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Abstract

The thesis discusses using 1SO standard formal language L oTos (Language of Temporal Ordering
Specification) for formally specifying and analysing digital circuits. The study serves two-fold: it exam-
ines the possibility of extending applications of L oTOS outside its traditional areas, and provides a new
formalism to aid designing correct hardware.

Digital circuits are usually classified into synchronous (clocked) and asynchronous (un-clocked) cir-
cuits. The thesis addresses both of them. LoTos models for signals, wires, components and component
connections are established, together with the behavioural models of digital components in synchronous
and asynchronous circuits. These forma models help to build the rigorous specifications of digital cir-
cuits, which are not only valuable documentation, but also the bases for further analysis. The inves-
tigation of the thesis shows that LOTOS is suitable for specifying digital circuits at various levels of
abstraction. Compared with other formalisms, it is especially efficient on higher level modelling. But
there is also a gap between LoTos models and real world hardware, which is the result of the differ-
ence between inputs and outputs of systems being abstracted away in LoTos. The gap is bridged by
introducing input receptive or input quasi-receptive specifications.

Two analysis approaches are investigated in the thesis, namely formal verification and conformance
testing. Verification intends to check the correctness of the formal model of acircuit, it is exhaustive and
can ensure the correctness of the model being checked. Whiletesting isapplied to aphysical product or a
formal or informal model, it can never be exhaustive but are very useful when aformal model is difficult
to build.

Current L oTos verification techniques support the three common verification tasks, i.e. requirements
capture, implementation verification and design verification. In this thesis, model checking is used to
fulfill the tasks. It is found that verification of synchronous circuits is relatively straightforward since
LoTos tools can be directly used. For verifying asynchronous circuits, two conformance relations are
defined to take the different roles of inputs and outputs into account. Compared with other hardware
verification approaches, the approach presented in this thesis has the advantage of finding bugs at early
stages of development, because LoTos can be used in higher level modelling. Moreover, LOTOS is
supported by various verification techniques, which are complementary to each others and give more
chances to detect design faults.

The thesis explores a new direction of applying forma methods to digital circuit design. The basic
ideais to combine formal methods with traditional validation approaches. L oTOS conformance testing
theory is employed to generate test cases from higher level formal specifications. The test cases are then
applied to commercia VHDL (VHSIC Hardware Description Language) simulators to simulate lower
level circuit designs. Case studies reveal s that the approach is very promising. For example, it can detect
bugs which cannot be captured by examining aformal model.

Timing characteristics are important factorsin digital design. To be able to specify and analyse timed
circuits, ET-LoTos is exploited. Two important timing characteristics in digital circuits, namely delays
and timing constraints are identified. Timed specifications of digital circuits are the composition of these
timing characteristics and functionality. Based on the formal specifications, rigorous analysis can be
applied. The method is valuable in discovering subtle design bugs related to timing, such as hazard, race
conditions, and can aso be used for analysing speed performance of digital circuits.
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1 Introduction

1.1 Motivation

This thesis is concerned with using 1SO standard formal language LoTtos (Language Of Tempora Or-
dering Specification, [ISO89)]) to formally specify and analyse digital circuits. It has a two-fold purpose:
examining the possibility of applying LOTOS outside its traditional area, and providing new theories and
toolsto aid designing correct hardware.

LoTos has been widely and successfully used to specify communication systems such as standards
for OSl (Open Systems Interconnection [ISO94]). Thisis not surprising since L oTos was developed for
this purpose. It has also been used in related area such as Open Distributed Processing [1SO95]. However,
L oTos might claim to be ageneral -purpose language for specifying concurrent systems, so it isvauableto
investigate the applicability of the language outside its original field. Digital circuits are complex systems
which involve intensive concurrency. The application of LOTOS in this new areawill help to discover the
strengths and limitations of the language.

Although digital logic design iswell understood, guaranteeing the correctness of acircuit is still avery
hard problem. Formal methods provide a solution by systematically and exhaustively analysing circuit
behaviour to prove the correctness or pinpoint the bugs. Many formalisms have been used to model dig-
ital circuits, including HOL (Higher Order Logic [MGG93, SRI191], process agebra[MM92], automaton
[HHK96, BCM*92], functions [O'D95] and Petri Nets [Rei85, YK98]. As an internationally standard-
ised formal language, L oTOs should be more easily accepted by industry. It is more expressive than most
formalisms developed for academic research, and is supported with theory and tools that allow various
analysis methods, some of which are not possible with other hardware specification approaches. The use
of LoTos is aternative and complementary to the existing methods for designing correct hardware.

Following the initial investigation of the subject in [TS94], the approach presented in this thesis is
named DiLL (Dlgital Logicin LOTOS).

1.2 Context of the Research
1.2.1 Design Procedurefor Digital Circuits

Design of digital circuitsis a complicated process which involves many different steps. Figure 1 depictsa
typical design flow [GDKW92] used inindustry.

Design starts with an initial idea, which is abstract and may be recorded in diagrams or a natural lan-
guage. Human designers haveto build a specification of theideain some higher-level description language,
such as Verilog [IEE95], VHDL [IEE93], LoTOS, or other formalism such as finite state machines etc.

This higher level circuit specification is then refined to aregister transfer level (RTL) specification by
human designers or high level synthesistools. Typically an RTL specification contains two parts. datapath
and control logic. The datapath is built from elements such as registers, multiplexers, adders, multipliers,
etc. The control logic provides necessary control signals and timing for the datapath.

Logic synthesis tools are then applied to generate a description of the control logic in the form of
a netlist of gates. These gates correspond to a set of logic equations and may not be physically imple-
mentable.

Given these gates, technol ogy mapping replaces them with the implementable gatesin acertain library.
It also combines small gatesto make larger ones as long asthey are availablein thelibrary. Componentsin
datapaths are usually mapped into the descriptionsat transistor level directly, using thetool called amodule
generator.

The lowest level description is the layout of the circuit. Modules and gates are placed and connected
by using placement and routing tools. The layout can be sent for fabricating to get the final product.

The design procedure inevitably involves iterations, either because performance regquirements are not
met or errors appear after a transformation. Human mistakes contribute most of the errors, but other
sources are also possible, such as deficiencies in synthesis algorithms or software bugs. Although many
stepsin the design flow can be done automatically, human design is unavoidable. For example, high level
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synthesis is till an area of current research and not widely used in industry. Logic synthesis is a well-
established technique but is not suitable for regular blocks such as RAM (Random-Access Memory), PLA
(Programmable Logic Array) and complete microprocessors because of the speed and area inefficiency.

Validationtoolsaretherefore necessary for detecting design errors. Checking the correctnessof ahigher
level circuit specification against an initial design idea is termed specification validation, and examining
the correctness of the design at RTL and gatelevel (including the netlist description and the implementation
netlist) is termed circuit validation. Layout validation tools are dedicated to the circuit specified at layout
level. While testing usually refersto the activity of detecting fabrication deficienciesin final products.

At present, simulation is still the predominant approach of validating digital designsin industry. Test
vectors are fed into an executable description of the circuit; the behaviour of the circuit is compared with
that of a reference model, or smply analysed by observing the outputs. The procedure for obtaining
test vectors is called test generation. Most test vectors for simulation are created by experienced testing
engineers. Test vectorsfor testing fabrication bugsare usually generated automatically, with the assumption
that only certain kinds of faults may occur in the process of manufacturing.

