spec.

A Circuit with two Components
This circuit is an example in [Ebe91], where it is used to show the difference between speed inde-

pendence and delay insensitivity. Although small, it reveals the necessity of using input quasi-receptive
specifications. Following the specification style of that paper, value offers ! 1 and ! 0 are omitted. As
a matter of fact, for asynchronous circuits, value offers are not necessary as long as the initial states of
signals are known. For instance, if signal Ip is initially 0, then Ip,� � �, Ip,� � �, Ip,� � � is the short form of Ip !
1,� � �, Ip ! 0,� � �, Ip ! 1, � � �. Apparently, keeping the value offer is helpful only for readability.

The behavioural specification is shown in figure 25(a). The behaviour of the two components is shown
in figures 25(b) and 25(c) respectively. In fact Ele1 achieves the Or function of signal transitions, and Ele2
achieves the And function. The proposed implementation is in figure 25(c). The verification task is to check
if this implementation is speed-independent and delay insensitive. For analysing delay insensitivity, the
circuit is transformed to figure 25(e), where the isochronic fork in (d) is replaced by an explicit fork element.
An alternative transformation is to add two delay elements, as explained in figure 11 of section 3.4.2. The
two methods have the same effect.

The implementation of the figure 25(d) is specified as Impl1, and figure 25(e) is specified as Impl2:

process Impl1 [IA, IC, ID, OB, OE] : noexit �
Ele1 [IA, IC, OB]
j�IC�j

Ele2 [IC, ID, OE]
endproc

process Impl2 [IA, IC, ID, OB, OE] : noexit �
hide x, y in

( Ele1 [IA, x, OB]
jjj

Ele2 [y, ID, OE])
j�x,y�j

Fork [IC, x, y]
endproc

The state spaces of Impl1 and Impl2 are much larger than that of Spec. For example, both can accept IC
and ID from their initial states, but Spec cannot. Since no explicit environment is given, a direct verification
approach is to compare Impl1 jj Spec with Spec, with the assumption that Spec is also the environment of
its implementations. According to CADP, they are observationally equivalent. The same result holds for
Impl2, i.e. Impl2 jj Spec � Spec and Impl1 jj Spec � Spec. This suggests that both figure 25(d) and (e) are
correct implementation with respect to Spec.
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Figure 25: A circuit with two elements

However, to ensure that both of the circuits are really speed-independent implementations of the spec-
ification , a more accurate model of the components, i.e the input quasi-receptive model, should be used.
Figure 26 shows the LTSs of these input quasi-receptive components. Suppose the implementations are
Impl1 QR and Impl2 QR, using VeriConf it is discovered that although there is Impl1 QR strongconfor
Spec, Impl2 QR does not relate to Spec with respect to both the confor and strongconfor relations. A diag-
nostic trace is given by the verifier: IA, OB, ID, IC, OE, IC, IA. By analysing this trace, it can be found that
after the OE is produced, the Spec is able to receive IA and IC. But for the implementation in figure 25(e),
after OE is produced the Fork element may still be in the unstable state since x has not been produced
yet. In this unstable state, the IC input from the environment makes the behaviour of the Fork component
undefined, which means that figure 25(e) is not speed-independent. More precisely the correctness of the
circuit depends on the speed of Fork. Figure 25(d) is therefore not a delay insensitive implementation of
Spec.

4.4 Related Work

Formal verification of digital circuits has been insensitively investigated during the last decades. There are
essentially two approaches to formal verification: model checking and theory proving. Several mature tools
have been developed, such as SMV (Symbolic Model Verifier [McM93]), VIS (Verification Interaction with
Synthesis [BH�96]), and Cospan [HHK96]. These tools are mainly based on model checking to enable
automatic verification. But general purpose theorem provers, such as HOL [Mel93] and PVS [SRC96] are
also employed in verifying digital circuits, especially the datapathes.

CADP belongs to model checking tools so is similar to SMV, VIS etc. But unlike these tools which
only provide the temporal logic model checking, CADP supports relation checking (equivalence, preorder
etc) and therefore provides more verification approaches. It is well known that temporal logic formulae
are difficult to write even for experienced users. Many negative verification results are actually because
of improper formulae instead of erroneous hardware designs. Relation checking helps to get rid of this
problem, and moreover, is able to point out more errors than temporal logic model checking, as has been
discovered in the case study of the bus arbiter. The reason is that a higher level specification of a system
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Figure 26: Quasi-receptive specifications of components in figure 25

contains more details than a formula which expresses an abstract property.
The size of the synchronous circuit that can be effectively verified is small compared to that handled by

other tools. COSPAN can verify an arbiter with four cells with the consumption of about 1 MB memory, due
to a symbolic representation using BDDs and efficient reduction techniques [FK97]. CIRCAL is reported
to generate the state space of an arbiter with up to 40 cells using reasonable computing resources, although
the actual memory used was not reported [MM93]. Again this is due to the BDD representation of the
CIRCAL specification. Note that in fact the arbiter was not formally verified in CIRCAL. [MM93] just
gives a test pattern to show that even if all clients request the bus, only one can gain access to the bus in
each clock cycle. CADP on the other hand consumes more than 100 MB of memory to produce the state
space of a three-cell arbiter. Although the resulting state space is relatively small, the intermediate stages
of generation need considerable memory.

The main reason for the performance limitation is that in synchronous circuits the order in which sig-
nals occur during a clock cycle is not so important. So it is reasonable to imagine that the inputs happen
together and then output occurs. But when modelling such circuits in DILL, independent (interleaved) in-
puts are allowed so the state space is considerably enlarged. The second reason is related to the verification
tool. CADP is perhaps the most mature tool which supports LOTOS, but it is still under development and
currently some of its features are mainly based on explicit state exploration. Because CADP cannot pro-
duce the minimised state space in the first place, large amounts of memory have to be consumed before a
smaller LTS can be produced by minimisation. On-the-fly algorithms are of some help, but they apply only
in particular situations. For example, on-the-fly observational equivalence checking is not supported by
CADP. Also CADP does not offer a BDD direct representation of LOTOS specifications, although BDDs
are used to represent intermediate data types in some algorithms.

The tools mentioned above mainly deal with synchronous circuits. Verification of asynchronous cir-
cuits, especially SI and DI circuits is also an active area. Based on trace theory, Dill [Dil89] built a verifier,
which could be the first automatic tool of this kind. Other tools can be found in [KKTT98, ESB95]. Most
asynchronous tools known to the author are model checking tools, which differ each other only in how the
models are represented, or how to design algorithms to improve the verification performance.

Like DILL many other asynchronous verification approaches also define relations to indicate that in
what sense a circuit design is regarded as correct. The relations confor and strongconfor in this thesis
resemble the conformance in [Dil89], decomposition in [ESB95] and strong conformance in [GBMN94].
The former two are based on trace theory. They cannot detect deadlocks and livelocks in specifications.
The last approach is based on CCS, so it is possible to detect deadlocks and livelocks after the specifications
are obtained. But the strong conformance requires that an implementation should not produce less outputs
than its specification does. This excludes the possibility of applying the relation on non-deterministic
specifications. The confor and strongconf defined in this chapter have clear advantages over these relations.
Firstly they give a more intuitive interpretation of the correctness of implementations. Secondly they
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consider suspension traces of a specification instead of traces, which makes the relations stronger and is
capable to detect more errors. Finally unlike the conformance and strong conformance relations which are
intended to suit all kinds of specifications, confor and strongconfor are used with non-deterministic and
deterministic specifications respectively, which helps to make the verification results more accurate.

4.5 Conclusion

This chapter presents the DILL approach to verifying both synchronous and asynchronous circuits.
DILL supports all the three kinds of hardware verification tasks, namely requirements capture, imple-

mentation verification and design verification. In DILL requirements capture and design verification are
performed by model checking temporal logic formulae, and implementation verification is conducted by
comparing the relations between LTSs.

Compared to verifying asynchronous circuits, verifying synchronous circuits is more straightforward.
The existing LOTOS verification tools can be employed directly so that substantial efforts on developing
tools can be saved. This is one of the main reasons that LOTOS is considered to be used as a hardware
description language.

For verifying asynchronous circuits, more endeavor is needed. This is mainly because of the gap be-
tween the different communication schemes in LOTOS and in digital circuits. In LOTOS the communication
between processes is symmetric, but in real hardware the communication between components is asymmet-
ric. In LOTOS an event offer can be refused, but in circuits an input signal transition can never be rejected.
The DILL model of synchronous circuits does not suffer from the gap since a LOTOS event does not model
a signal transition directly.

Two efforts are made to bridge the gap. One is at the specification stage. For structural specifications,
their components are specified in input receptive or input quasi-receptive manner, reflecting that inputs
are always acceptable. The second is at the verification stage. New relations confor and strongconfor
are defined to take into account the difference between inputs and outputs. The relations provide an in-
tuitive interpretation of correctness of a circuit implementation, and a verifier VeriConf for them has been
developed.
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5 Testing Digital Logic Designs

This chapter presents the DILL approach to testing designs of digital circuits. In the community of hardware
designers, the term testing usually refers to the activity of detecting manufacturing defects in physical
products. While in the community of formal methods, testing is one of the validation methods, which
can be applied in various stages of design processes. The chapter interprets testing according to the latter
meaning. In this sense an Implementation Under Test (IUT) might either be a physical product, or a formal
or informal model.

The chapter first presents the background knowledge, where the two validation methods: verification
and testing are compared to each other. The theory of conformance testing for LTSs are also briefly in-
troduced in this first section. Testing theory for IOLTSs, the LTSs which differentiate inputs and outputs,
is then elaborated, with the focus on the implementation relations ioconf and ioco, and corresponding
test generation algorithms. Following the introduction of the theory, the chapter applies it in validating
synchronous and asynchronous circuits. Several examples are used to illustrates the suitability of the ap-
proach. To achieve satisfactory coverage of the test cases generated, an algorithm based on a transition tour
of the state space graph is developed and implemented. A testbench is also developed to automate testing
processes. Finally a benchmark circuit, the BlackJack Dealer, is studied to examine the approach.

5.1 Background

5.1.1 Testing and Verification

Testing is an operational way to check the correctness of a system implementation by means of experiment-
ing with it. Tests are applied to the implementation under test, and, based on observations made during the
execution of the tests, a verdict about the correct functioning of the implementation is given.

Compared to verification, testing is a more pragmatic way of checking a system. Although both aim
to check the correctness of a system, verification is performed on a mathematical model of the system,
while testing is done by operating an executable implementation (either a product or an executable model).
Verification is exhaustive and can ensure the correctness of a system being checked, but this sureness only
applies to the model of the system. Testing is based on observing only a small subset of all possible
behaviour, thus it can never be exhaustive. Unlike verification, testing is normally used to discover errors,
not to prove correctness. Testing can be applied to real implementations, so is extremely useful when a
valid and reliable model is difficult to build or when the system is too complex to be efficiently verified.

In the previous chapter, circuit designs were verified against their specifications. As has been seen,
the state spaces of circuit implementations are considerable larger than that of their specifications. Some
circuits have such complex behaviour that their state space cannot be efficiently built, making verification
impossible. By means of testing, there is no need to build the state spaces of implementations. Only the
formal models of specifications are required, therefore much larger circuits can be effectively analyzed.
Moreover, testing can be conducted on more detailed models of implementations, which is helpful for
finding subtle bugs which may not be captured by validating a formal model.

5.1.2 Formal Conformance Testing for LTSs

There are many aspects of a system that can be tested. Conformance testing answers the question of `does
an implementation conforms to its functional specification?' Other kinds of testing include performance
testing (`how fast can an implementation perform its task?'), robustness testing (`how does an implemen-
tation react when its environment does not behave as expected?') and so on. This chapter applies the
developments in the area of formal conformance testing to validate digital circuits.

Formal conformance testing comprises several ingredients: a formal specification, an implementation
under test (IUT), an implementation relation, and a test suite. Preferably there should also be a test gener-
ation algorithm which helps to generate test suites automatically. Specifications can be written in a formal
language such as SDL [ITU92, ITU95], LOTOS [ISO89], or Estelle [ISO97, Tur93]. An implementation
is treated as a black box exhibiting behaviour by interacting with its environment. In order to establish
a formal relation between specification and implementation, it is assumed that any implementation has a
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formal model which can be reasoned about. The assumption that all implementations have formal models
is referred to as test hypothesis in some literature [Ber91]. Note that the model is only assumed to exist,
but it is not known a priori; the implementation relation is the criterion for judging if an implementation
conforms to its specification. Test suites contain the test cases used for experiments. A test suite which
distinguishes exactly between all conforming and non-conforming implementations is said to be complete.
Unfortunately, complete test suites are not always available in practice, as they are usually infinite. A
weaker requirement is therefore applied: a test suite should be sound, i.e. it gives a negative verdict only
when an implementation is incorrect. In other words, all correct implementation and possibly some in-
correct implementations will have positive verdicts. Comparatively, a test suite is exhaustive if it gives a
positive verdict only when an implementation is correct. In other words, all incorrect implementations and
possibly some correct implementations will have negative verdicts. The errors detected by a sound test
suite are real errors, and the correct implementations qualified by an exhaustive test suite are really correct.