The thesis supports earlier stages of the design procedure. More precisely it mainly concerns the
correctness of logic designs rather than the correctness of layout or fabrication. Automatic synthesis of
circuits is excluded from the scope of the thesis either, but some related work of hardware synthesis from
L oTos specification can be found in [HYKT94]. The shaded partsin figure 1 are therefore in the scope
of the thesis. In other words the thesis investigates how to specify circuits at behavioural, RTL, and gate
levels. With respect to validation, it covers specification validation, circuit validation and test generation.

1.2.2 Formal Methodsin Digital Circuit Design

Today's digital circuits are so large and complex that testing engineers can no longer create al the vectors
required in order to examine circuits adequately with simulation approach. Moreover simulation run time
has increased even faster than circuit size. For larger chips, it is measured in days or even weeks. The
iterations in the design process require that every change should be checked thoroughly, but time pressure
forces only a subset of test vectorsto be used for each revision. This exposes the design to a great risk of
errors.

The weakness of simulation spurs research in applying formal methods in digital designs. Formal
methods refers to “mathematically-based languages, techniques and tools for specifying and verifying
systems[CW96]. In other words, it contains two aspects. formal specification and formal verification
(or verification for short). Formal specification uses alanguage or notation with a mathematically-defined
syntax and semantics to describe a system and its desired properties. Formal verification is the approach
to prove the correctness of the specification. The advantages of verification over simulation are that it
is exhaustive in the sense that all the behaviour of the model of a system will be checked, and that it is
faster than simulation in many cases since the result might be obtained after a single run of the verification
program.

Although formal verification has been the main theme of using formal methods in hardware design,
it is not possible without proper specifications. But formal specification is not just the base for verifica
tion; writing things down precisely itself is valuable: a deeper understanding of the specified circuit can
be obtained, and the inconsistencies, ambiguities or flaws in the initial idea can be discovered. These
incompl etenesses will become very difficult and expensive to detect when they are transformed to lower
level designs. Specification also serves as a permanent documentation of the reguirements, the behaviour
and the implementation of a circuit. It is a precise and convenient bridge between the various parties in-
volving in the design, implementation and use of the circuit. So far many formalisms have been used to
specify digital hardware, including HOL, process algebra, automata, functions, and Petri Nets. Apart from
specifying circuitsin aformal language or notation, an alternative approach is to provide formal semantics
for an ordinary hardware description language (HDL), but usually only a subset of an HDL is suitable for
formalization. The most popular industry HDLs, namely VHDL, Verilog and ELLA [MC93], have been
studied using this method [KB95, Gon95, BGMW95].

There are essentially two approachesto formal verification of digital circuits. model checking and the-
orem proving. Model checking is atechnique that is based on constructing a finite model of a system and
checking that whether a desired property holds on the model. The check is performed by an exhaustive



state space search. Since the model is required to be finite, model checking is guaranteed to terminate. Two
styles exist for model checking. In temporal logic model checking, properties are specified in a temporal
logic [Pnu77] and acircuit is modelled as afinite state transition system. Efficient search procedures have
been developed to see if temporal logic formulae hold on the model. In conformance checking, both de-
sired properties and the implementation of a circuit are modelled as automata or |abelled transition systems
(LTS). Then the two models are compared to determine whether or not the implementation conforms to
the properties. Various notions of conformance have been investigated, such as language inclusion [FK97]
and observational equivalence [Mil89]. The advantages of model checking liein that it is completely auto-
matic and fast, and that it produces counterexamples when verification fails, which is particularly useful in
practice. The disadvantage of model checking is the state space explosion problem. Many approaches have
been proposed to tackle this problem, such as BDD (Binary Decision Diagrams [Bry92]) and localization
reduction [FK97].

Verification by theorem proving relies on expressing both the system and properties as formulae in
some mathematical logic. This logic is given by a set of axioms and inference rules. Theorem proving
is the process of finding a proof of a property from the axioms and inference rules. The benefits of this
approach are that it is general and can deal with systems with infinite state space. But generating a proof
automatically is very difficult in theory and in practice. In addition, theorem proving is able to prove
correctness but is unable to pinpoint the errors in incorrect designs. These two limitations prevent this
method from being used widely inindustry.

Although substantial progressesin formal verification has been achieved over the last decade, the size
of the circuit which can be successfully analysed by verification is still considerably smaller than the
size of the circuit which can be manufactured. Simulation is still the most broadly adopted approach in
industry. One of the new research areas is to combine the traditional simulation-based validation with
forma methods, as suggested in [Dil98]. An approach proposed in this thesis is in line with the idea
Unlike in the current design flow, where test vectors are written by experienced test engineers, they are
generated automatically from aformal specification of the behaviour of the circuit. These test vectors are
then used as stimuli in a conventional simulation environment. Compared to the traditional method, the
approach saves human resource and time in designing test cases, and guarantees reasonabl e coverage of the
generated test vectors. Compared to formal verification, it avoids building the state space of a lower level
specification of the circuit, which is much larger than the state space of a higher level specification. This
makes it possible to find bugs which cannot be found by checking some formal models. It is hoped that the
results of thesis will encourage more research in asimilar area.

1.3 Advantagesof Using LoTos in Digital Circuit Design

Compared to traditional HDLs, the formal basis of LOTOS supports rigorous specification and analysisin
away that semi-formal languages (e.g. VHDL) do not. The semantics of current HDLs used in industry is
based on simulation, which offerslittle help for thorough analysis of a circuit behaviour. Although formal
semantics has been defined for some of these languages, it usually coversonly asmall subset of alanguage,
and the subset is much less expressive than the original one.

LoTos can be used in a wide-spectrum manner at a number of levels of abstraction. This allows
a consistent formalism to be used during hardware design, from the high-level architecture down to the
component or gate level. Refinements between levels can be checked using standard L oTOS verification
techniques.

Designed for industry usage, LOTOS is more expressive than most formalisms created for research,
such as CSP (Communicating Sequential Processes [Hoa85]), CCS (Calculus of Communicating Systems
[Mil89]), CIrRcAL (Circuit Calculus[MM92, Mil95]). In fact, the research reported hereis inspired by the
success of CIRCAL, a process algebra designed for specifying and analysing digital circuits. Compared to
CIRCAL, LoTos specifies digital circuits not only at relatively lower levels (e.g gate level, RTL level) but
aso at higher levels, such as agorithmic or system regquirement level. LoTOS is therefore more suitable
for specifying real-world circuits.

The formal basis of LoTos alows verification of hardware designs. L oTOS inherits a well-devel oped
theory of equivalences and relations from the field of process algebra and has a well-developed theory of
testing and test derivation (e.g. [Bri87]). This offersinteresting alternativesto other validation approaches.



Being an international standard, LoTos is well supported by general-purpose toolsets such as CADP
(Caesar/Aldébaran Development Package [FGM 192]), LOLA (LoTos Laboratory [QPF89]) and LITE
(LotoSphere Integrated Tool Environment [van9l]). All these tools can be directly used for hardware
verification or simulation, therefore efforts on tool development can be substantially reduced.

LoTtosis neutral with respect to whether a specification is to be realized in hardware or software. At a
high level of abstraction, the same specification may ultimately be implemented in either way. Thisalows
LoTos to be used for hardware-software co-design [SLM 196]. LoTos is thus more general than a pure
hardware description language.

1.4 ThesisStructure

Chapter 2 comprises two parts. It first briefly introduces the specification language LoTos. Then gives
an overview of DiLL. Thisincludes some general considerationsfor DiLL system, and the basic modelling
techniques used, e.g. how to represent signals, wires, components, and how to write specifications of the
behaviour and structure of a circuit. This chapter serves as a starting point for the remaining chaptersin
thethesis.