Formal conformance testing for Labelled Transition Systems (LTSs) has been intensively studied. Tra-
ditional testing theory for LTSs aims at defining implementation relations, instead of finding test suites
to characterise implementations. Given a class of tests, a transition system p is related to a system q if
for all possible test cases in the class, the observation made of p is in some sense related to that made
of q. Such a definition of implementation relation by explicit use of tests and observations is termed ex-
tensional definition. Many different relations, including bisimulation, testing preorder/equivalence, failure
preorder/equivalence [DH84, Nic87] have been defined in the framework of testing theory. In [Bri88],
Brinksma studied the possibility of systematically deriving test cases for some implementation relations
from their specifications. In his framework, specifications, implementations and test cases are all mod-
elled as LTSs. He pointed out that it is not known if testing preorder (called red relation in that paper) is
testable or not (i.e. if there exists a complete test suite for any specifications such that the correctness of
an implementation with respect to the implementation relation can be characterised by the test suite). For
this reason, Brinksma defined an implementation relation termed conf. Informally, an implementation i
conforms to a specification s with respect to the conf relation, i.e i conf s, if “testing the trace of s against i
will not lead to unexpected deadlocks that could not occur with same test performed with s” [Bri88]. The
relation conf ensures that an implementation does what it is required to do, but it does not guarantee that
the implementation does not do what it is not allowed to do. It is understood that the latter requirement is
the task of robustness testing. An important property of conf is that it is testable for any specification S,
and that for each S test suites can be derived from S. Several test generation algorithms were developed for
conf relations [PF90, Wez89, Led92] after the work of Brinksma.

Based on Brinksma's theory, conformance testing for IOLTSs (Input Output Labelled Transition Sys-
tems) was proposed by Jan Tretmans [Tre96]. Informally an IOLTS is a special LTS in which all inputs are
always enabled in any state. The observation is that most real-life implementations distinguish inputs and
outputs of a system. Outputs are actions that are initiated by and under the control of a system, while input
actions are initiated by and under the control of the system's environment. A system can never refuse to
perform its inputs, and its outputs can never be blocked by environment. In Tretmans' theory, specifications
are still modelled as LTSs in order to give abstract representations of systems. Implementations however
are assumed to have the model of IOLTS, which is believed to be closer to real-world objects. Several
implementation relations are defined from LTS to IOLTS. Tretmans proved that the relations ioconf and
ioco are testable and test cases can be derived from any specifications for these two relations. Moreover, he
gave a test generation algorithm which guarantees sound test cases. Because test cases are generated from
specifications, they are also modelled as LTSs instead of IOLTSs. Like the relation conf, ioconf and ioco
can ensure that an implementation does what it is required, but cannot guarantee it does not do what it is
not allowed to do. In section 5.1.5, full detail of IOLTS and the two relations will be presented.

As already pointed out in chapter 3, digital hardware communicates with its environment via inputs and
outputs. Thus an IOLTS should be more suitable than an LTS for modelling circuits.

5.1.3 Overview of the Approach

In the DILL approach to testing digital circuit designs, the intended behaviour of a circuit is specified
in LOTOS, whose semantics is given by an LTS. The implementation of the same circuit is described
by VHDL (VHSIC Hardware Description Language [IEE93]). The behaviour of a VHDL program is
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presumed to be modelled by an IOLTS. This model is merely assumed to exist – it need not be known
explicitly. Implementation relations ioconf and ioco are used as the correctness criteria for synchronous
and asynchronous circuit designs respectively.

The test suite for a circuit is generated from a LOTOS specification following an algorithm based on
that proposed in [Tre96]. CADP has been explored to generate hardware test suites automatically. Each
test case in the generated test suite is a sequence of input and output signals. Designing test cases as input-
output sequences is close to engineering practice in hardware testing. Moreover, it allows test execution and
obtaining test verdicts to be completely automated. This is achieved by a VHDL testbench that executes
and evaluates the test cases. If there is an inconsistency between the formal specification and its VHDL
implementation, the implementation is regarded as incorrect. Figure 27 outlines this approach.

5.1.4 Conformance Testing for IOLTS

This section introduces the conformance testing theory for IOLTS, with the focus on implementation rela-
tions ioconf and ioco, and their corresponding test generation algorithms.

5.1.5 IOCONF and IOCO

As mentioned earlier, an implementation is assumed to have the model of IOLTS in Tretmans's framework.

Definition 5.1 (IOLTS) An input-output transition system p is a labelled transition system in which the set
of actions L is partitioned into input actions LI and output actions LU (LI �LU 	 L�LI �LU 	 
), and
for which all input actions are always enabled in any state:

whenever p
�

	� p� then �a � LI � p�
a

	�

The class of input-output transition systems with input actions inLI and output actions inLU is denoted
by IOT S �LI � LU � � LT S �LI � LU �.

From this definition, it can be seen that the action set of an IOLTS is partitioned into disjoint input
actions and output actions. Each reachable state of the system can always participate in all the input
actions.

Specifications, however, are still modelled as an LTS to have an abstract view of systems. Such spec-
ifications are interpreted as incompletely specified input output labelled transition systems. i.e. IOLTSs
where a distinction between inputs and outputs is made, but where some inputs are not specified in some
states. The intention of incomplete specifications might be for implementation freedom, or because the
specifier can ensure that the environment will not provide some inputs.

There are several implementation relations defined from LTSs to IOLTSs. Some of these relations,
such as the one analogous to testing preorder, are too strong in that they require that specifications are also
IOLTSs for the relation to hold. This is obviously impractical in most cases. Two relations, namely ioconf
and ioco, which are analogous to conf mentioned in the previous section, are defined for the purpose of
conformance testing.

Definition 5.2 (ioconf) Let i � IOT S �LI � LU �� s � LT S �LI � LU �, then

i ioconf s 	def �� � traces(s) � out�i after �� � out�s after ��

Recall that in definition 4.7 (section 4.3.3), out(s) is defined as all the output actions that a state S
can perform, which also includes the quiescent action �. ioconf means an implementation is correct if
after all the traces � of the specification, the outputs which an implementation can produce can also be
produced by the specification. Since this also holds for �, the implementation may not show output only if
specification cannot do so. This means that those implementations which `accept anything but do nothing'
are not qualified as correct implementation according to ioconf. Note that the relation requires only for all
the traces of specification S that the out-set inclusion holds. So it allows an implementation to accept more
inputs than a specification does. The implementation may do what it wants after it accepts such unspecified
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inputs. Therefore similar to the conf relation, it just ensures that an implementation does what it is required,
but the relation does not force an implementation do not do more than what is required by the specification.

ioco is similar to ioconf but is stronger. It restricts inclusion of out-sets to suspension traces of specifi-
cations.

Definition 5.3 (ioco) Let i � IOT S �LI � LU �� s � LT S �LI � LU �, then

i ioco s 	def �� � Straces(s) � out�i after �� � out�s after ��

In the definition, Strace stands for suspension trace, which has been defined in definition 4.8 (sec-
tion 4.3.3). A suspension trace � � L�

	 is a sequence of ordinary actions and action �, the latter is used
to denote the absent of output actions. ioco is very similar to the relation confor, the only difference is
that ioco assumes that implementations are modelled as IOLTSs which can always accept all inputs, while
implementations in confor are not necessarily to be input receptive. Consequently, the input inclusion
condition, required by confor, is always satisfied when ioco is considered.

The relations ioconf and ioco are illustrated in figure 28. These are two IOLTSs r1 and r2 with L I 	
fipg and LU 	 fop�� op�g. The only difference is at the states s14 and s24; r1 can produce output op1
and op2, while r2 can only produce op2. out (r1 after(ip�ip)) = out (fs11, s14g) = fop1, op2g, and out
(r2 after(ip�ip)) = out (fs21, s24g) = fop1, op2g. After comparing all the other traces of r1 and r2, it can
be concluded that r1 ioconf r2 and r2 ioconf r1. Comparatively, for the relation ioco suspension traces are
needed. Thus out (r1 after(ip���ip)) = out (fs14g) = fop1, op2g, while out (r2 after(ip���ip)) = out (fs24g)
= fop2g. That is r2 ioco r1, but not r1 ioco r2. Intuitively, an ioconf tester cannot notice that a state is
free of output actions when performing testing, but an ioco tester can. In this example, after the first ip is
applied the ioco tester may observe that there is no output produced. He then provides another ip to see
the reaction. r1 is able to produce either op1 or op2 in response, but r2 can only produce op2. However
because an ioconf tester cannot sense the absent of outputs, he cannot distinguish the behaviour of ip�ip and
ip���ip. After providing two concatenated ip inputs, he will observe either op1 or op2 for both systems.

As will be explained later when testing synchronous circuits, � transitions can be ignored. So ioconf will
be used for testing synchronous circuits. ioco will be explored for testing asynchronous circuits because it
has more distinguishing power.
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5.1.6 Test Generation

Having seen the models for specifications, implementations and relations between them, it is time to find
out the test cases which characterise correct implementations of a given specification with respect to the
relations.

For ioconf and ioco relations, test cases are modelled as LT S�LI � LU � f�g�. For practical reasons,
they have to have finite behaviour, because any experiment should last for a finite time. In addition, they
should be deterministic to allow a tester to have control over test execution. This also requires that test
cases have no choice between multiple input actions, nor a choice between input and output actions, as
both introduce unnecessary nondeterminism during a test experiment. As a result, a state of a test case
is a terminal state, or offers one input to the implementation, or accepts all possible outputs from the
implementation (including the � action). Finally, to be able to decide about the success of a test, the
terminal states of a test are labelled with pass or fail.

Definition 5.4 (test cases and test suites)

� A test case t is a labelled transition system � S�LI � LU � f�g� T� s� � such that

– t is deterministic and has finite behaviour;
– S contains the terminal states pass and fail, with init(pass) = init(fail) = 
;
– for �t� � S of the test case, t� 		 pass, fail, either init(t') = fag for some a � L I , or init(t') =
LU � f�g.
The class of test cases over LU and LI is denoted as T EST �LU � LI�.

� A test suite T is a set of test cases: T � T EST �LU � LI�.

Recall that init(s) denotes all the actions in which state s can engage, including the initial transition
i (definition 2.2). Note that LI and LU refer to the inputs and outputs from the point of view of the
implementation under test, so LI is the outputs, and LU is the inputs of test cases.

When an implementation is tested by a test (called a test run), it will only stop (i.e. deadlock) at the pass
or fail states. Since for other states, either they can offer an input action, in which case the implementation
can always accept it, or they offer all output actions, including a � transition, in which case at least � can be
accepted by an implementation. If deadlock happens at pass state, it is said that the implementation passes
the test run. Since an implementation can be nondeterministic, different terminal states can be reached with
different test runs of the same test case. Only when an implementation passes all possible test runs, is it
said that the implementation passes the test case.

To facilitate the generation of test cases, a suspension automaton (definition 4.10 in section 4.3.3) of
the specification LTS is first built; test generation algorithm is then applied on the automaton.

Recall that a suspension automaton 
p of an LTS p is obtained by determinizing p and adding necessary
� transitions. The suspension traces of p coincide with the traces of its suspension automaton 
 p. In
addition, for all � � L�, out�
p after �� 	 out�p after ��. Therefore checking ioconf and ioco can be
easily reduced to checking trace inclusion relation on suspension automata. For ioco, all the traces of
suspension automaton should be used for checking, while for ioconf only traces without � transitions are
checked.

Definition 5.5 (Test generation algorithm) Let 
 be the suspension automaton of a LTS s, and let F =
trace(
) for the case of ioco and F = f� � L� j � � trace�
�g for the case of ioconf, then a test case
t � T EST �LU � LI� is obtained by a finite number of recursive applications of one of the following three
nondeterministic choices:

1. (* terminate the test case *)
t �	 pass

2. (* give a next input to the implementation *)

t �	 a� t�

where a � LI , such that F � = f� � L�	 j a � � � Fg 		 
, and t' is obtained by recursively applying
the algorithm for F � and 
�, with 


a
�� 
�.
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3. (* check the next outputs of the implementation *)

t �	
X

fx� fail j x � LU � f�g� x 	� out�
�� � � Fg (1)
X

fx� pass j x � LU � f�g� x 	� out�
�� � 	� Fg (2)
X

fx� tx j x � LU � f�g� x � out�
�g (3)

where tx is obtained by recursively applying the algorithm for f� � L�
	 j x � � � Fg and 
�, with



x
� 
�.

In the algorithm, F is the set of traces after which out-set inclusion need to be checked. The first
choice terminates the generation procedure to ensure test experiment stop at some point even though the
specification may include infinite behaviour. The second choice gives a next input to the implementation.
As inputs are always enabled, this step will never result in deadlock, thus no terminal state pass or fail can
be reached. The third step checks the next output of the implementation. Any implementation producing
an output x which does not belong to out(
) will result in a fail terminal, indicating it is not a conformance
implementation.

This test generation algorithm guarantees to generate sound test cases with respect to ioconf and ioco,
and the set of all possible test cases that can be obtained is complete. The proof can be found in [Tre96].

5.2 Application to Synchronous Circuits

Two examples are used to illustrate the approach of applying IOLTS-based formal conformance testing to
validating synchronous circuit designs. One is a JK flip flop, the other is a single pulser which has already
been specified in chapter 3.

5.2.1 DILL Specifications of the Examples

Recall that the DILL approach for specifying synchronous circuits is based on a clock cycle-by-cycle (see
section 3.3.4). Clock signals just contribute to timing references and are not relevant to functionality. Thus
they are often omitted in top level specifications. On each clock cycle, primary outputs and internal outputs
are decided by primary inputs and internal inputs.

A JK flip-flop is a single-bit memory element with control inputs J and K. If they are both set to 0, the
flip-flop stays in the same state. If they are both set to 1, the flip-flop inverts its current value. If J and K are
set to different values, the value of J is stored. The output is conventionally called Q, while its complement
is NQ (not Q). Unlike the specifications in chapter 3, the JK flip flop specification below fixes the order
of inputs J, K and outputs Q, NQ. As discussed before, fixing orders might cause deadlock when com-
ponents are connected. However, because testing just concerns the higher level behavioural specification,
no connection is actually needed. By restricting the order of events, the state space can be substantially
reduced when there exist multi-inputs and/or multi-outputs in a component. In the single pulser specifica-
tion, implementations are allowed to assert the output pulse either on the positive going or negative going
transitions of a input pulse, thus the specification is a non-deterministic one. The specification can be found
in section 3.3.5.

behaviour JK [J, K, Q, NQ] (0) (* initial state is 0 *)
where

process JK [J, K, Q, NQ] (dtQ : Bit) : noexit �
J ?newJ : Bit; K ?newK : Bit; (* get new J and K *)
( [(newJ eq 0) and (newK eq 0)] � (* both 0 - same state *)

Q !dtQ; NQ !not(dtQ); (* output current values *)
JK [J, K, Q, NQ] (dtQ)

[(newJ eq 1) and (newK eq 1)] � (* both 1 - flip state *)
Q !not (dtQ); NQ !dtQ; (* invert outputs *)
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J!1 J!0

K!1K!0

Q!1

NQ!0
J!1

J!0

K!0 K!1

K!1K!0

Q!0

JK_Sus

NQ!1

SP_Sus

Ip!1 Ip!0

Ip!0dOp!0Ip!1Op!1

Ip!1

Op!0

Op!1 Op!0

Op!1

Ip!1

Op!0

Op!0

Ip!0

Ip!1

Ip!0

Ip!1

Ip!0

Op!0

Ip!0

Figure 30: Suspension automata of JK flip flop and Single-Pulser

JK [J, K, Q, NQ] (not (dtQ))

[newJ ne newK] � (* both differ - take J *)
Q !newJ; NQ !not (newJ); (* use J as input *)
JK [J, K, Q, NQ] (newJ) )

endproc (* JK *)

5.2.2 LTSs, Suspension Automata and Test Cases

The LTSs that are observationally equivalent to the above LOTOS specifications appear in figure 29. Obser-
vational equivalence is used here since conformance testing relates only to external behaviour of circuits.
The equivalence preserves all external behaviour and has a much smaller state space compared to that of
the original specifications. Figure 30 shows suspension automata built from the LTSs. Self-loops in this
figure denote � (quiescent state) actions. If a specification is deterministic, such as the case of the JK flip
flop, its suspension automaton is almost identical to the LTS except for the � transitions. This is because
suspension automata are obtained by determinising LTSs and adding necessary � transitions. Figure 31
presents several possible tests generated from the automata using the algorithm explained in the preceding
section.
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The modelling approach of DILL has some implications for testing. Firstly, LOTOS events represent
stable signal values in a specific clock cycle. Therefore all the events in figure 31 are stable signals in a
certain clock cycle. It follows that applying inputs and observing outputs according to the tests should also
be conducted when a circuit is stable. This is not a problem for synchronous circuits since clock cycles
are chosen such that circuits have enough time to settle down. Secondly, as it is assumed the clock cycles
are slow enough, stable values of inputs and outputs are guaranteed to appear once in every clock cycle, so
there is no need to worry about � actions which indicate the absence of outputs. This is why the weaker
relation ioconf is used for testing synchronous circuits. For the same reason it is also less interesting to
generate tests cases similar to JK t2 that check absence of outputs. They are therefore excluded from the
test generator. Finally, as discussed earlier the order of inputs and outputs is fixed to restrict the state space.
Test case JK t1 gives a Fail verdict when the first NQ !0 is observed. This would not have happened if the
full state space had been generated, so it is a fake failure state. The way to solve this problem is discussed
in the following section.

These two examples also indicate why the ioconf relation is a suitable implementation relation for
validating synchronous circuits. If a specification is deterministic then ioconf requires that, in each clock
cycle, for all possible input sequences, all the outputs of an implementation agree with those given by the
specification. This is strong enough to distinguish erroneous implementations from correct ones. On the
other hand, it also permits non-deterministic specifications to be tested. Because every output will appear
once in a clock cycle, a non-deterministic specification will have one or more outputs having contradictory
output values, i.e. the output may produce either 1 or 0 in that clock cycle, as in the case of the Single Pulser.
This can be properly captured by the ioconf relation. For example if the input is initially 0, after it changes
to 1 the output of a positive edge implementation should be 1, or 0 for a negative edge implementation. As
seen in test case Sp t1 of Figure 31, both design decisions can pass the test so implementation freedom is
respected.

5.2.3 Test Generation and Execution

The test cases generated from the algorithm in section 5.1.6 have the form of trees. This might have a
straightforward mapping to TTCN (Tree and Tabular Combined Notation [ISO91]), a standard form of
test suites. However, it is found that testbenches, which aim to automatically provide test cases to HDL
simulators and report test verdicts to testers, cannot be easily developed from test trees. In addition, the
coverage of a test suite is not easily measured if it is expressed in test trees. This thesis hence uses test
traces instead of test trees.

Recording test cases as input output sequences is a very common way in engineering practice of testing
digital circuits. For example, test case JK t1 can be stored in a file of the form: J!1; K!0; Q!1; NQ!0; Pass,
indicating that when inputs are J=1, K=0 the outputs should be Q=1, NQ=0. All the other branches which
lead to fail states in this test tree are in fact not necessary: as the digital signals are assumed to be strict
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binary, if Q is not 1, then it must be 0. So when 0 is generated from the implementation, the fail verdict
can be obtained automatically by comparing it with the test trace; � can be omitted as discussed. The other
branches are fake tests, which are the consequence of fixing the order of inputs and outputs. It is concluded
that test trees can be transformed to a test trace in which all transitions leading to the Fail verdict in the tree
are not explicitly recorded. When implementations have outputs different from the one defined in a test
trace, a Fail verdict should be generated automatically.

This method works well with deterministic specifications. However when the specification has non-
deterministic behaviour, simply generating traces from test trees raises problems. For example, the test
tree of Sp t1 cannot be rewritten as Ip!1; Op!1; Ip!1; Op!0; Pass and Ip!1; Op!0; Pass. If a positive
triggered implementation were tested by the first case, it would be given a Fail verdict. Conversely, a
negative triggered implementation would fail the second test. Actually, both of them might be correct
implementations. The problem is that an implementation has to pass all the test cases in a test suite before
it is regarded as correct. But for this example, only passing one of the test cases is necessary. This is solved
by marking outputs at a contradictory branch, i.e. the branch where the same output may produce either 1
or 0. Failing a marked output in a test run gives an inconclusive verdict, indicating that the IUT is allowed
to produce an output other than the one dictated by the test.

At some node of a suspension automaton, suppose the test generation program finds that there are two
possible output transitions with the same gate offering different values. Both of the outputs should be
marked when the corresponding sequences are generated, meaning they are not necessarily matched by an
implementation. Coming back to the example above, the tests then become Ip!1; Op!1�; Ip!1; Op!0; Pass
and Ip!1; Op!0�, Pass. When output Op!1 from an implementation is compared to the second test case, the
� means this output does not have to be matched. Another test trace is then applied. In this case, outputs
are matched so testing continues to analyse if the subsequent behaviour is satisfied.

To get the test traces, generation is mainly based on traversing suspension automata. Referring to
Tretmans' algorithm in section 5.1.6, if Choice 1 is made, generating a test case is complete. Appending
an input action to a trace corresponds to selecting Choice 2 in the test generation algorithm. Appending an
output event, possibly with a � mark, equates to selecting Choice 3.

As specifications usually have infinite behaviour, especially if they involve iterations, a test case can
hardly be a complete trace unless the circuit has a deadlock state. Therefore a test suite can never cover all
the behaviour of a specification. How to generate a test suite with good coverage is an important but hard
theme for the testing community.

If covering all behaviour is not achievable, then covering all transitions might be a second-best choice.
A suspension automaton is a directed graph. Generating a sequence that visits every edge in a graph at
least once is the Chinese postman problem [EJ72]; the generated sequence is termed a transition tour.
A single transition tour exists only for a strongly connected graph, i.e. the graph in which every node has
a path to every other node. Otherwise, more than one tour is needed to cover all the edges. As suspension
automata may not be strongly connected, it is not possible to make direct use of transition tour generation
algorithms (e.g. [Hol91]), which guarantee the shortest tour for strongly connected graphs. In the work
presented here, the approach suggested in [HYHD95] is adopted because it is suitable for all kinds of
directed graphs. In this method, depth-first search (DFS) is used whenever possible as it naturally records
the transitions traversed. When an un-visited edge cannot be reached by DFS, breadth-first search (BFS)
is exploited to find a state that has an unvisited edge; DFS then continues from this state. The whole
procedure repeats until there is no unvisited edge in the graph.

The CADP toolset supports an application programming interface that allows user-written programs
to manipulate the state space of a given LOTOS specification. This interface is exploited to program the
test generation algorithm based on transition tour. The algorithm is given below. Note that test cases are
influenced by the order in which the edges of a suspension automaton are stored. This order is adjustable
by changing parameters passed to CADP. If more coverage is required, the test generator can be re-run by
using different parameters.

Test generation based on transition tour:
TestGen()
f /* First produce suspension automaton from the LTS */

InitStat = SusAutGen(); /* InitStat is the initial state of SusAut */
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cycle J K Q NQ cycle J K Q NQ

cycle1 1 1 1 0 cycle5 0 0 1 0
cycle2 1 1 0 1 cycle6 1 1 0 1
cycle3 0 1 0 1 cycle7 0 0 0 1
cycle4 1 0 1 0 pass

Table 2: Test suite for JK flip flop

state = InitStat;
while (1) f
while (1) f

/* DFS traverse from the state, until no unvisted edge can be found */
/* at the same time, for each output transition traversed, */

/* mark it with '*' if it has contradictory neighbour */
state1 = DFS(state);

/* When DFS cannot find a state with untraversed edges,*/
/* do BFS search from state1 to look for the state */

/* that has an untraversed edge, mark the edges at the same time */
state2 = BFS(state1);
if (state2 != NULL) f /* find a state */

ShortestPath(state1, state2);
AppendPathtoTrace();
state = state2;g

else f /* not find an untraversed edge */
PrintTraceMark();
break;gg

state1 = Initstate;
state2 = BFS (state1);
if (state2 != NULL) f

ShortestPath(state1, state2);
AppendPathtoTrace();
state = state2;g

else returngg

Table 2 shows a test case for the JK Flip-Flop generated from the implemented program. It only requires
7 clock cycles to test the flip flop, and the test covers many important behaviours. For example, unlike other
input combinations, inputs J=1, K=1 do not produce unique outputs. The test case thus uses several clock
cycles to test this feature. Table 3 shows the test suite for the Signal Pulser. The first test is actually for
the negative triggered implementation, and the second is for the positive triggered implementation. Any
correct implementation will pass one of them, and will have an inconclusive verdict when tested by the
other. Thus those getting the fail verdicts are really incorrect implementations.

Each tour generated in this way is a test case and is saved in a test file. The accumulated test cases are
passed to a VHDL simulator that simulates the lower level implementation of a circuit. A VHDL testbench
is designed to allow the test cases to be applied and executed against the VHDL description. The testbench
is in fact a VHDL program which consists of two processes that are executed concurrently. The first process
generates clock signals for the circuit under test. The second process reads the test suite file and generates
signal stimuli according to the inputs of each test case. It also compares the outputs generated by the
VHDL simulator with the output values required by the test case, giving a Fail or inconclusive verdict and
aborting the simulation if they are not the same. The testbench also has to determine when to apply the
input stimuli and to check the output result. This needs some knowledge of the circuit realisation, such as
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cycle Ip Op cycle Ip Op cycle Ip Op

cycle1 0 0 cycle4 0 1 cycle7 1 0
cycle2 0 0 cycle5 0 0 pass
cycle3 1 0� cycle6 1 0
cycle Ip Op cycle Ip Op cycle Ip Op

cycle1 1 1� cycle3 0 0 cycle5 1 0
cycle2 0 0 cycle4 1 1 pass

Table 3: Two test cases for Single Pulser

the propagation delays of components in the circuit. Special care should be given to those outputs which
are marked with �. Between two test cases, a reset signal is generated by the testbench to re-initialise
the circuit under test. The assumption is made that a circuit can always be correctly reset. The LOTOS

specifications discussed previously do not specify reset behaviour, so a test need not be generated to ensure
that reset is correctly achieved.

5.2.4 Further Discussion

When a suspension automaton is strongly connected, the transition tour algorithm in section 5.2.3 generates
a single test case, such as for JK flip flop. Otherwise, the number of test cases is the number of the strongly
connected sub-graphs in the suspension automaton, such as in the case of the Single Pulser.

The specification of Single Pulser is non-deterministic in that it allows two kinds of implementations.
But the behaviour of each kind is actually deterministic. Each strongly connected sub-graph in the suspen-
sion automaton corresponds to an implementation, and a test case is generated for it. If an implementation
is tested by a test case that is not for its kind, an inconclusive verdict arises telling the tester that the test
case applied is not a proper one. The test suite has the property that there is always a test case which can
characterise implementations.

However, if the behaviour of an implementation is non-deterministic, for example, if the single pulser
is allowed to assert its output pulse at either negative edge or positive edge transitions of its input, the sus-
pension automaton becomes a strongly connected graph. In this case, there is only a test case generated by
the algorithm. Many of the implementations, no matter if they are correct or not, will get the inconclusive
verdicts from this test case because when they assert output on the positive edge transition, for example,
they may meet a transition in the test case requiring the output on negative edge. Hence for the specifica-
tions which allow non-deterministic implementations, the algorithm is not so efficient due to the frequent
inconclusive verdicts. In the next section, a solution is proposed for non-deterministic implementations.