Chapter 3 presentsthe specification of digital circuitsin DiLL. Synchronouscircuits and asynchronous
circuits are both considered. For specifying synchronous circuits, their typical structure is described first,
then the models of the components in the structure are presented. The chapter also illustrates how to
specify circuits at different levels of abstraction. For specifying asynchronous circuits, different types
of asynchronous circuits are introduced. In this chapter only those which assume unbounded delays are
considered. Besides basic logics gates, other common components used in asynchronous circuits are a so
specified. Finally the chapter introduces the concept of input receptiveness and input quasi-receptiveness,
which areimportant for faithfully modelling the behaviour of asynchronous circuits.

Chapter 4 goes one step beyond specification. It presents the DiLL approach to verifying digital cir-
cuits. Three common verification tasks, i.e. requirements capture, implementation verification and design
verification are introduced. In DiLL, equivalence and preorder checking of two LTSs are employed for
implementation verification, and ACTL (Action based Computation Tree Logic [DV90]) temporal logic
model checking is used for the other two tasks. A synchronous benchmark circuit, the Bus Arbiter, is spec-
ified and verified to illustrate the approach. The chapter also discusses the differences between verifying
asynchronous and synchronouscircuits. Two novel relations between LTSs are then defined for implemen-
tation verification of asynchronous circuits. As will be discussed, these relations provide intuitive criteria
of correctness of asynchronouscircuits. A verifier VeriConf is al'so implemented for checking the relations.
Part of this chapter has been published in [JT99b].

Chapter 5 explores a new direction in applying formal methods to digital circuit design. The founda
tion of the chapter is the theory of testing input-output transition systems (IOLTSs) [Tre96], an extension
of traditional LOTOS testing theory. Following the introduction of the theory, the chapter illustrates the
suitability of applying it to generating test cases for digital circuits. To achieve satisfactory coverage of the
test cases, an algorithm based on a transition tour of the state space graph is developed and implemented
in a test generation tool TestGen. A testbench is also developed to supply these tests to a conventional
VHDL simulator automatically. Finally a benchmark circuit, the BlackJack Dealer, is studied to examine
the approach. Part of this chapter has been published in [JT993].

Chapter 6 uses ET-LoTos (Enhanced Timed-LoTos [LL94]) to write circuit specifications which
contain quantitative timing magnitudes. Timing information is abstracted away in the previous chapters,
but it is a critical factor in deciding the correctness of circuits as well as their performance. This chapter
first identifies the important timing characteristicsin digital circuits, namely timing constraints and delays.
Various timing constraints and delays are then specified in ET-L0T0S, including setup time, hold time,
period of clock, pure delay, inertial delay, etc. The chapter also develops a model for timed specification
of circuits, which has a nice property that the untimed componentsin previous chapters are a special case
of the timed ones. This chapter uses the tool TE-LoLA (Time Extended LoT0s Laboratory [PLR95])to
specify and analyse timed specifications of circuits.

Chapter 7 summarizes the thesis and presents some overall conclusions.

Appendix A contains the glossary.

Appendix B summarize the componentsin DiLL library.



Appendix C contains the syntax of LOTOS.
Appendix D contains the syntax of ET-LOTOS.



2 LoTtosand Overview of DILL

This chapter briefly introducesthe formal specification language L oTos and givesan overview of the DiLL
approach. General considerations in the DiLL approach are explained, followed by the discussion of the
basic modelling approach adopted. This includes how to model signals, wires and digital components, as
well as how to specify the behaviour and structure of circuits.

2.1 A Brief Introduction toLoT0S

LoTos is aformal language standardised by 1SO in 1989 (1SO 8807) for the design of OS| services and
protocols. The name reflects the fact that LoTOS describes a system by defining the order in which the
events of the system may occur. LOTOS is made up of two parts. The first part is used to specify system
behaviour and is derived from process algebra, mainly from CCS and CSP. The second part defines abstract
datatypesand is based on the language ACT ONE [EM85]. The process algebra aspect of LoTosiscalled
basic LoTos, the combination of basic LoTos with data types is termed full Lotos. The following
sections present the aspects of the language which are required in the thesis.

2.1.1 BasicLoTos

In LoTos a system and its components are represented as processes. A process interacts with its environ-
ment through gates, and displays its behaviour in terms of permitted sequences of actions. These actions,
termed eventsin the L oTos terminol ogy, are the results of theinteractions of a process and its environment.
Each event is associated with a gate, namely the gate at which the event happens.

The behaviour of a system is described in LoT0S by a behaviour expression, a language construct in
which the sequences of alowed events are defined. Behaviour expressions can be illustrated as behaviour
trees. In these trees, a node represents a state of a system. An arc between nodes represents a transition
which causes the system to move from one node to another, and is labelled with the corresponding event.
For clarity, arrows may be added to arcs to indicate the beginning and the end states of transitions. See
figure 2 for an example of a behaviour tree, which is a two-key system designed by Quemanda [Tur93].
LoTos providesthe following basic operators to build language constructs:

e Inaction (stop)
I naction modelsasituation where a processis unableto interact with its environment. Itisaso called
deadlock. In behaviour trees, inaction correspondsto a node that does not lead to any arcs.

o Action Prefix (;)

Action prefix is used when an event must occur before other behaviour expressions. If ais an event
and B is a behaviour expression, a; B denotes that a must happen before behaviour B. In behaviour
trees, action prefix isillustrated with two nodes and an arc which is labelled with the action.

e Choice ([])

The choice operator denotes that two alternative and exclusive behaviours can happen. If B1, B2 are
behaviour expressions, B1 [] B2 behaves as B1 or B2 depending on whether the next event provided
by the environment is the initial one of B1 or B2. If the two have the same initial event, the system
behaves non-deterministically. Choice is represented by branchesin behaviour trees.

e Internal Events (i)
Internal event i is a special LOTOS event which represents the actions that are internal to a system
and therefore invisible to its environment. Internal events may also introduce non-determinism.

e Termination (exit)

Exit models the successful termination of processes. The interpretation of exit is that a special
success event (called 4) takes place before stop.



hide In2, Out2 in

In1; in2; Access;
(Outl; Out2; stop [] Out2; Outl;stop )

I

In2; In1; Access;
(Out; Out2; stop [1 Out2; Outl;stop ) [

i In1
Access Access

Out

Figure 2: A LoTos behaviour expression and its behaviour tree

e Parallel Composition (|[]])

If B, B2 are behaviour expressionsand g1, g2, - - -, gn represent gates, then B1 | [g1, g2, - -, gn] |
B2 represents that events at the gates that belong to g1, ¢2, - - -, gn can occur only with the partici-
pation of both B1 and B2. Other events take place with the participation of B1 or B2 alone. In other
words, g1, g2, - - -, gn are the gates at which B1, B2 synchronize. For examplea; b; stop | [b] | ¢; b;
stop can either behave as a; ¢; b; stop or ¢; a; b; stop.

There are two special cases for parallel composition, namely pureinterleaving (|||) and full synchro-
nization (||). ||| is the shorthand for | [] |, i.e. no synchronisation is required, each system behaves
at its own pace. While || is the shorthand for | [g1,g2, - -, gn] |, where g1,¢2,---, gn are dl the
gates appearing in B1 and B2; this means that B1 and B2 have to synchronize at all the gates.

L oTOs supports multi-way synchronisation, meaning that more than two processes can synchronize
aagae If P[a, b, c], Q[a ], R[a, b] are three processes representing three components of a
system,then P [a, b, c] | [a] | Q[a, c] | [a] | R[&, b] saysthat events at gate a can happen only with
the participation of processes P, Q and R.

Hiding (hide)

otosThe hide operator provides the mechanism of abstraction. If B is a behaviour expression, hide
01,92, -+, gnin B makes gates g1, g2, - - -, gn invisible to the environment. Interactions on these
gates therefore becomeinternal events.

Sequential Composition (>>)

Sequential composition represents temporal ordering of behaviour. If B1, B2 are behaviour ex-
pressions, then B1 >> B2 expresses that B2 occurs after B1, provided that the special event § has
appeared in B1. Recall that action prefix is used to represent the temporal ordering of events (not
behaviour expressions).

Disabling ([>)

Disabling represents that the behaviour of a system is disrupted by an exceptional circumstance. If
B1, B2 are behaviour expressions, then B1 [> B2 behaveslike B1 until theinitial event of B2 happens,
then it behaveslike B2. If B1 terminates successfully, B2 does not apply.

Figure 2 gives an example of a behaviour expression and its behaviour tree, quoted from [Tur93].
A process declaration can then be written based on these language constructsto represent the behaviour

of asystem. It is delimited by the reserved words process and endproc. A process is made up of a name,
apossible formal gatelist, a possible formal parameter list, and a behaviour expression. In the behaviour
expression of a process, it is alowed to declare nested processes to introduce sub-systems, which are
preceded by the reserved word where. Reserved words exit or noexit are used to indicate if the process
can terminate successfully or not. The following is an example of process declaration.

processP|[a, b, €] : noexit := 1
P1[a b] 2



[l 3
P2[a ] 4
5

where 6
process P1 [aa, bb] : noexit := 7
aa; bb; P1 [aa, bb] 8
enproc 9
10

process P2 [aa, cc] : nhoexit := 11
aa; cc; P2 [aa, cC] 12
endporc 13
endproc 14

When a processisinstantiated, actual gates and parameters should be provided. For example P1[a, b]
inline 2 isthe instantiation of the declaration P1[aa, bb] inline 7. Note that P1 and P2 refer to themselves
respectively, thisis away to express recursive behaviour in LOTOS. This example does not illustrate the
parameter lists since L oTOs data type are required to introduce formal and actual parameters.

A specification isaspecia process which represent the whole system, more detail s about specifications
will be presented in section 2.1.3.

2.1.2 DataTypes

L oTos models data as abstract data types (ADT). The word abstract refersto the fact that properties of a
data type are defined by the specifier rather than predefined in the language. In other words no particular
implementation of datatypes are implied by the language.

A datatypeis defined by three parts: sorts define the sets of values of the data type, operations declare
the operators to manipul ate the data val ues, and equations define the semantics of the operations by stating
which expressions are considered equal. In LOTOS, atype may be extended to define a new one by adding
new sorts, operations or equations, and several types may a so be combined to form a more complex one.

There are effectively no predefined data types in LoTos. But commonly required data types can be
included from the standard library defined in SO 8807. These standard data types include Boolean, Bit,
NaturalNumber, Set and String etc. The following is a small example which defines two constants and
two logic operations. It is an extension of the datatype Bit defined in the standard library. Notethat LoTos
allows overloading of operators. (* *) introduces commentsin LOTOS.

library
Bit (* including the type Bit in library *)
endlib
type BitOp is Bit (* define anew type BitOp *)
sorts BitOp (* the new sort is called BitOp *)
opns (* declare operations*)
and : > BitOp (* and isaconstant of sort BitOp *)
or : > BitOp (* or isaconstant of sort BitOp *)
_and_, _or_ : Bit > Bit (* and, or are binary, infix operators *)
eqns (* define the equations*)
forall b: Bit (* variable b has the sort Bit *)
ofsort Bit (* the range of the equations has the sort Bit *)
band0=0;
band1=b;
bor0=Db;
borl=1,

endtype

(* end of the type definition *)



213 FullLoToSs

The combination of basic LoTos with datatypes makes L 0TOS more expressive. The following lists some
of the language constructs which are offered by full LoTos.

Action prefix may be associated with experiment offers and selection predicates. There are two kinds
of experiment offers. value offers arein the form! v where v is a value expression, while variable offers
areintheform ? x: swherex isavariable of asort s. A selection predicate may follow experiment offers
to impose conditions on the value being offered. For example G ? x: Bit [x = 0]; isan action prefix in
which ? x: Bit isthe experiment offer and [x = 0] is the selection predicate, meaning than an event occurs
at gate G and it offersa variable of sort Bit which should be equal to 0.

An event can take place only when the experiment offers provided by each participating process can
match each other. The most common matching used in DiLL is value passing, where avalue offer matches
avariable offer. Consequently the variable receives the value supplied by the value offer. For example G ?
X : Bit can match G ! 0 and x receives value 0.

Apart from the selection predicates mentioned above, Guards al so impose conditions on the behaviour
of asystem. For example[x = y] — > B indicates that behaviour B occursonly if x isequal toy.

Parameterised exit and sequential composition allow values to be conveyed from one successfully ter-
minating behaviour expression to the subsequent one. In the following behaviour expression, the input X is
either delivered to the output or not depending on the value of x. The parameter of exit may also be any,
in which case any value of the sort is allowed to be conveyed.

(input ? x : Bit; exit (X))
>>
(accepty : Bitin

[y =0] > output ! y; exit

[y =1] > exit
)

A local value definition associates values with free variablesin a behaviour expression. It resemblesthe
assignment statement in ordinary programming languages. For example, let x : Bit = newlpin B associates
variable x with the expression newlp in behaviour expression B.

A specification may comprise two parts. In the optional global type definition part, data type definitions
which are accessible to the overall behaviour expression, other data type definitions and processes are
specified. The reserved word behaviour introduces the behaviour part of a specification, which is made
up of a behaviour expression and some other possible process declarations, the later being referred in the
former. The difference between a specification and a process is actually only syntactic, for example, there
is no global data type definitions in a process and a specification is ended by the reserved word endspec
instead of endproc. The following is a sketch of acomplete L 0TOS specification.

specification Spec [a, b, ¢ ,d] : noexit
typetypelis (* begin the global data type definitions *)
sorts- - -

opns- - -
egns - - -

endtype (* typel *)

typetype2is

endtype (* type2 *)

behaviour (* begin the behaviour part *)

Pl[a b, ]
|[all

10



P2[a, b, d]

where
processPl[a b, ] ---

processP2[a b, d] ---
endspec (* spec*)

2.1.4 Semanticsof LoTOS

The operational semantics of LoTos isdefined intermsof Labelled Transition Systems (LTSs). Informally
each LOTOS process can be seen as a set of states, with arcs connecting them. These arcs are transitions
between the states and are labelled with actions. For basic LOTOS actions are simply the gate names.
While for full LoTosS they are pairs consisting of a gate name and a string of data values.

Definition 2.1 (Labelled Transitions System)
An LTS is a quadruple (S, L, T, s0) where Sis a set of states, L is a set of observable actions, ' C
S x (LU{r}) x Sisthetransitionrelation, and s0 € S istheinitial state. The class of transition systems
with actionsin L isdenoted by LT S(L).

Atransition in T isalso denoted as s = s’ if (s, 1, s') € T. The special action 7 ¢ L represents an
unobservable (or internal) action. In LOTOS syntax,this unobservable actionis named i.

To translate a LOTOS specification to a LTS, LoTos inference rules are applied. The inference rules
actually define the meaning of LoTOS operatorsin terms of LTSs. For example, behaviour B = i; B' has
the following inference rule, meaning the process B can make a transition of i then behave like B'. Here B
and B' are behaviour expressions.