In fact, non-deterministic digital circuits are really rare. Normally people expect digital devices to have
predictable responses to all their inputs. Therefore, the test traces generated are satisfactory in most cases.

5.3 Application to Asynchronous Circuits

Apart from using ioco instead of the ioconf relation in the test generation algorithm, the approach of
applying conformance testing to validating asynchronous circuit designs virtually has no difference from
that for validating synchronous circuit designs. Following the way of the previous section, two examples
of asynchronous design are used to facilitate the explanation.

In chapter 3, an asynchronous first-in-first-out buffer is specified. Designed for dual-rail data paths,
this buffer has two input InT, InF and two output OutT, OutF. It is assumed to be empty initially. When
1 appears on InT or OutT, the datum on the datapath is 1. When 1 appears on InF or OutT, the data
is 0. Lines should be reset to 0 between two transformations. The specification will not be repeated
here as it can be found in section 3.4.7. Figure 32 gives its LTS (minimised with respect to observational
equivalence), suspension automaton of the LTS, and several tests. As seen, because the LTS is deterministic
the automaton has almost the same structure except for the � transitions, which are represented as circles in
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Figure 32: LTS, suspension automaton and several tests of FIFO

the figure. Test t1 provides two inputs then checks the output of an implementation. If output OutF changes,
the implementation passes the test. However if OutT changes or if there is no output, the implementation
fails the test. Similarly, test t2 checks output after one input is provided. Test t3 checks output right
away. Output changes from the initial states are erroneous behaviour so testing should stop after they are
observed. Only after the � transition, meaning that no output is produced, can testing continue. Note that
this test has a � transition that does not lead to a terminal state, which could never happen in the test cases
for synchronous circuits.

The second example is a selector, which has also been introduced in section 3.4.4. This is a specification
which allows non-deterministic behaviour in implementations: after an input change on input Ip, depending
on implementations, either Op1 or Op2 may change. Figure 33 gives its LTS (minimized with respect to
observational equivalence), suspension automaton of the LTS, and one of the test cases. Selector-test
indicates that after the input Ip ! 1, the implementations producing either Op1 ! 1 or Op2 ! 1 will pass the
test, which respects the implementation freedom required by the specification.

The above two examples illustrate that the ioco relation is suitable for testing asynchronous circuit
designs. On the one hand it is strict enough to reject erroneous designs, and on the other hand it supports
implementation freedom by passing all possible correct implementations.

Specifications of asynchronous circuits sometimes permit some of their outputs to be produced in any
order.� This is usually modelled as interleaving of these outputs in DILL. The situation is relatively com-
mon in asynchronous circuit specifications. As in the case of non-deterministic behaviour, their suspension
automata also contain nodes which have more than one outgoing transition labelled with output actions.
This is not a coincidence because interleaving outputs actually introduces non-determinism. Concrete im-
plementations usually produces these outputs in a fixed order.

In the previous section, the problem caused by non-determinism was solved by marking output transi-
tions which have contradictory neighbours in suspension automata. This technique can be easily extended
here for asynchronous circuits: each output transition which has other neighbouring output transitions is

�In synchronous circuits, the order of outputs is artificially fixed because it does not influence the functionality.
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Figure 33: LTS, suspension automaton and one test of Selector

S1

S3S2

S5S4

S6 S7

A possible test trace:

Ip, Op1(*s1), Op2, Op1(*s4), ...

S0

Ip

Op2Op1

Op2 Op1

Op1 Op3

Op3(*s4), Ip, Op2(*s1), Op1...

Figure 34: Nodes with more than one outputs and its test trace

marked during test generation, indicating that this output may not be matched by implementations under
test since other outputs are allowed to be produced. As discussed in section 5.2.4, this method is not so
efficient when the behaviour of an implementation is non-deterministic. The problem is that when an in-
conclusive verdict is reached, a test run is aborted and other test cases (if any) should applied. However,
the test case should be still valuable if other neighbouring outputs can be found so that the test run can con-
tinue. To achieve this, all marks are extended with the source nodes of the outputs, i.e. output transitions
are marked with � as well as their source nodes when they have neighbouring outputs. Obviously outputs
with same marks in a test suite are neighbours of each other in corresponding suspension automaton. In
this way the branch structure of a tree is mimicked by a trace. Since the transition tour algorithm is able to
cover all the transitions in a suspension automaton, if an implementation cannot agree with all the outputs
with a certain mark, fail verdict should be issued. This technique requires a testbench which is able to
search the whole test suite for marks.

Figure 34 is an example for this revised algorithm. If an implementation has the behaviour Ip, Op1,
Op2, Op3, � � �, it will follow Ip, Op1, Op2 in a test run, but when the output Op3 fails at Op1(�s4), a
testbench should look for another output with the same mark to see if the two can match. In this case it
finds Op3(�s4), then the testing continues. If an implementation behaves as Ip, Op3, � � �, there will be no
output marked with (�s1) that can match the Op3; the implementation is therefore regarded as erroneous.

As far as the testbench is concerned, it will be more complicated than its synchronous counterpart. To
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1 2 3 4 5 6 7
InF=1 InF=0 OutF=1 InF=1 OutF=0 OutF=1 InF=0
8 9 10 11 12 13 14
InT=1 OutF=0 InT=0 OutT=1 InT=1 OutT=0 OutF=1
15 16 17 18 19 20 21
� InF=0 OutF=0 InT=1 OutT=1 InT=0 InT=1
22 23 24 25 26 27 28
OutT=0 OutT=1 � InT=0 OutT=0 � pass

Table 4: Test suite of FIFO

1 2 3 4 5 6 7
IP=1 Op1=1�s1 Ip=0 Op1=0�s2 � Ip= 1 Op2=1�s1
8 9 10 11
� Ip=0 Op2=0�s2 pass

Table 5: Test suite of Selector

be able to deal with non-deterministic implementations, it should be able to search a whole test suite for
marks. Normally a search should be carried out in the rest of a trace when an inconclusive point is met, so
that testing can go forward. However, sometimes such marks only exist in the previous part of the trace,
forcing the search to go backward. This means that there may exist loops during testing. The testbench
thus should have a strategy to break such a loop. A testbench also needs to maintain a timer. In the real
world, no component really has unbounded delay, so when a � transition is seen, the testbench uses the
timer to record the time that elapses. If there is no output within a certain amount of time, the � transition is
assumed to be satisfied, otherwise the fail verdict will be given. The value of the timer relies on the delays
in a circuit. A testbench will also have to decide when to provide inputs. For the test case t1 in figure 32,
if InF ! 0 is provided too late after the first input InF ! 1, an output may have already been produced. The
behaviour should be tested by other test cases such as t2. But as testers may not aware this, t1 may still be
used, which will produce faulty test results.

As a conclusion of this section, the test suites of the above two examples produced by the revised
transition tour algorithm are given in table 4 and 5. Both have just one test case. The one for FIFO has a
length of 28 transitions, with a length of 11 transitions for the selector. The second test suite is a test with
inconclusive marks. A selector which insists on sending its input to Op1 can follows the test sequence 1,
2, 3, 4, 5, 6, 2, 3, � � �, a loop that a testbenches must break.

5.4 Case Study

This section evaluates the approach by generating test cases for a DILL specification of a circuit, then
executing them against its implementation described by VHDL code. This is a synchronous circuit: the
BlackJack Dealer[SK96], a famous card game which is also called pontoon or “21”.

A BlackJack Dealer is a device which plays the dealer's hand of a card game. The inputs of the circuit
are Card Ready and Card Value (Ace..King, Clubs..Spades). Its outputs have boolean values: Hit (card
needed), Stand (stay with current cards) and Broke (total exceeds 21). The Card Ready and Hit signals are
used for a handshake with a human operator. Aces have value 1 or 11 at the choice of the player. Numbered
cards have values from 2 to 10. Jack, Queen and King count as 10. The Black-Jack dealer is repeatedly
presented with cards. It must assert Stand (when its score is 17 to 21) or Broke (when its score exceeds 21).
In either case the next card starts a new game. Figures 35, 36 and 37 are the implementation of the circuit
given in [SK96].

In the DILL specification of the BlackJack dealer, a new data type Value is defined to represent the
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Figure 35: The controller of the Black-Jack Dealer

card value. Although the LOTOS standard data type NaturalNumber might appear suitable, CADP cannot
generate the corresponding LTS for an infinite data type like this. The key point in the specification is how
to handle the ambiguous value of an Ace. To solve the problem, the specification uses the method given by
[WP80]. Specification behaviour occupies about 80 lines including comments.

Using CADP and the test generator program implemented for the algorithm in section 5.2.3, a test suite
for the Black-Jack Dealer was derived. The test suite is able to test 181 different hands of cards that a
dealer may hold. The VHDL implementation given in [WP80] was evaluated against this test suite.

Although the circuit was expected to pass the test suite, a Fail verdict was recorded after the dealer was
given the following cards: 5, 5, 3, 2, 1, 10. In this case the dealer should be Broke because the sum of the
cards is 26, which exceeds 21. However the circuit outputs neither Stand nor Broke since it considers the
total to be just 16. Other card combinations including an Ace that should cause Broke exhibited the same
problem. This indicated that the problem was related to processing an Ace.

The circuit should initially take an Ace as 11. It should be re-valued as 1 (subtracting 10 from the
sum) the first time the result would be Broke. If the following cards would make the sum exceed 21, no
re-valuation should be done as no Ace is 11. By carefully simulating the traces which led to the failure, it
was discovered that the given benchmark design still re-values the Ace card, so the circuit is not Broke in
this case. In the design of the BlackJack Dealer, there is a flag register (Ace11Flag in [SK96]) indicating
if there has been an Ace evaluated as 11. The problem of the circuit is that this register is not reset to
zero properly after an Ace is reset to 1, because the effective duration of the signal used to reset it is too
short.	 By slightly modifying the circuit to remove the cause of this short duration, the circuit was able to
successfully pass the test suite.

5.5 Related Work

For validating hardware designs, simulation has been and is still the predominant method in industry. Test
cases for simulation are mainly manually defined or randomly generated. Recent developments for solving
the problem lie in combining formal methods with traditional simulation techniques. In [VK95], tests are

�One of the registers in the design of the circuit is negative effective, but all the other registers are positive effective. Consequently
the effective duration of ClearAce11Flag is just half a cycle, which is not enough to clear the Ace11Flag signal. The circuit designer
might wish to save one clock cycle to improve the speed of the circuit by using a negative triggered register.
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generated from behavioural VHDL programs using traditional software testing techniques. In [HYHD95,
MAH98], test generation is based on an FSM (Finite State Machine) or an ECFM (Extracted Control Flow
Machine), which represents the control logic of a circuit. The generated test cases are then applied to both
higher level and lower level specifications in Verilog or VHDL, verdicts are obtained by comparing outputs
from two levels. The basic idea of these two papers is quite similar to the one presented here, except that
they extract a formal model from circuit design and use the techniques essentially based on FSM testing
theory. But in this thesis, tests are derived from higher level specifications using conformance testing theory
for LTSs. In [RSM97], test generation does come from a higher level specification of an FSM, then applied
to a VHDL simulator, but it cannot handle the case where specifications involve nondeterminism. The aim
of that paper is to fill the gap between the abstract tests and concrete signals; test generation is based on a
commercial tool.

Finally, within the CADP toolset a test generation tool TGV [FJJV96] is under development, the im-
plementation relation exploited is very similar to the ioconf used in this paper. TGV had not been released
by the time this thesis was finished, thus a comparison could not be given.

5.6 Conclusion

In this chapter, the framework of formal methods in protocol testing was used for testing digital circuits.
The chapter first gave a brief introduction to formal conformance testing based on the formalism of LTSs,
then focused on a recent extension to this theory, namely testing implementations which are modelled as
IOLTSs. It is believed that an IOLTS is a more faithful model of digital hardware than an LTS. Subsequently
two implementations relation ioconf and ioco and associated test generation algorithm were presented.
From the examples and the case study, it can be seen that this formal framework can be successfully
applied to testing digital circuits designs

A tool TestGen has been implemented in a C programm which produces suspension automata from
DILL specifications and generates test suites based on the transition tour of the automata. The main purpose
of developing such a program is to automatically generate test suites which have reasonable coverage, and
to facilitate automatic test execution. To achieve this, a testbench written in VHDL was developed to bridge
the test cases and VHDL simulator. A revised version of the generation algorithm was also implemented,
which allows non-deterministic implementations to be tested. This revised algorithm requires a relatively
complicated testbench, which has not been implemented at the current stage.

The case study of the Black-Jack dealer shows the benefits of the approach. By executing test cases on a
more detailed model of digital circuits, here it is a VHDL description which contains timing characteristics
of components, it is possible to reveal subtle bugs which cannot be captured by analysing a formal model.
The problem identified in the case study actually related to the timing characteristics of the circuit. Al-
though a DILL specification does not contain timing information at all, timing bugs can still be discovered
by the approach.
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6 Specification and Analysis of Timed Circuits

This chapter specifies circuit behaviour by explicitly including quantitative timing magnitudes. In the se-
quel, such specifications are termed timed specifications and the specified circuits are timed circuits. In the
background section, the specification language ET-LOTOS(Enhanced Timed-LOTOS [LL97]) is introduced.
It is followed by the investigation of building the DILL model of timed circuits. A timed circuit has three
parts: functionality, delays and timing constraints. As will be discussed, the model is compositional and the
untimed DILL specifications are just the special cases of the timed ones. The chapter also gives the speci-
fications of various delays and timing constraints. For analysing timed circuits, TE-LOLA (Time Extended
LOTOS Laboratory [PLR95]) is used. Finally a case study is investigated to examine the approach.