B4 B
More complicated inference rules has the form:
Pl, . ,Pn
Q
meaning that given P, up to P,, Q may be derived. For example, the choice operator of LOTOS B =
B[] B, is defined by two rules, where B, B> and B are behaviour expressionsand a is an action.
B, 4B B,3%B
B4B B3DB
In the rest of the section, common notations which are employed in the thesis are defined.

Definition 2.2 Let p = (S, L, T, s0) bean LTSwith s, s’ € S, let u; € LU {7},a; € L. L* denotesthe
set of all finite action sequences of L and o € L*. The following definitions then apply:

g Mrlmin o =gder JS0,...,8n 18 =80 S 2 g, =
g Ml =ger 3s':s R G
WL eee i , ftepin
s 4 =def NOtds' :s"—="s
€ ! _ _ 12 Tt T 12
s=s =gef s=s0rs =5 s
a € a € g
s$=> S =def Js51,82:5= 51 —+S2=> S
s M= S =gp Jsp...Spi85=8) =25 B ... D5, =5
o _ I o
s = =qef 38’ :5=5
s =g4ey NOt3s': s>
.. "
init(p) =g {pe€eLU{r}|p—=}
traces(p) =4er {0€L*|p>}
p after o = |p>p}
def pip p
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2.2 Overview of DILL
2.2.1 General Consideration

A complete circuit design involves considerations of al requirements such as functionality, timing, power
consumption, layout, etc. DILL is designed to address functionality and timing only, which are the most
essential aspects that determine the correctness of a circuit and which are specifiablein LOTOS.

Digital logic circuits can be divided into two categories: synchronous circuits and asynchronous cir-
cuits. The main difference between them is whether clock signals are employed. Under the control of a
global clock signal, synchronous circuits are relatively easy to design so they are the mainstream of to-
day's digital devices. But asynchronous circuits are attracting growing interest because of the potential
advantages over their synchronous counterpart. LOTOS is general enough to specify both kinds of circuits,
therefore DILL addresses both of them.

The procedure of designing digita circuits can be divided into severa steps, as has been shown in
figure 1 in chapter 1. Designs at each step can be regarded as a specification at a distinct abstraction level.
In most cases, alower level specification is the structural implementation of the one at the level aboveit.
This requires DILL to support two styles of specifications: behavioural and structural specifications. A
behavioural specification looks at a system as a black box; it specifies the behaviour of a circuit exhibited
on its interface to the environment. Comparatively, a structural specification provides the inner structure
of acircuit; it specifies how acircuit is built by connecting components.

Each component in a structural specification may also be decomposed into smaller components. But
this does not mean components can be decomposed infinitely. In fact the lowest level components specified
in DILL are basic logic gates, such as And, Or and Inverter gates etc. In other words, basic logic gates
have only behavioural specificationsin DiLL and cannot be decomposed into, for example, the netlist of
transistors.

DiLL isintended to be used in real hardware design practice. Therefore it should be easy for design
engineersto useit. Because the syntax and semantics of L oT0s are quite different from those of traditional
programming languages, many new usersfind it is difficult to write LOTOS specifications. DiLL hasathin
layer above L oTOs which makes the specification easier. The layer is written in the m4 macro processing
language [Tur94].

Component reuse has been a major theme in software engineering for many years. However, in formal
methods there has been little identification of useful specification components using these. A component-
based style allows components to be specified and verified individually. Larger combinations of trusted
components can then be verified more easily. This architectural view of asystem is elaborated in [Tur93],
and had a great influence during the development of the DiLL project. DiLL comes with a large library
which contains the specifications of common digital components, such as basic logic gates, flip flops,
registers, adders, etc. These specifications have been carefully validated and can be directly used in spec-
ifications by referring to the names of the components. Tables 8, 7 and 9 in appendix B summarises the
componentsin the current DiLL library.

2.2.2 Underlying M odelling Approach

This section gives the underlying modelling approach of DiLL. Many of the models, including those
of signals, wires, components. were developed in [TS94]. These models are re-presented here for the
completeness of the thesis.

Ports

Every digital circuit has ports through which it accepts inputs and produce outputs. The ports act as the
interface of the circuit to its outside environment. DILL abstracts them as LoTos gates.! Normally each
LoTos gate represents a physical port, but it is also possible that a group of ports are modelled as asingle
LoTos gate, especially in higher level modelling.

Componentsand Circuits

A component is a behavioural unit. It could perhaps be modelled asan ADT operation on input val ues.
However, the dynamic behaviour of alogic circuit is oftenimportant, so it is better to use L oTos behaviour

LSince “gate' has both a hardware meaning and a L oTos meaning, the term is qualified when necessary.
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expressions. More importantly, the “wiring up' of components specified using ADTs would not be easy.
In DiLL, components are modelled by LoTos process declarations that have formal gate parameters for
ports. Specific components are then process instances.

Real components have a fan-out (the maximum number of inputs that can be connected to an output).
Thisis atechnology restriction that is best ignored in a specification (though a static analysis could deter-
mine whether fan-out limits have been complied with). Real components also have afan-in (the maximum
number of outputs that can be connected to an input) that is a so technology-dependent.

A circuit can be seen asa special component, th onethat is at the highest level of specifications.

Signals

In redlity, digital signals take on a range of analogue values (e.g from 0 to 5 volts) but thresholds are
set so that they may be treated as logic O or 1. Asasigna changes from one value to another, it may pass
through an intermediate state that is neither logic O nor 1. It might therefore seem that an “ill-defined' state
should be allowed for signals. This, however, is not necessary as an ill-defined signal level should always
be transient and therefore should be ignored. As a workable abstraction, signals are regarded strictly as
bits.

L ogic design proceeds on the basis of binary signals. As an implementation matter there is a choice of
how logic 0 and 1 correspond to electrical signals. Normally 0/1 corresponds to low/high, called positive
logic. However, negative logic may aso be used, with 0/1 corresponding to high/low. Thisis an imple-
mentation decision that depends on the components available. DiLL only concernslogic values of signals,
thuslogic 0 and 1 may correspond to either low or high level in real circuits.

Signals are represented as LOTOS events. There is a choice of whether a continuous signal (a level)
or a discrete change in signal (an edge) should be modelled as a LoTOS event. LoTOS, like most spec-
ification languages, only deals with discrete events. The initial consideration is that only signal changes
are modelled. To be a good reflection of real hardware, the direction of a change is explicitly specified by
giving the newly established level (e.g. g!'1 for atransition from 0 to 1 on port g). Aswill be discussed in
chapter 4, modelling signal changes produces difficulties for verifying synchronous circuits. For this kind
of circuit, it is assumed that, for each signal, in each clock cyclethereisjust one stable level and this stable
signal level ismodelled as a L 0TOS event.

In DILL, input signals are usualy modelled as events with variable offers while output signals are
modelled as events with value offers. For example, Ip ? newip : Bit is regarded as an input signal that
occurs at input port Ip, while Op ! 1 is an output signal which takes place at port Op. In fact, LOTOS
does not differentiate inputs and outputs so there are more possibilities in specifications. Op ? newop : Bit
[newop = 1] isthe same output signal as the above, though it is avariable offer that is used.

Wires

Wires or tracks between components are not normally represented explicitly in DiLL. In most cases,
transmission delays on wires are negligible so representing wires explicitly would unnecessarily complicate
a circuit specification. To “wire up' two ports their LOTOS gates are merely synchronized — events at
connected ports are matched.

The case where wires are grouped (e.g. abus) is so common that DiLL providesthe MWre (multi-wire)
short-hand notation for this. For example, MWre(8,D) represents an 8-bit data bus D. However since only
the ports of components and not the wires are specified, this really stands for the eight ports D7, D6, - - -,
DO.

Bit and BitArray

To represent the values of signals, data types have to be defined. The LoTos standard data type Bit is
exploited, with the extension of common logic operationssuch asand, or, exclusive or, etc. A new datatype
BitArray is aso provided in the DiLL library to represent the signal values on multi-wires. Operations of
BitArray include concatenation, logical functionsand comparison functions. A multi-bit signal represented
by BitArray can also be treated as a set of individual one-bit signals. Further operations could be defined
by for specific circuits.

Connecting Components (Structural Specification)

Connecting components is modelled as synchronisation of sub-components at the connected ports. As
pointed out in section 2.1.1, L 0TOS supports multi-way synchronisation, so it can model the situation where
more than two ports are connected. If Inverter[Ip, Op] is the LOTOS process modelling an inverter, and
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Figure 3: Connecting And gates with two Inverters

And2[1pl, Ip2, Op] is the process modelling a 2-input and gate, the structure in figure 3 is then specified
as.

And2[A, B, C] |[C]| (Inverter[C, D] |[C]| Inverter[C, E])

Note that LoTos gate C, which models the connecting port C, synchronizes three processes. Thisis
impossible in other process algebra such as CCS where synchronisation is strictly two-way.

In this circuit, C is a port which has no connection with the outside environment. In other words, if
the behaviour of the circuit is examined by just looking at its interface (the input and output ports), what
happenson Cisnot visible. In LOTOS, such events are abstracted as internal eventsi by hiding them. This
helps to define a new process that can be reused by other circuits. For example, figure 3 can be defined as
anew 2-input, 2-output nand gate.

process Nand2 [A, B, D, E] : noexit :=

hideCin

And2[A, B, C] |[C]| (Inverter[C, D] |[C]| Inverter[C, E])
endproc

If more than one output port of components is connected, the real hardware and its DiLL model may
behaviour differently. In real hardware, when used properly, connecting several components can implement
the logic functions and or or, depending on the technology used to build the components. Thisis termed
wire-and and wire-or. But in LOTOS, connecting outputs will almost always result in deadlock. In DiLL
wire-and and wire-or haveto be transformed into explicit and and or gates. This does not impose too much
restrictions since connecting outputs is often prohibited in digital design to avoid damaging devices.

Multiple Components

MComp (multi-component) is similar to MW re and serves as a short-hand for agroup of related compo-
nents. Thisisuseful wherearegular structure of identical componentsis required, asin modelling registers
or memories. MComp takes a count, alist of ports connecting component instances, and a component defi-
nition. The use of arithmetic operators after port namesis particularly necessary to ensure that components
are connected correctly.

Suppose that the LoTos process DFlipFlop[ D,C,Q,QBar] models a D (delay) flip-flop. (Convention-
aly D isthedatainput, C istheclock input, Q isthe output and Qbar isthe negated output.) MComp(4,C=,
"DFlipFlop[ D,C=,Q,0QBar]") represents a 4-bit register with a clock signal common to each of the flip-
flops. (The "=' after C means that this port name should be used literally without indexing.) In LoTos
terms, this short-hand stands for:

DFlipFlop[D3,C,Q3,QBar3]
|[C[]>||:|ip|:| op[D2,C,Q2,QBar2]
| [ClyFl ipFlop[D1,C,Q1,QBarl]
| [ClyFl ipFlop[D0,C,Q0,QBar0]

MComp, together with MWire and BitArray result in compact descriptions of repeated structures that
help DiILL to be used in practice.
Behavioural Specification
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Figure 4. Structure of Reset Set Latch and its truth table

A behavioural specification specifies what a component should do rather than how it is constructed.
Writing a behavioural specification of a circuit is comparable to writing an application program using
ordinary programming languages. Roughly speaking, there are two ways of specifying behaviour. One
takes advantage of ADTs and the other uses behaviour expressions. In the sequel, the former approach is
referred to as the data oriented style and the later is the behaviour oriented style. Either can be used at the
specifier's convenience. In the data oriented style, data types are defined for the functions required (e.g.
addition, subtraction, shift, etc.), then in the behavioura part of the specification, alocal value definition
(let --- in) is used to refer to the data operations. Specifications in the data oriented style usually have
shorter codes and smaller state spaces, but as can be imagined, defining equations in abstract datatypesis
very difficult for many operations. In the behaviour oriented style no extra datais required. Functionality
of acircuit is directly specified in the behavioural part of its specification. Guards are intensively used to
distinguish different states of a circuit, so that the proper values of outputs can be decided. The behaviour
oriented style may produce longer specifications and larger state spaces, but it can be used for al kinds of
circuits. The following gives the fragments of two specification of an RS latch (Reset-Set latch, figure 4).
Note that the examples serve asillustration of the two different specification styles and are not necessarily
perfect.

The specification in the data oriented style:

let newQ:Bit = R nor QBar, newQBar:Bit=Snor Qin
(Q! newQ; exit ||| Qbar ! newQbar; exit)

The specification in the behaviour oriented style is as follows:

[(Req0) and (Seq0)] >
(Q! 0ldQ; exit ||| Qbar ! oldQbar; exit)

[(Reql)and(Seq0)] >
(Q!0; exit ||| Qbar ! 1; exit)

[(Req0)and (Seql)] >
(Q! 1; exit ||| Qbar! 0; exit)

[(Reql) and(Seql)] >
Error; - - -

2.3 Conclusion

This chapter introduced LoT0s and gave an overview of the DiLL approach. General considerationsin
DiLL were explained, together with the underlying modelling approach adopted in DiLL. It can be seen
that LoTOS can be used to model digital circuits in a very natural manner, due to the clear correspon-
dences between the concepts in LoTos and the elements in digital circuits. For example there are close
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correspondences between L OTOS gates and circuit ports, LoTos events and digital signals, processes and
components. For the illustration purpose, the circuit specified in this and the following chapters are rela-
tively small. But this does not mean that DiLL can only cope with small circuits. Some componentsin the
DiLL library (see appendix B) are much larger than those illustrated in the thesis. In [JT97], thereisalso a
case study of specifying a CPU in both behavioural and structural styles. The CPU is made up of several
sub-parts including instruction decoder, ALU (Arithmetic and Logic Unit) and registers. This case study
reveals DiLL's capability of dealing with large circuits.
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3 Specification of Digital Logic Circuits

This chapter describes DiLL models of digital components in synchronous and asynchronous circuits.
Background knowledge is first introduced, including the differences between the two kinds of circuits,
some potential advantages of asynchronous circuits, and the delay and environment models. 1t is followed
by a presentation of the model of basic logic gates developed in [TS94], which was the first component
model developed in the DiLL approach. The chapter then focuses on how to specify synchronous and
asynchronous circuits respectively. Synchronous circuits are typically made up of combinational logic
components and storage elements, with the basic logic gates and D flip flop being the representatives of
them. It is discovered that the model of basic logic gatesin [TS94] is not suitable to be used in modelling
synchronouscircuits. A new model istherefore designed. The model for storage elementsare also givenin
the chapter. These two models make it possible to specify any synchronous circuits in the structural style.
The chapter also discusses the guildlines for specifying the behaviour of synchronous circuits. For speci-
fying asynchronous circuits, different classes of asynchronous circuits are first introduced. Since LOTOS
abstracts away timing characteristics of systems being specified, only those classes which assume un-
bounded delay model s are addresses in this chapter. Basic logic gates are again employed as theillustrative
examples. Towards the end of the chapter, it is revealed that when L oTOS events model signal transitions
indigital circuits, there is a gap between the behaviour of LoTOS specifications and the behaviour of real
circuits. As aresult, LoTos specifications represent only part of possible behaviour that the real circuits
may exhibited. A solution for the problem is proposed by introducing input quasi-receptive specifications.
Throughout the chapter examples and case studies are presented to illustrate the approach.