6.1 Background

So far in the thesis, digital circuits specified are untimed, i.e. quantitative timing characteristics are ab-
stracted away in specifications. For synchronous circuits, clock cycles are assumed to be slow enough so
that the period of a clock can be abstracted as a time unit. For asynchronous circuits, only those designs
based on unbounded delay models are modelled.

However, timing characteristics have never been something negligible in digital circuit design. Timing
analysis is critical because it determines if a circuit can function correctly. For example, an improper clock
cycle is a disaster for synchronous circuit. In asynchronous circuits, potential race conditions and hazards,
which are caused by propagation delays of components, can result in a circuit malfunctioning. In addition
high-speed performance is a very important criterion in today's competitive market. Formalisms which
support timed specification and analysis are therefore highly desirable.

6.1.1 ET-LOTOS in Brief

The thesis chooses ET-LOTOS as the formalism for specifying timed circuits. ET-LOTOS is closely related
to the future ISO standard E-LOTOS (Enhancements to LOTOS [ISO98]). It is hoped that the work presented
here will be easily transferable to E-LOTOS once the standard is mature.

ET-LOTOS supports both discrete and dense time domains. Informally, in a discrete domain time pro-
gresses in discrete steps. In a dense domain however, it is always possible to find a time value between any
two given time values. The discrete time domain is represented by the natural numbers, and the dense time
domain by real or rational numbers. In ET-LOTOS, only countable time domains (such as rational numbers)
are permitted in order to give operational semantics using Labelled Transition Systems. Time domains are
defined as data types. This makes ET-LOTOS very flexible as time values can be treated like any other data
values.

Three new operators relevant to time are introduced, namely delay, life reducer and time measurement.

Life Reducer: Action-prefix is extended in ET-LOTOS: the expression gfdg means g will not be offered
after d. In other words, g can only occur in the interval of time [0, d]. The temporal attribute fdg is
termed a life reducer.

The precise semantics of gfdg is as follows: if after a delay time d, the behaviour gfdg; . . . has not
been performed g, the g offer is removed without executing the subsequent behaviour, i.e. the process
starts behaving like the idle process stop. Note that the life reducer does not enforce the execution
of g within the interval [0, d], it just states that g cannot occur outside this interval. When there is no
life reducer, the standard LOTOS syntax applies. The default value of the life reducer is thus � for
observable actions, which matches the LOTOS semantics that observable events can happen at any
time.

Comparatively, applying the life reducer to the internal event, i fdg, means that i must occur non-
deterministically within the next d time units. Necessity and non-determinism apply because internal
actions are not controlled by the environment; in particular, the time of occurrence is decided by
system itself. Nonetheless, an alternative action may pre-empt the occurrence of an internal action.
If the life reducer is omitted, it is regarded as i f0g, i.e. the internal event must occur at once (if at
all).

76



Delay: The delay operator �d means that the subsequent behaviour will be delayed by d. In ET-LOTOS a
time value is relative to the instant when the previous action occurs. So the behaviour a; � dP will
delay for d after event a occurs and then behave like P.

Time Measurement: The time measurement operator @t is used to measure the time elapsed between the
instant when the event has been offered and the instant when it occurs. The time value is stored in t.
In ET-LOTOS, time measurement can be used for both observable actions and internal actions. For
observable actions, the time measurement variable t can appear in selection predicates. For example
a @t [t � 5]; P denotes a behaviour which can perform a only within the first 5 time units and then
behave like P. The time when it takes place is recorded in t.

Apart from these basic operators, there are also some shorthand notations for flexibility and convenience:

Generalized Life Reducer on Observable Action: g @t [d1� t� d2]; P can be rewritten as g fd1,d2g; P
provided that t does not appear in process P. It can also be expressed in terms of the delay operator
and the life reducer, such as �d� g fd2-d1g; P; the same condition applies.

Generalized Life Reducer on Internal Action: The behaviour �d� i @t fd2g;
[t+d1/t]P can be rewritten as i @t fd1,d1+d2g; P, where t+d1/t means every t appearing in process
P is replaced by t+d1.

The formal semantics of ET-LOTOS is given by labelled transition systems. There are two kinds of
transitions: discrete and timed. Discrete transitions correspond to the execution of actions. If a is an
action, P

a
� P � means that P may perform action a and then behave like P �. Timed transitions correspond

to the passage of time. If d is a variable of sort Time, then P
d
� P � means that P may idle for d then

behave like P �. The semantics will not be discussed in detail here but two points are emphasized below.
Full definitions of the semantics can be found in [LL94].

ET-LOTOS adopts maximal progress [Wan91] for hidden actions. Maximal progress means that if
a hidden action can occur, it must happen now (unless an alternative action occurs) and should not be
postponed. In other words, hidden actions are urgent in ET-LOTOS. In the DILL approach, each digital
component is modelled as a process which usually synchronises with others. Input or output ports are
modelled by LOTOS events. Ports used inside a design are hidden and their events become urgent under
the assumption of maximal progress.

For i events, urgency is not always available. In the behaviour i fdg; stop the internal action can be
postponed until d time units. But after that, it must happen (unless an alternative action occurs). An internal
event is thus urgent only at its upper time bound.

6.2 LOTOS Model of Timed Circuits

Before developing a model to specify timed digital components, it is necessary to identify which kinds
of timing characteristics need to be specified for digital designs. By intuition, timing characteristics are
temporal relationships among inputs, among outputs, and among inputs and outputs. The relationship from
input to output is normally called delay. It is the time interval between a signal change on an input and
the resulting signal change on an output. The relationship among inputs is called a timing constraint in
this thesis, meaning that digital circuits can work correctly only when the constraints are met. There is
no need to specify the relationships among outputs directly, as they are determined by delays and timing
constraints.

Several possible approaches exist to specify a timed digital component, classified here as either an in-
tegrated method or a combined method. In an integrated method, a digital component is specified in one
process that deals with both functionality and timing. Although the integrated method may result in com-
pact specifications, it is not a `structural' method and is hard to apply. The approach is not compositional
in the sense that functional and temporal characteristics of a component are not merely combined. It is also
important to have untimed behaviour as a simple case of timed behaviour, i.e. to be able to isolate pure
functionality.
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Attention has therefore been focused on developing combined methods. The idea is to separate the
functionality and the timing characteristics into different processes, and then to combine them in an appro-
priate way.

The model adopted is a result of considerable experimentation with different approaches. The selected
approach is called the parallel-serial model. As shown in figure 38, the functionality is assumed to be spec-
ified with no (in other words, zero) delay. Timing constraints (TC) are placed in parallel with the functional
specification to check if input requirements are met. Delays are placed in series with the functionality to
provide delay for each output.

Note that the Err(or) gates in the figure are for analysis purposes only; they have no counterpart in
real physical components. It indicates that a timing constraint has not been met. It is found that modelling
circuit behaviour under unexpected inputs conditions is really difficult, and even impossible sometimes. In
fact, it is more important to detect and correct design errors than to know what happens after the errors.

If the timing constraints are void and the delays may be arbitrarily large, the timed model is equivalent
to an untimed model. The model thus has the nice property that an untimed specification is a special case
of timed one.

6.3 Specifying Functionality

The functionality part of a timed component has zero delay. In other words, outputs change immediately
after an input change. Specifications of functionality are based on the model developed in section 3.2, i.e.
the first model for basic logic gates. Only a small modification is made to reflect the zero delay condition,
that is every output has a 0 life reducer. As discussed, the first basic logic model is very faithful to real world
components except for its inertial delay assumption. Because no delay is associated with the functionality
part of timed circuits, this shortcoming is therefore got rid of. Again, the specification of a Nand2 gate is
taken as an illustration.

process Nand2 [Ip1, Ip2, Op] : (dtIp1, dtIp2, dtOp : Bit) noexit �
Ip1 ? newdtIp1 : Bit [newdtIp1 ne dtIp1]; (* one input is changed*)
Nand2 [Ip1, Ip2, Op] (newdtIp1, dtIp2, dtOp) (* repeat behaviour *)

Ip2 ?newdtIp2 : Bit [newdtIp2 ne dtIp2] (* other input is changed *)
Nand2 [Ip1, Ip2, Op] (dtIp1, newdtIp2, dtOp] (* repeat behaviour *)

let newdtOp : Bit = Apply (Nand, dtIp1, dtIp2) in (* new Output *)
Op ! newdtOp f0g [newdtOp ne dtOp] ; (* output change immediately *)
Nand2 [Ip1, Ip2, Op] (dtIp1, dtIp2, newdtOp) (* repeat behaviour *)

endproc (* Nand2 *)
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6.4 Modelling Delays

6.4.1 Basic Delay Types

As mentioned in chapter 3, there are two basic delay types: pure delay and inertial delay. Suppose the
delay of a digital component is D. A pure delay retards a waveform by time D, but does not alter it. An
inertial delay may alter the shape of a waveform by eliminating the glitches shorter than D.

Sometimes, the delay of a component has a more general form. There may exist a threshold T � D
such that the component absorbs input pulses whose width is less than T. However output follows input
if the pulse width is more than T. In DILL this is termed general delay. In fact, it could be considered
as an inertial delay T cascaded with a pure delay D-T. Figure 39 shows how inputs are related to outputs
for different delay types. For clarity, inertial and pure delays, which have be illustrated in chapter 3, are
re-drawn in this figure.

The following sections introduce the delay elements that have been included in the DILL library. Al-
though these are components in the sense of building blocks, they do not like most of the components in
the library (gates, flip-flops, counters, etc.). Pseudo-components might be a more proper name for them.
Unlike the fixed delays D discussed above, all delays have a non-deterministic range from MinDel (the
minimum delay) to MaxDel (the maximum delay). This is termed non-deterministic delay or interval time
delay in the sequel. For general delay, MinWidth corresponds to the threshold T. It is obvious that the
assumption of non-deterministic delays is more realistic and flexible than that of fixed delays.

6.4.2 Inertial Delay

The following is a naive attempt at specifying a delay. The example reveals an interesting point related to
one aspect of ET-LOTOS semantics: maximal progress on hidden events.

process DelayNaive [Ip, Op]
(MinDel, MaxDel : Time, DataIp, DataOp : Bit) : noexit �
Ip ? NewDataIp : Bit; (* new input *)
DelayNaive[Ip, Op](MinDel, MaxDel, NewDataIp, DataOp) (* continue *)

[DataIp ne DataOp] � (* potential output ? *)
Op ! DataIp fMinDel, MaxDelg; (* output within [MinDel, MaxDel] *)
DelayNaive [Ip, Op] (MinDel, MaxDel, DataIp, DataIp) (* continue *)

endproc (* DelayNaive *)

The specification uses the ET-LOTOS generalized life reducer to model inertial delay. Outputs happen
after the delay[MinDel, MaxDel] input has occurred. If another input comes before the delay is due, i.e.
the input pulse is less than the delay magnitude, output will not occur. Note that in this specification,
the moment when the output Op is produced is also determined by the environment, because the delay
range is associated with an observable action. But in DILL what should really be specified is that the
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delay is decided by the component itself. Moreover if the component with the delay is connected to other
components in a larger design, the Op port might well be hidden. This would mean that the delay time
is exactly MinDel instead of being a non-deterministic value, due to the adoption of maximal progress for
hidden events in ET-LOTOS. MinDel is the earliest moment the hidden Op can occur, thus it should occur
at that moment.

To overcome the problem, a revised specification is given below:

process DelayInertial [Ip, Op]
(MinDel, MaxDel : Time, DataIp, DataOp : Bit) : noexit �
Ip ? NewDataIp : Bit; (* new input *)
DelayInertial [Ip, Op] (MinDel, MaxDel, NewDataIp, DataOp)

[DataIp ne DataOp] � (* potential output *)
i fMinDel, MaxDelg; (* non-determinisitic delay within [MinDel, MaxDel] *)
Op ! DataIp f0g; (* output immediately after delay *)
DelayInertial [Ip, Op] (MinDel, MaxDel, DataIp, DataIp)

endproc (* DelayInertial *)

The specification takes advantage of internal events. The internal event i introduces non-deterministic
delay, which means the output port can change its value at any time between MinDel and MaxDel. The
exact delay value is determined by the component itself and is not affected by its environment. Moreover,
even after the Op is hidden in a larger circuit, delay is still non-deterministic since only hidden events are
urgent.

As mentioned in section 6.1.1, the internal event i has the necessity semantics, in other words i is
necessarily performed within the time defined by the life reducer. However this property is local and so
has no effect on other processes. Especially in a choice context, i has no priority over other actions. In the
above case, if there is a Ip before the i action, i can still be prevented. This exactly corresponds to inertial
delay, where short pulses are eliminated.

After the occurrence of i, Op has to happen immediately according to the 0 life reducer. This needs a
cooperative environment which is able to participate in Op at that moment, otherwise the specification will
deadlock. This may indicate either an improper specification or wrong behaviour of the specified circuit.

6.4.3 Pure Delay

Specification of pure delay is done by process forking. A delay component can be regarded as an un-
bounded first-in-first-out buffer with each output being delayed by a value within [MinDel, MaxDel].

process DelayPure [Ip, Op]
(MinDel, MaxDel : Time, DataIp, DataOp : Bit) : noexit �
Ip ? NewDataIp : Bit; (* new input *)
([NewDataIp eq DataOp] � (* if no potential output *)

DelayPure [Ip, Op] (MinDel, MaxDel, NewDataIp, DataOp)

[NewDataIp ne DataOp] � (* if there is potential output *)
(

(i fMinDel, MaxDelg; (* delay for [MinDel, MaxDel] *)
Op ! NewDataIp f0g; (* output *)
stop

)
jjj (* at the same time, process forking *)

DelayPure [Ip, Op] (MinDel, MaxDel, NewDataIp, NewDataIp)
)

)
endproc (* DelayPure *)
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Figure 40: Catch-Up phenomenon with pure delay

In the above specification, every output occurs after delay[MinDel, MaxDel] from an input occurring.
Before the delay is due, there might be new inputs and consequently new outputs produced. When delay
is fixed, although all these outputs are interleaved according to the specification, the proper order of output
sequences can still be preserved because the time that each output appears is determined by the delay mag-
nitude. However when delay is assumed to be non-deterministic rather than fixed, the above specification
may result in disordered output sequences such as Op ! 0; Op ! 0; Op ! 1; � � � , where the second Op ! 0
overtakes Op ! 1 and causes the two consecutive Op ! 0 events. For convenience this is called catch-up
in the sequel. Figure 40 illustrates that catch up occurs if a later input change takes less time to reach the
output than an earlier input change. In the figure the delay is between 3 and 9 time units. As one can see, if
both events Op ! 0 and Op ! 1 happen within the overlapped region then catch up may arise. Suppose the
width of a input pulse is W. A necessary condition for catch-up to occur is W � MaxDel-MinDel.

In fact, catch-up may occasionally emerge in real hardware if delays vary significantly, which is often
associated with an unstable environment. However as delays usually fluctuate in a narrow range, the catch-
up condition is rarely met in practice. In DILL any delay model that is based on pure delay (e.g. the
general delay component to be discussed soon) as well as non-deterministic delay may suffer from this
phenomenon. This is not a problem in the inertial delay model since an input change will prevent any
pending output; it is therefore not possible to catch up a pending output.

6.4.4 General Delay

As mentioned before, general delay has a threshold MinWidth. Input pulses whose width is less than
MinWidth will be absorbed by the component. They will appear at the output if their width is greater than
or equal to MinWidth. The general delay element in DILL is specified such that it can model not only a
general delay but also inertial and pure delay. This is achieved by choosing appropriate timing parameters.
The following specifies the delay component.

process Delay [Ip,Op]
(MinWidth, MinDel, MaxDel : Time, DataIp, DataOp : Bit) : noexit �

Ip ? NewDataIp : Bit; (* new input *)
Delay[Ip,Op] (MinWidth,MinDel,MaxDel,NewDataIp,DataOp)

[(DataIp ne DataOp)] � (* there is potential output *)
([MinWidth lt MinDel] � (* general delay *)

(�(MinWidth) i; (* input holds at least MinWidth *)
((i fMinDel � MinWidth, MaxDel � MinWidthg; (* nondeterministic delay *)

Op ! DataIp f0g; (* output *)
Stop
jjj (* process forking *)
DelayAux [Ip,Op] (MinWidth, MinDel, MaxDel, DataIp, DataIp)

)
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Figure 41: D Flip-Flop with asynchronous Pre-Clear

)
)

[MinWidth ge MinDel] � (* inertial delay *)
(i fMinDel, MaxDelg ; (* nondeterministic delay *)

Op ! DataIp f0g; (* output *)
DelayAux [Ip,Op] (MinWidth, MinDel, MaxDel, DataIp, DataIp)

)
)

endproc (* Delay *)

This specification is essentially the combination of those for inertial and pure delays. When MinWidth
� MinDel it is identical to the inertial delay specification. When MinWidth � MinDel, it is the case of
pure delay. The component first waits for MinWidth, during which input Ip has a chance to prevent output,
eliminating glitches shorter than MinWidth. Then it enters the pure delay phase, which is also specified by
process forking.

Different combinations of the time parameters bring different kinds of delay components:

0 � MinWidth � MinDel � MaxDel � Inf describes general delay.

MinWidth = 0, MinDel � MaxDel � Inf is the case of pure delay. The difference between general delay
and pure delay is that in the latter MinWidth is zero so that the component does not absorb a narrow
pulse.

0 � MinDel � MaxDel � Inf, MinWidth � MinDel is the case of inertial delay. It applies if the threshold
MinWidth is greater than MinDel. MinWidth is often set to Inf for inertial delay.

MinDel = 0, MaxDel = Inf, MinWidth � 0 is equivalent to the untimed delay component specified in sec-
tion 3.2. Usually MinWidth is given the value Inf.

6.4.5 Delay Components for Higher Level Specifications

In higher level specifications of components, delays from several inputs to the same output may well
different. The delay components specified above assume the same range of delay for all inputs to the same
output, which turns out to be unrealistic when used with higher level components. For example, consider
a D (delay) flip-flop with asynchronous pre-clear.
 Suppose the delay from clock (Ck) to outputs (Q and
QBar) is 20–30 ns, while the delay from the asynchronous clear to the output being reset could be as little
as 10–15 ns. Forcing a common range for them is hence unreasonable.

A delay component for higher level specifications is thus required. When a change turns up at an
input of the delay component (in this example, InQ), if there is no indication of the source of the change
(a clock transition or a clear), the delay component will have no idea about which delay value should be

�This is a one-bit memory element that stores data D under the control of a clock signal Ck. Its outputs Q and QBar (negated
output) can be reset with a clear signal at any time irrespective of the clock. If a clear is not being requested (value 1), after the
positive transition of Ck the input data will appear at the output after some delay. If a clear is requested (value 0), the output will be
cleared asynchronously no matter what the level of the clock is.
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applied (20–30 ns or 10–15 ns). To make things clear, it requires the functional specification to declare
delay magnitudes when outputs are offered. For example, after Clear is reset to 0, the flip-flop must offer
InQ ! 0 ! 10 ! 15 to ensure that on this occasion InQ should be delayed for 10 to 15 ns. If InQ is changed
because of a clock transition, the flip-flop must offer InQ ! 0 ! 20 ! 30.

As one might expect, because different delay values are applied to one delay component, the catch-up
phenomenon will arise in a pure delay specification, even if each delay value is fixed. Delay components
for higher level specifications in the DILL library are therefore based only on inertial delay.

6.5 Modelling Timing Constraints

Timing constraints in DILL are used to check if inputs of a component satisfy some conditions. There are
various common timing constraint such as setup, hold, pulse width and period etc.

Setup and hold times are always associated with flip-flops. For a D (delay) flip-flop, setup time is
the time interval between a change on input D and the trigger that stores this data (e.g. a positive-going
transition of the clock Ck). The data signal must then remain stable for a minimal time interval if correct
operation of the flip-flop is to be guaranteed. For a flip-flop, the hold time is the interval in which input data
must remain unchanged after triggering by the clock. Again, this minimum must be respected for correct
operation. A timing diagram showing setup time and hold time is given in figure 42.

The setup time constraint is specified as follows, supposing that the active clock transition is positive-
going. As explained in section 6.2, an additional gate Err is introduced to detect violation of the constraint
and to simplify specification under erroneous inputs. After input on D takes place, it is necessary to notice
the next event and the time it appears. If within the setup time there are no events at all, this D passes the
check. If a negative clock transition shows up, the time is recorded so that further events can be checked in
the remainder of the setup time. If a positive transition of clock signal comes within the checked time, the
Err gate has to be used to show that a violation was detected. It is also possible that several Ds come in a
string. In this case, the moment that the last D happens is used as the start point of the setup time:

process SetupDel [D, Ck, Err] (SetupTime : Time) : noexit �
D ? NewDataIp: Bit; (* new data input *)
AfterD [D, Ck, Err] (SetupTime, SetupTime) (* check setup time *)

Ck ? NewCk : Bit; (* new clock input *)
SetupDel [D, Ck, Err] (SetupTime) (* no setup time to check *)

endproc (* SetupDel *)

process AfterD [D, Ck, Err] (SetupTime, SetupRem : Time) : noexit �
�(SetupRem) i; (* no events during SetupTime *)
SetupDel [D, Ck, Err] (SetupTime) (* go to the next round *)

Ck ? NewCk : Bit @ t; (* new clock input *)
(

[NewCk eq 0] � (* negative-going clock? *)
AfterD [D, Ck] (SetupTime, SetupTime � t) (* check remaining setup time *)
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[NewCk eq 1] � (* positive-going clock *)
Err ! SetupError; (* setup time violated *)
SetupDel [D, Ck, Err] (SetupTime) (* go to the next round *)

)

D ? NewDataIp: Bit; (* new data input *)
AfterD [D, Ck, Err] (SetupTime, SetupTime) (* set the new start point *)

endproc (* AfterD *)

The hold time constraint is specified in a very similar way. There are also other timing constraints in
the DILL library. For example, the width timing constraint defines the minimum width that an input pulse
should have. The period timing constraint is the minimum period for an input signal, especially clock
signals. Figure 43 illustrates the two constraints.

6.6 Case Study: A 2-to-1 Multiplexer

In this section, a small circuit (a 2-to-1 multiplexer) is specified and validated. The validation goal is
to examine if there are hazards in the design, which is usually done by analysing delays of components.
Of course a DILL specification can also be used for other purposes such as deciding clock periods for
synchronous circuits, calculating timing performance, etc. But because of the limitation of tools, only
small examples are studied so far.

A 2-to-1 multiplexer has two data inputs A and B, a selection input S and an output C. The behaviour
is such that if the selection input is 0, the data at A will appear at C after some delay. Alternatively if the
selection input is 1, the data at B will appear at C. The delays used in the example are inertial, mainly
because they are easy to handle and are more general than pure delay.

The multiplexer is specified at two levels. The higher level specifies the required behaviour and timing
performance. The lower level specifies the structure of the component by connecting basic logic gates.
The lower level implements the higher level. The timed specifications are analysed through simulation and
testing.

6.6.1 TE-LOLA

As standard LOTOS is untimed, there has been little tool support for timed extensions of LOTOS. The
only tool available is TE-LOLA, which supports TE-LOTOS (Time Extended LOTOS [RQ96]). Although
ET-LOTOS and TE-LOTOS adopt different semantic models, the equivalence between them has been estab-
lished [LR95]. It is therefore possible to translate ET-LOTOS specifications into TE-LOTOS ones. Because
of their similarity, the translation is always possible although some subtle differences need attention. For
example, i fdg in ET-LOTOS means i will happen non-deterministically between 0 and d time units, but in
TE-LOTOS it means that i will occur at exactly time d. The correct translation should be i f0..dg in TE-
LOTOS. In order to avoid confusion, the following specifications will still use ET-LOTOS syntax, although
the actual analysis was made with TE-LOTOS.
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The validation functions of TE-LOLA are simulation and testing, which are both exploited in this case
study.

6.6.2 Behavioural Specification and Validation

Behavioural specification of the 2-to-1 multiplexer uses two processes, one defines the functionality and
the other defines the delay type and magnitude. The higher level specification of the multiplexer is specified
simply by composing these two parts. Multiplexer[A, B, S, InC] (0, 0, 0, 0) is the process for zero delay
multiplexer with every ports initially being at 0. DelayInertial [InC, C](10, 15, 0, 0) is the instantiation of
the inertial delay specified in section 6.4.2, with the delay in the range 10 to 15 time units.

process Multiplexer [IA, IB, IS, OC] (dtIA, dtIB, dtIS, dtOC) : noexit �
IA ? newdtIA : Bit [newdtIA ne dtIA] ; (* IA is changed *)
Multiplexer [IA, IB, IS, OC] (newdtIA, dtIB, dtIS, dtOC)

IB ? newdtIB : Bit [newdtIB ne dtIB] ; (* IB is changed *)
Multiplexer [IA, IB, IS, OC] (dtIA, newdtIB, dtIS, dtOC)

IS ? newdtIS : Bit [newdtIS ne dtIS] ; (* IS is changed *)
Multiplexer [IA, IB, IS, OC] (dtIA, dtIB, newdtIS, dtOC)

let newdtOC : Bit = (dtIA and not(dtIS)) or (dtIB and dtIS) in
( [newdtOC ne dtOC ] � OC ! newdtOC f0g; (* output change immediately *)

Multiplexer [IA, IB, IS, OC] (dtIA, dtIB, dtIS, newdtOC)
)

endproc (* Multiplexer *)

hide InC in (* internal gate to delay *)
Multiplexer [A, B, S, InC] (0, 0, 0, 0) (* multiplexer instance *)
j�InC�j (* sync with delay *)

DelayInertial[InC, C] (10, 15, 0, 0) ) (* delay instance *)

The behavioural specification was validated by the simulation and testing functions of TE-LOLA. The
aim is to ensure that the specification is as expected. As is well known, both simulation and testing are not
exhaustive validation. This is especially true for timed specifications with a dense domain: an event can
take place at any time so there is no way to give all possible execution paths. The strategy for validation
is to focus on representative `states', for example A ! 1 f0g; B ! 1 f0g; S ! 1 f0g is used to stand for the
situations where all inputs changes to 1. They may change to 1 at different times in different orders, but
it is impossible to list all of the situations. There are three inputs here so there are 8 input `states' in total.
Simulation is done by randomly choosing these input states one by one to see if the outputs are right. The
recorded simulation paths can also be used as the criterion when the lower level specification is validated.

Testing is a more efficient and reliable method compared to simulation because one test case can cover
many simulation paths. In TE-LOLA testing is done by composing test processes in parallel with the
original specification. Each test process is a test case. If the test process can be followed for all executions
of the composed specification, the result of testing is must pass. If the test process can be followed only for
some executions, the result is may pass. Otherwise the test is considered to be rejected.