3.1 Background
3.1.1 Synchronous Circuitsand Asynchronous Circuits

Before defining synchronous and asynchronouscircuits, the concepts of combinational circuits and sequen-
tial circuits are required. A circuit whose outputs are purely determined by its current inputs is termed a
combinational circuit. If outputs are decided not only by current inputs but also previous inputs, it is a
sequential circuit. Sequential circuits contain storage elements such as latches or flip flops to remember
information related to previousinputs. Thisis mainly achieved by feeding back outputsto inputs. The RS
(Reset-Set) latch in figure 4 is one such storage element.

Basically, two kinds of sequential circuits exist. In a synchronous sequential circuit (synchronous
circuit for short), there is a global clock which controls all storage elements in the circuit. Only when
particular points of the clock cycle come can storage elements change their states and consequently cause
changes of outputs. Input changes before such points cannot directly influence states of a circuit. An
asynchronous sequential circuit (or asynchronous circuit for short), on the other hand, does not have a
global clock, so any new input may result in changes of states and outputs. Clocked and unclocked circuits
are alternative names for these two kinds of circuitsto clearly reflect their main difference.

But this differenceis not always evident since some circuits combine both features. It is not rare that a
circuit can be controlled by more than one clock signal. Asaresult its storage elements changeits states at
different times. Thisis normally regarded as a synchronous circuit. But in this thesis, only those circuits
with one global clock are considered. Some other circuits may have several local clocks controlling severa
parts of the circuits, but other parts and their connections are till asynchronous. Again this kind of circuit
is not in the scope of the thesis.

The mainstream of today's digital device is synchronous. Controlled by a global clock signal, the
behaviour of a synchronous circuit is actually discrete: the circuit is assumed to have a finite number of
states, and after one or more time units, it changes its state from one to the other. This effectively filters
out the influence of transient signal transitions between two time instants. As a consequence, designing
synchronous circuits is substantially simplified since there is no need to consider hazards, the transient
signal transitions which are caused by the propagation delay of digital components.

Asynchronous circuit design, on the other hand, is more complicated because hazards have to be com-
pletely eliminated before a design is completed. Thisis unfortunately a very hard task and prevents asyn-
chronous circuits from being widely used. Nevertheless, there has been a resurgence of interest in asyn-
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chronous design methodol ogy recently dueto several potential benefits of removing global clocks. Among
others, the following are some of the benefits of asynchronous circuits [DN95]:

Absence of clock skew: The differencein arrival times of a clock signa at different parts of a circuit is
referred to as clock skew. Typically, clock skew is accommodated by longer clock cycles, which
results in reduced maximum clock frequency. As VLSl systems become smaller, denser and faster,
clock skew becomesincreasingly severe and deskewing becomes harder and more expensive[DN95].
Asynchronouscircuits get rid of this problem by eliminating the concept of global clocks.

Potential for low power: Power consumption is a major concern in the markets for portable equipment,
where battery lifeis crucial. In synchronous systems, the global clock toggles clock lines, charging
and discharging capacitance throughout the system, evenin portions unused in current computations.
In asynchronous systems, circuit components are activated only when necessary, and remain idle at
other times without dissipating significant power.

Potential for high performance: Synchronous circuits have to be designed for worst-case conditions be-
cause clock cycles are adjusted according to the slowest operations that might be required, even
though in most cases operations complete in much shorter time than the worst case. Asynchronous
systems can be optimized for the average-case conditions, with each operation taking as long as
required for any particular situation.

Better technology migration potential: Asynchronous design approaches allow a system to be designed
asaset of sub-systems communicating viainterfaces. Sincethereis no global synchronization, com-
ponentsin an asynchronous circuit can be easily substituted by faster ones (as long as interfaces are
compatible), without changing functionalities of the origina ones but improving the performance
dramatically. By contrast, in synchronous systems, overall performance depends on worst-case
conditions and therefore it is often the case that in order to improve the speed potential of a new
technol ogy, reorganization of the whole system is required to deal with new worst-case conditions.

The recent active study of asynchronous circuits has resulted in very large scale designs, including
asynchronous processors such as AMULET [FPJT94] by Manchester University, Counterflow pipeline
processor[ SSM94] by SUN Labs, TITAC[NUK *794] by Tokyo Institute of Technology, and STRiP [Dead2]
by Stanford University.

3.1.2 Delay and Environmental Models

Delay models are the abstractions of delay characteristics of components comprising a circuit. A compo-
nent has bounded delay if an upper and lower bound for the delay magnitude is known. Otherwise it has
unbounded delay, which means no bound is known except that it is finite. The unbounded delay model is
more robust than the bounded one. That is to say, a circuit designed under the assumption of unbounded
delay can usually work correctly when the actual delay model is bounded, but not vice versa.

Delays can also be characterized as pure or inertial [Ung69]. Suppose the delay of adigital component
isD. If acomponent has pure delay, al input changeswill have an effect on output. In other words, outputs
follows inputs after delay D. If the component hasinertial delay, output will respond only to input changes
which have persisted for time D. As aresult, input pulses whose width is less than D will be absorbed by
the component. This reflects the fact that short pulses contain insufficient energy to trigger a state change
in areal component. Figure 5 gives these two basic delay models, as can be seen, pure delay does not
ater awaveform, while inertial delay may do so by eliminating short glitches, i.e. the narrow pulsesin a
waveform.

A useful digital circuit should inevitably have interactions with its outside world. A circuit and its
environment forms a closed system, called a complete circuit. If the environment must wait for a circuit
to stabilize before providing new inputs to the circuit, the two interact in fundamental mode [Ung69].
Otherwise the interaction is termed input/output mode, meaning that the stability of acircuit is not required
beforeit is alowed to receive further inputs. Input/output mode is more robust than fundamental mode.

The concepts of delay and environment model are especially important for asynchronous circuits, be-
cause an asynchronous circuit designed with certain delay and environment assumptions normally cannot
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work correctly with others. In contrast, synchronous circuits tend to have more unified delay and envi-
ronment models. Because clock cycles are calculated according to the maximal delay of components, all
synchronouscircuits are actually based on the bounded delay assumption. The environment of synchronous
circuits can be regarded as for the fundamental mode since the effects of inputs before stabilization of cir-
cuits are filtered out or delayed by means of clock signals.

3.2 TheFirst Model of Basic Logic Gates

Specifying basic logic gates is very important in DiLL not only because they are the most basic build-
ing blocks of both synchronous and asynchronous circuits, but also because they are representative. Be-
havioural specifications of other higher-level components follow the same specification method.