For this example, testing can be conducted in two steps. First, it should be made sure that from the initial
state there is no problem to move to any other states. Seven test processes are defined corresponding to
moving to the seven states other than the initial one. For instance, after moving to the state A=1, B=1, S=0
the output should be C=1 after 10 or 15 time units. Second, it is necessary to check that after the first
correct movement, the specification can always change to any other state correctly. 56 (8� 7) processes are
designed because each one of the 8 states can move to the other 7 states. If it is assumed that the multiplexer
has iterative behaviour (this is actually a testing hypothesis), the above 63 (7 + 56) test processes should
have satisfactory coverage. In fact, TE-LOLA supports executing all test cases from a batch file, thus a
single run can obtain all the test results.

The higher level specification is proven to be correct according to simulation and testing.
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Figure 45: Hazards and their LOTOS specifications

6.6.3 Structural Specification and Validation

The structure of the 2-to-1 multiplexer is shown in figure 44. � The logic gates in the diagram are timed
gates. Each of them consists of zero-delay logic and a delay component. The inset in the figure shows
the structure of the and gate G2; 0 D in the figure means zero delay. Other gates have the same kind of
structure. All gates are supposed to have a fixed delay which is 5 time units in this example. The design of
the multiplexer is `classical' and can be found in textbooks like [Kli83]. However, as will be seen later this
design contains timing hazards.

Hazards are unwanted transitions that appear on the outputs of digital circuits in response to the changes
on inputs. For example, suppose that the output should stay the same (e.g. 1) after an input changes from
state I� to I�. But what happens in an actual implementation is that the output changes from 1 to 0 and
then back to 1 after the input. The consecutive unwanted transitions 1 to 0 and 0 to 1 are regarded hazards.
Figure 45 illustrates kinds of common hazards in circuits and their corresponding LOTOS specifications.
Cases (a) and (b) are called static-0 and static-1 hazards respectively, while (c) and (d) are called dynamic
hazards.

The simulation paths and test processes for validating the higher level specification are re-used to
analyse the lower level design. Below is one of the test cases which aims to detect if there is a hazard when
the circuit moves from state 111 to 110 (A=1, B=1, S=1 to A=1, B=1, S=0). This test case should have
been rejected if there were no hazard, however the result is may pass indicating a static hazard exists during
this transition.

process Test111 110Hazard [A, B, S, C, OK] : noexit �
A ! 1 f0g; B ! 1 f0g; S ! 1 f0g; (* change to state 111 *)
C ! 1 f10, 15g (* output 1 *)
S ! 0 f2g; (* change to state 110 *)
( C ! 0 f10, 15g; C ! 1; (* hazard *)

�The types of the gates are omitted. The triangle with a circle is an inverter, the `D' shapes are and gates, the shield shape is an or
gate.
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Transition Type of Hazard Number of Changed Inputs

000 to 101 static-0 2
010 to 101 static-0 3
011 to 100 static-1 3
011 to 110 static-1 2
111 to 100 static-1 2
111 to 110 static-1 1

Table 6: Hazards in the 2-to-1 Multiplexer
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Figure 46: The hazard-free Multiplexer

OK; stop
)

endproc (* Test111 110Hazard *)

Evaluating all test processes shows that 6 of them pass the test (when they should have been rejected).
Table 6 lists these transitions and the corresponding hazards. The test results indicate that when the delays
of each gate are fixed, the circuit exhibits static hazards. One of the hazards happens when there is a single
input change; the others occur when more than one input changes simultaneously.

By analysing a passed test sequence it is possible to discover the cause of the hazard: the inputs follow
different lengths of path to reach the output. Figure 46 is a very simple solution to the problem (though
it may not be realistic): three redundant delay components are used to guarantee that each input-output
path is exactly three gate delays. It is obvious that each delay component should have the same delay
value as the basic logic gates used in the design. In practice, they could be repeaters or some other digital
components which have the desired delay value. This revised design is proven to be correct by the same
testing procedure.

Finally, it should be pointed out that the original design of the multiplexer is usually used in syn-
chronous circuits, which means the hazards discovered will have no influence when clock cycles are slow
enough (for example, longer than 15 time units). Apparently, the design must not be used in building
asynchronous circuits due to these hazards discovered.

6.7 Related Work

Industrial HDLs (hardware description languages) such as VHDL ([IEE93]) and Verilog ([IEE95]) support
simple timed specifications of digital circuits. Among various timing characteristics, only fixed inertial
and pure delays are specifiable in these two languages. To improve timing accuracy, OVI (Open Verilog
International) adopted SDF (Standard Delay Format) for representation and interpretation of timing data
at any stage of circuit design. A wide variety of timing data can be specified in great detail in SDF. For
example, delays are allowed to be non-deterministic and different kinds of delays, such as port delays, path
delays and interconnect delays are modelled. Dozens of timing checks (setup timing, hold timing, � � �)
and timing environments (path constraints, period constraints, � � �) are also supported. At the specification
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stage, SDF files can be used as supplements to VHDL or Verilog program to introduce more precise timing
information. SDF will become a future IEEE standard [IEE99].

Formally specifying and analysing timed circuits has attracted reasonable attention only after the resur-
gence of asynchronous circuit design. For synchronous circuits, quantitative timing is normally abstracted
in both specification and validation. Although it is also possible to avoid timing in delay-insensitive (DI)
or speed-independent (SI) circuits, timed asynchronous circuits can be significantly smaller and faster than
those assuming unbounded delays.

In [HB97], CSP was used to specify asynchronous circuits. After a CSP program was transformed
into a safe Peri Net, non-deterministic time delays (called interval delays in that paper) were annotated
on the places of the nets. An algorithm was then developed to determine the extreme separation in time
between two communication actions of the CSP program. The specification aspect of this methodology is
apparently poor; the authors' main attention was to develop an efficient analysis algorithm.

In [MY96], timed automata ([AD94]) were employed to specify the behaviour of MOS transistors di-
rectly, as well the behaviour of inputs and environment. A circuit is then the composition of these automata.
TCTL (Timed Calculation Tree Logic [ACD90]) is the formalism for specifying properties. Verification is
done by model checking of the TCTL formula against the timed automata, which is performed automati-
cally by the tool KRONOS ([DOTY96]).

[MP95] utilized the same tool to analyse gate level asynchronous circuits. The authors developed a
formalism called timed boolean functions to specify circuits. Each gate is specified by a function, and a
circuit is simply a set of all gates. Each function is actually the combination of two sub-functions: one
for the functionality of the gate, the other for the delay associated with the gate. Inertial delay (termed
latency in the paper) and pure delay (termed ideal in the paper) are modelled, although only inertial delays
are really used in circuit specifications. The authors proved that each circuit modelled by timed boolean
functions could be transformed into an equivalent timed automaton, allowing analysis based on verification
tools such as KRONOS.

The process algebra CIRCAL has also been used in real time systems ([CKM98a, CKM98b]). Unlike
LOTOS, CIRCAL itself is not extended for this purpose. Instead, an action t is regarded as a global tick,
and specific processes are defined with respect to t to model various delays. The approach becomes very
complicated when a dense time domain is considered. Except for a global clock, each process should have
its own local clock, and there are also local clocks for every two processes which have interactions. All
local clocks can be set and reset when necessary, which is the responsibility of specifiers. Moreover, in
order to keep each local clock progressing at the same rate, there should be a process to control the progress
for every two local clocks. The advantage of the CIRCAL methodology is that the language itself needs
no extension, neither do the tools supporting it. The disadvantages are that the burden of maintain timing
mechanisms is actually moved to circuit specifiers.

By using ET-LOTOS, the thesis can specify timed circuits at various level of abstraction, i.e. not just
gate level or whatever. Specifications are intuitive and concise, thanks to the timed semantics of ET-
LOTOS. Because specifications include the most important timing characteristics, namely delays and timing
constraints, various properties can be analysed. The main impediment at the moment is that because ET-
LOTOS has not yet become an ISO standard, few tools support it. This will be overcome in the near future
with the appearance of the new standard E-LOTOS.

6.8 Conclusion

This chapter has used ET-LOTOS to specify timed circuits. Two important timing characteristics in digital
circuits, namely delays and timing constraints, have been identified. A timed component is modelled as a
zero delay part followed by a delay component. If necessary, timing constraints are used to guard the inputs
to ensure that input timing conditions are respected. The model is compositional, and has the nice property
that untimed components are just special cases of timed ones. Various delays and timing constraints are
provided by the DILL library. It should be pointed out that when pure delays are associated with non-
deterministic values, DILL specification will suffer from the catch up phenomenon, which might not be a
realistic representation of real hardware.

Timed specification can serve as the basis of various analyse. For example, it can be used to check
whether timing requirements on a digital design are respected. This can be done by using the timing
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constraint components. As in the multiplexer example, it is also valuable in discovering potential timing
errors like hazards. It can also be used to analyse the timing properties of a logic design such as its minimal
and maximal delays.

To gain these benefits really needs the help of tools. In the case study of the multiplexer, test cases
were generated manually, It would be ideal if all tests could be generated automatically. Testing theory of
ET-LOTOS has been established in [L9́7]. What is missing is conformance relations and test generation
algorithms, which require further theoretical investigation. Future work based on this thesis is to formally
verify timed circuits. One possibility is to used the tool KRONOS, which checks if the system described by
a timed automaton satisfies a requirement expressed as a formula of TCTL. A method for transforming ET-
LOTOS specifications to timed automata has already been implemented in [DOY95, Her97]. Verification
of a timed DILL specification may thus be possible.
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7 Conclusion

This chapter concludes this thesis. Because the former chapters have already contained individual sum-
maries, this chapter focuses on the main contributions of the thesis, then provides suggestions for future
work.

7.1 Main Contributions

The thesis uses the formal language LOTOS to specify and analyse digital circuits. It investigates the topic
from several different but closely related aspects, namely specification, verification, testing, and timing.

The underlying modelling approach of DILL was developed in [TS94], which mainly included the
models for signals, wires, components, the connection of components, and a specification of basic logic
gates which has been presented again in section 3.2 . All the larger circuits in [TS94] were built from basic
logic gates. In order to support the design procedure used in industry, the thesis identified that it is necessary
for DILL to specify circuits at different levels of abstraction. Therefore not only structural specifications
should be supported, but also behavioural specifications. Many common components were subsequently
provided with behavioural specifications. At the same time, the data type BitArray was defined to aid
higher level behavioural specification.

The basic modelling approach was then applied in specifying synchronous and asynchronous circuits.
Since circuit structure can be specified routinely, chapter 3 focused on the behavioural specifications. Apart
from providing specifications of common building blocks of both synchronous and asynchronous circuits,
this chapter resulted in several important observations: 1) The same component may have different models
in different kinds of circuits. 2) The same component may have different model when different verification
purposes are required. 3) When LOTOS events models signal transitions, as in the case of modelling
asynchronous circuits, the behaviour of a LOTOS specification may not represent its corresponding circuit
very well since LOTOS does not differentiate inputs and outputs. 4) To overcome the problem in 3), input
receptive and input quasi-receptive specifications should be employed.

Chapter 4 provided the approach of verifying digital circuits specified in LOTOS. Unlike most hardware
verification approaches and tools, DILL supports the three conventional formal verification tasks, namely
requirements capture, implementation verification and design verification. Basically implementation ver-
ification is achieved by comparing the relations between LTSs, and the other two tasks can be done by
model checking temporal logic formulae. The chapter reveals that the existing relations characterising the
relationships between two LTSs are not suitable for implementation verification of asynchronous circuits.
Two relations are therefore defined to solve the problem. The relations consider the difference between
inputs and outputs in hardware, and provides intuitive criteria for the correctness of asynchronous circuits.
A verifier VeriConf was implemented for checking the relations. The case study in the chapter discovered
a bug in the design of a Bus Arbiter, a benchmark circuit which has been verified by many researchers.

Chapter 5 explores a new direction of applying formal methods in digital circuit design. Here, test
vectors (called test cases in the community of formal verification) are generated automatically from the
behavioural specification of a circuit, then fed into a commercial VHDL simulator to simulate the design
of the circuit. The method alleviates the state explosion problem by avoiding generating the state space
of circuit designs, which are usually much larger than their corresponding behavioural specifications. The
approach is helpful in finding subtle bugs which cannot be detected by formal verification, since a simula-
tion model of a circuit (e.g. The VHDL description of the circuit) is usually closer to real hardware than a
formal model. A test generator has been implemented, which guarantees to cover all possible transitions
of the state graph of the behavioral specification. The case studied in the chapter discovered a bug in an-
other benchmark circuit, namely the BlackJack Dealer. This circuit is also studied by other researchers
using formal verification. But this bug, which is related to the wrong timing in the design, might never be
discovered by formally verifying a model which does not contain timing information.

Chapter 6 used ET-LOTOS to write circuit specifications which contain quantitative timing magnitudes.
This chapter identified the important timing characteristics in digital circuits, namely timing constraints
and delays, then specified them in ET-LOTOS. The model for timed components and circuits was also es-
tablished. Unlike most formal hardware specification and verification approaches which ignore quantitative
timing, this chapter is a new attempt to address the issue. Timed specifications of digital circuits provide
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the basis for thoroughly analysing circuit behaviour which is sensitive to timing, and can also be used in
evaluating the speed performance of digital circuits.

One of the motivations of the thesis was to examine the possibility of applying LOTOS outside its
traditional area. Through the investigation, it was discovered that LOTOS is suitable for specifying digital
circuits, including both synchronous and asynchronous circuits. Compared with other formalisms used in
hardware specifications, LOTOS has a clear advantage in higher level specifications, such as at the system
level or the algorithm level. Its status as international standard helps to reduce the efforts in developing
analysis tools greatly. The thesis demonstrated that most general LOTOS tools can be used in analysing
DILL specifications directly. Even when such tools are not available, customized tools can be quickly
developed by using the programming interface provided. Thanks to these well-developed tools, the thesis
was able to span several different aspects of validating digital circuits in a relatively short time.

The thesis also identifies some limitations when LOTOS is used in the area of digital circuits. The
overhead of the language makes it more difficult for formal verification. The state space generated directly
from a LOTOS specifications is normally much larger than the real state space of a circuit. Current LOTOS

tools can only generate the larger LTSs then minimise them to smaller ones. However if the initial state
spaces are not able to be generated in the first place, minimisation cannot be applied. Although this is really
the problem of verification tools rather than that of the language, it restricts DILL from analysing larger
circuits. The breakthrough might lie in using the syntax based verification approach; hopefully there are
already such theories developed for LOTOS such as in [Kir94, ST97, MT94].

There is also a gap between the process communication scheme adopted in LOTOS and the communi-
cation scheme between real hardware components. This happens when LOTOS events model signal tran-
sitions. In LOTOS the communication of processes is achieved by the synchronisation of common events.
Processes can refuse events when they are not ready to accept them. But in real hardware, input signal
transitions can never be refused by components. As a result of the difference, behaviour which happens in
real hardware might not be represented by their LOTOS model. To accurately model circuit behaviour, the
thesis suggest input receptive and input quasi-receptive specifications. It should be pointed out that these
specifications are usually more difficult to write, and that input quasi-receptive specifications usually result
in a larger state space which makes verification more difficult.

The second motivation of the thesis was to provide theories and tools to aid designing correct hardware.
DILL advocates the component-based specification style which emphasizes the re-use of trusted compo-
nents. It comes with a comprehensive library which contains the validated specifications of commonly
used digital components. Using these library components will help to reduce errors in specifications. DILL

supports implementation verification, as shown in the case study of the bus arbiter, it is a complementary
approach to design verification and should be used when possible to detect as many bugs as possible in
designs. DILL also explores the new area of combining formal methods with the traditional simulation
approach. The results of the exploration show that LOTOS testing theory can be successfully employed
in the area. Two tools were developed along the theoretical investigations, namely VeriConf and TestGen,
which help to support the case studies in the thesis, and which as well can be employed to validate other
hardware circuits.

7.2 Future Work

With E-LOTOS becoming the new standard of LOTOS, new investigation should be made into using E-
LOTOS to specify and analyse digital circuits. The investigation will provide feedback of advantages and
limitations on the language, which should be of interest to the language developers since E-LOTOS is still
in the course of standardization. It will also benefit the community of hardware designers for the following
reasons:

� E-LOTOS adopts many feature of common imperative languages so that it is more user friendly than
LOTOS. DILL specifications will be easier to write if E-LOTOS is to be used as the underlying
formalism.

� The current DILL approach provides limited support for analysing timed specification, due to the lack
of proper tools. After E-LOTOS becomes an international standard, more tools will be developed to
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support it. It is hoped that the new tools will make it possible to analyse the timing characteristics of
practical circuits.

Another immediate research direction is the test selection problem. In chapter 5, a test suite is guar-
anteed to cover all the transitions of the state space of a specification, but how much it covers the whole
behaviour of the specification is unknown. Moreover, when the circuits are relatively complex, the size of
the test suite might be very large resulting in considerable simulation run-time. The methodologies of test
selection advocated in [BTV91, ACV93, CG97] might help. Heuristics related to circuits should also be
explored, which is extremely useful for testing important parts of a circuit, or the parts that are subject to
errors.
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A Glossary

ACTL: Action based Computational Tree Logic [DV90], a temporal logic which is similar to CTL but is
interpreted over actions.

ADT: Abstract Data Type, a language which support ADT does not imply the particular implementations
of data types.

Asynchronous Circuit: A circuit in which components change state independently at their own rates.

Behavioural Specification: A behavioural specification looks at a system as a black box. It specifies the
behaviour of a circuit exhibited on its interface to the environment.

BDD: Binary Decision Diagram, a data structure for representing a boolean function [Bry92].

Basic Logic Gate: a basic component that evaluates a simple logical function such as and, nand (not and),
xor (exclusive or).

Bounded Delay: a component has bounded delay if an upper and lower bound for the delay magnitude is
known.

CCS: Calculus of Communicating Systems [Mil89], a process algebra used to specify parallel and con-
current systems.

CIRCAL: Circuit Calculus [MM92]. A process algebra derived from CCS for specifying and analysing
digital circuits.

Combinational Circuits: Circuits whose outputs depend only on the current inputs.

CSP: Communicating Sequential Processes [Hoa85], a process algebra used to specify parallel and con-
current systems.

CTL: Computational Tree Logic [CES86], a branching time temporal logic which is interpreted over
states.

Design Verification: One of the hardware verification tasks which checks if an implementation of a circuit
design satisfies some properties.

DI Circuit: A delay insensitive circuit assumes unbounded delays on its wires and components, thus the
correct function of the circuit is insensitive to the actual delays on wires and components.

E-LOTOS: Enhancements to LOTOS [ISO98].

ELLA: A hardware design language from DRA Malvern.

ET-LOTOS: Enhanced Timed-LOTOS [LL97].

Flip-Flop: Clocked one-bit memory element whose output is decoupled from its input. New data may be
read into a flip-flop while previous data is being output. A D (Delay) flip-flop has a single data input
that is read on clock signals. A JK flip-flop has two data inputs (corresponding to 0 and 1 outputs)
that are read on clock signals. Other varieties include MS (Master-Slave), RS (Reset-Set) and T
(Trigger) flip-flops.

Fundamental Mode: The environment of a circuit is said to be in fundamental mode if it can provides
inputs only when the circuit is stable.

Hazard: Transient and undesired signal transitions appeared on the outputs of digital circuits in response
to the changes on inputs.

HDL: A hardware description language is a language for rigorous definition of hardware components and
circuits. It generally provides support for multi-level description and realisation of hardware, and
may have a formal basis.
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HML: Hennessy-Milner Logic [HM80], a logic which is interpreted over actions and is used to express
the properties of concurrent systems.

HOL: Higher Order Logic. A proof generating system for higher order logic [Gor87].

Inertial Delay: An inertial delay component may filter out the narrow pulses of its input signals, conse-
quently the shape of its output waveform may be altered.

Input Receptive: The specification of a circuit is input receptive if every input is acceptable at every state
of the specification.

Input/Output Mode: The environment of a circuit is said to be in input/output mode if it is allowed to
provide inputs no matter if the circuit is stable or not.

Implementation Verification: One of the hardware verification tasks which checks if a circuit specifica-
tion related to another one with respect to a formal relation.

LOTOS: Language of Temporal Ordering Specification [ISO89], a formal language standardised by ISO
in 1989.

LTS: A Labelled transition system is an automaton consisting of a set of states (including the initial state),
a set of actions and a set of transitions. Each transition is related to two states and an action, repre-
senting that the system changes its state from one to the other after the action takes place.

Model Checking: The method of formally verifying whether a finite-state model satisfies some properties.

�-Calculus: A modal logic [Lar90] which is an extension of HML.

Pure Delay: A pure delay component does not change the waveform of its input signal; all the signal
transitions are simply delay by a certain magnitude.

QDI: A quasi-delay insensitive circuit assumes unbounded delays on its wires and components, but delays
on forked wires are assumed to be the same.

Occam: A language based on CSP developed in INMOS to specify concurrent processes which commu-
nicate via one-way channels.

Race Condition: a situation where the relative speeds of components decides the behaviour of a circuit.
A race condition is usually undesirable as it can lead to non-determinism of digital circuits.

Requirements Capture: One of the hardware verification tasks which checks if a circuit specification is
what it should be.

RTL: A specification at register transfer level specifies the data flows between registers of digital circuits.

Ruby: A relational language for describing and designing circuits [JS90].

Semi-Modular: A circuit is semi-modular if for all components in the circuit, their inputs cannot change
any pending outputs.

Sequential Circuit: A circuit whose outputs depend on the states of components at a previous time. Se-
quential circuits generally have some kind of feedback, such that previous outputs affect future val-
ues.

SI Circuit: A speed independent circuit assume zero delays on its wires but unbounded delays on its
components. The correct function of the circuit is independent the actual delays on components.

Structural Specification: A structural specification specifies how a system is built from smaller compo-
nents.

Synchronous Circuits: A circuit in which components change state under the control of a master clock.
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Unbounded Delay: A component has unbounded delay if the upper bound of its delay magnitude is un-
known, except that it is positive and finite.

TE-LOTOS: Time Extended LOTOS [RQ96].

Temporal Logic: A logic with the notion of time involved. A temporal logic formula can express the fact
about past, present and future.

VHDL: Very High Speed Integrated Circuit (VHSIC) Hardware Description Language. An IEEE standard
HDL [IEE93].

Verilog: A hardware description language which was standardised by IEEE [IEE95].

B DILL Library Components

This section summarises the components in the DILL library. The components of synchronous circuits are
found in table 7, of asynchronous circuits in table 8, and of timed circuits in table 9.

Component Variants
Adder 2/4 inputs, behavioural/structural, half/full/parallel/ripple
And, ... 2/3/4/8 inputs, 0/1-active
Clock -
Comparator 1/4/8/n inputs, behavioural/structural
Counter behavioural/structural
Decoder 2/3 inputs, behavioural/structural, 0/1-active outputs, BCD-Decimal/Excess-3/Gray
Demultiplexer 1/2 inputs, behavioural/structural
Divider 2/4/8 inputs, behavioural/structural, +ve/-ve trigger
Encoder 4/8 inputs, behavioural/structural, 0/1-active outputs
FlipFlop D/JK/MS/RS/T, behavioural/structural, +ve/-ve trigger, preset, preclear, lockout
Inverter 1/4/8 inputs, 0/1-active tri-state enable
Latch D/RS, 1/4/8 bits, behavioural/structural, preset, preclear, clocked
Memory behavioural/structural
Multiplexer 2/4 inputs, 1/8/n-bit, behavioural/structural
One, ... source of logic 1/0, sink
Parity 8 inputs, white-box/gate-level
Register 4/8/n bits, black-box/gate-level, +ve/-ve trigger, load enable/preclear,

bucket brigade/pass-on/shift
Repeater 1/4/8 inputs, 0/1-active

Table 7: The components of synchronous circuits in the DILL library

Component Function
And, ... basic logic gates
C Element (Join) used for synchronising signal transitions
Fork forking wires
Latch storage components
Merge for merging signal transitions on two inputs
RGD Arbiter request–grant–done arbiter
Selector selecting nondeterminisiticly from two inputs
Sequencer sequencing two inputs
Wire for explicitly introducing delay

Table 8: The components of asynchronous circuits

LOTOS Syntax
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This section gives selected syntax for LOTOS in table 10. Only the informal explanations are presented
here. The definition of LOTOS syntax and its formal semantics can be found in [ISO89].

ET-LOTOS Syntax
This section gives the syntax of ET-LOTOS which is related to its timing featrues. The definition of the

syntax of ET-LOTOS and its formal semantics can be found in [LL97].

Component Function
GeneralDelay general delays, can include inertial and pure delays
Hold hold timing constraints
InertialDelay inertial delays
Period timing constraints, for checking the periods of signals
PureDelay pure delays
Setup setup timing constraint
Width timing constraints, for checking the widths of signals

Table 9: Timed components in the DILL library
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Notation Meaning
(* text *) a comment
stop a behaviour that does nothing (no further action)
exit a behaviour that immediately terminates successfully
exit (results) successful termination with result values
gate a `port' at which event offers may synchronise
gate !value an offer to synchronise on a given value
gate ?variable:sort an offer to synchronise on any value of the given sort, binding the actual

value to the given variable name
gate !... ?... [predicate] an event offer with a predicate on values synchronised
process name [gates] (parameters) : noexit
:= behaviour

a named process abstraction with given gates and value parameters, but
no termination (e.g. it repeats indefinitely)

process name [gates] (parameters) : exit
(results) := behaviour

a process that terminates successfully with the given result sorts

name [gates] (parameters) an instantiation of a named process
offer ; behaviour prefixes an event offer to some behaviour (`followed by')
[guard] � behaviour offers behaviour only if the guard condition is satisfied (`if')
behaviour1 behaviour2 offers a choice between two behaviours (`or')
behaviour1 �� behaviour2 allows the second behaviour to occur if the first behaviour terminates

successfully (`enables')
exit (results) �� successful termination with export of result values

accept declarations in behaviour
behaviour1 � behaviour2 allows the second behaviour to disrupt the first behaviour unless this

terminates successfully first (`disabled by')
behaviour1 jj behaviour2 allows two behaviours to run in parallel, but fully synchronised on their

events (`synchronised with')
behaviour1 jjj behaviour2 allows two behaviours to run in parallel, but with independent occur-

rence of their events (`interleaved with')
behaviour1 j�gates�j behaviour2 allows two behaviours to run in parallel, synchronising on all events at

the given gates (`synchronised on gates with')

Table 10: Selected LOTOS syntax
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Notation Meaning
�d Q process Q is delayed by d
exit fdg successful termination within [0, d], otherwise behaves like stop
exit (results) fdg same as above but termination with results
gate !... ?... @ t the time when gate !... ?... takes place is recorded in t
gate !... ?... fdg gate !... ?... happens within [0, d], otherwise behaves like stop
gate !... ?... @t [f(t)] the time when the event takes place satisfies f(t), otherwise stop
i fdg i must happen within [0, d]
i @ t fdg i mut happen within [0, d] and the time is recorded in t

Table 11: Seclected ET-LOTOS syntax
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