In this section, the model of basic logic gates developed in [TS94] was presented and examined. This
is the first component model developed in DiLL approach. The initia idea was to have a common model
that could be used in both synchronous and asynchronous circuits. Although this appears straightforward,
the model was obtained after considerable thought. The main difficulty is that since the model is intended
to be general, little can be assumed about the environment. The resultant model is a faithful representation
of logic gatesin the real world. The following takes as example a 2-input gate Nand2. Specifications of
other logic gates are almost identical except that different logic operators are used in the let expression. A
Nand?2 gate with both initial inputs of 0 and output of 1 can be instantiated as Nand2 [1p1, 1p2, Op] (0, O,
1).

process Nand2 [1p1, Ip2, Op] : (dtipl, dtip2, dtOp : Bit) noexit : =

Ipl ? newdtlpl: Bit [newdtlpl ne dtlpl]; (* oneinput is changed*)
Nand2 [Ipl, Ip2, Op] (newdtlpl, dtlp2, dtOp) (* repeat behaviour *)
I
Ip2 ?newdtlp2 : Bit [newdtIp2 ne dtip2] (* other input is changed *)
Nand2 [1pl, 1p2, Op] (dtlpl, newdtlp2, dtOp] (* repeat behaviour *)
I
let newdtOp : Bit = Apply (Nand, dtlpl, dtlp2) in (* new Qutput *)
[newdtOp ne dtOp] = Op! newdtOp; (* Output Change *)
Nand2 [1p1, Ip2, Op] (dtlpl, dtip2, newdtOp) (* repeat behaviour *)

endproc (* Nand2 *)

There are several key pointsimplied in this process:

Inlines 2, 5, and 8, events occur only when they have value changes ( achieved by LoT0sS selection
predicates and guards). Thisimpliesthat LoTOS events model signal transitions. LOTOS events can only
deal with discrete actions. Modelling continuous signal levels would result in infinite events in a finite
period.
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Because the three sub-behaviour expressions in the process are combined by the choice operator [],
inputsand output can occur at any time aslong asthere are value changes. That inputsare alwaysallowed to
changeistermed input receptivenessin someliterature [Dil89]. Aswill seenin section 3.4.5, receptiveness
is very important for correctly modelling componentsin asynchronous circuits.

Inthismodel, an input change may pre-empt a pending output. For example, if initialy Ipl, Ip2, Op are
0,1, 1. After Ipl changesfrom0to 1, Op can changeto 0. However, if Ip2 changesto 0 before Op changes,
the newest value on Op will still be 1. In other words, the potential 1 to O change on Op is pre-empted.

Pre-empting potential output indicates that an input change comes earlier than the propagation delay
alows. This actually follows the assumption of the inertial delay model discussed in section 3.1.2.

In short, the first model of basic logic gates models signal transitions as L OTOS events. It is specified
in the inputs receptive manner, and assumes the components have inertial delay model, which implies that
pending outputs may be pre-empted.

3.3 Specifying Synchronous Circuits
3.3.1 Structure of Synchronous Circuits

The genera structure of a synchronous circuit is shown in Figure 6. It is made up of two parts. combi-
national logic and storage elements. The former part does logic calculation, and the latter stores states of
acircuit. Combinational logic provides the primary outputs and internal outputs according to the primary
inputs and internal inputs. Internal outputs are then fed into storage elements to produce internal inputs.
Since these storage elements are controlled by a clock signal, changes of the internal inputs are synchro-
nised with the clock, in other wordsthey are changed only at particular moments of the clock cycle (usually
its transitions). This allows internal outputs to settle down, filtering out transient signal transitions caused
by propagation delays of the combinational logic. Consequently, primary outputs are not influenced by
these transient signals either.

It is easy to seethat for a synchronous circuit operating correctly, designers must ensure that the clock
cycle is slower than the slowest combinational logic so that the whole circuit can settle down before it
changesits state. This can be done by analysing timing characteristics of the components used in circuits.
The untimed version of DiLL cannot of course confirm if this clock constraint is met or not. However
as discussed elsewhere (chapter 6), timed LoTOS can specify such constraints. Instead, sections 3.3.3
and 3.3.5 will show that properly modelling storage components and the environment can ensure that
synchronous circuits specified in DiLL fulfill the clock condition automatically.

In the practice of synchronous design, primary inputs are usually synchronised with a clock signal.
This makes designing and analysing synchronous circuits much easier. DiLL incorporatesthis practiceinto
its synchronouscircuit model, assuming that primary inputs have aready been synchronised with the clock
signal.

Apart from this, the DiLL synchronous model has two more restrictions. It is important that there
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is no cyclic connection within the combinational logic, and storage elements have to be specified in a
behavioural style. These restrictions are related to the way components are modelled, for otherwise a
DiLL specification might deadlock while areal circuit could still work. This will be discussed further in
sections 3.3.2 and 3.3.3.

3.3.2 Basic Logic Gatesin Synchronous Circuits

In this section, the DiLL specification of basic logic gates is re-investigated in the context of synchronous
circuits. Although it is a good representation of real-world logic gates, the model discussed in section 3.2
makesit very difficult to analyse the behaviour of synchronouscircuits.

Suppose the examplein figure 7 is a combinational stage of a certain circuit. Initialy I1pl, Ip2, Op are
0, 0, 1. After theinput sequence Ipl!1, Ip2!1, Ip1!0, Op may either remain at 1 or changeto 0 then back to
1, which depends on whether [p1!0 comes before or after the output int of the And2 gate, i.e. whether the
change on Ipl isfaster or slower than the propagation delay of the And2 gate. In thefirst case, Iplisafast
input change so the pending output is pre-empted, consequently Op stays at 1. While in the second case,
the output of the And2 gate occurs before Ipl!0, so it is possible for the Inverter to change to 0 then back to
1. If the clock cycle of a synchronouscircuit is slow enough to allow the Nand2 gate settle down, the 1, O,
lisonly atemporary transition. The two different behaviour does not necessarily to be distinguished since
only the settled signal level can influence the behaviour of the whole circuit. The problematic thing is that
there appears no way to 'sense’ when the combinational logic has settled down, which makes automatic
analysis of circuits almost impossible. This suggeststhat a new model of basic logic gatesis needed which
takes the characteristics of synchronous circuits into account.

As discussed, in each clock cycle only the settled level of each signal is of interest. Consider figure 6
again. Suppose that there is an environment which offers each primary input an event once and only once
within aclock cycle. (Thisis reasonable because DiLL assumes that the primary inputs are synchronised
with the clock.) Suppose further that storage elements produce an output once in each clock cycle either
(see section 3.3.3). Under this condition, if abasic logic gate is modelled in such away that output events
happen only after al inputs occur, then each output event happens exactly once as well. Moreover if input
events model settled signals, so do the output events. In thisway, transient signal transitions resulting from
different arrival times of different input events can be filtered out.

Note that this model requires each signal to appear once in a clock cycle. In other words, no matter
if the value of this signal changes or not, there should be an event offer in the corresponding clock cycle.
L oTos events thus no longer model signal transitions on wires, but rather signal levels. For instance, the
LoTos event Ip!0 means that in a certain clock cycle the signal level on wire Ipis0. (A similar argument
appliesfor Ip!1). Thelevel on the same wire during the previous cycle could be O or 1, but the event itself
does not give any information about its previous level.

Following the way that basic logic gates are modelled, every wire in a synchronous circuit has just
one associated event offer during a clock cycle. This answers why there is no need to worry about the
infiniteness resulting from modelling LoTos eventsas signal levels. Usually if an event representsasignal
level, there will be an infinite number of events during an arbitrary time interval because the level is a
continuous variable. However for the case of synchronous circuits, whose progressis actually in discrete
steps, settled signal levels constitute discrete variables.

To illustrate the above idea, a re-specification of Nand2 gate is given below. Note that inputs are
interleaved, i.e. they can occur in any order. It might appear that the order of input events could be fixed
since it does not influence the functionality of a component. This would result in a smaller state space
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when circuits are verified. Unfortunately this could cause deadlock when components are connected. For
example, suppose that components A and B each have two inputs. Imagine that the fixed order of inputs
is IpAl before IpA2, and IpB1 before IpB2. This would lead to deadlock if the components share inputs,
with IpAl connected to |pB2 and I pA2 connected to I pB1. For thisreason, DiLL insists on fully interleaved
inputs.

process Nand2 [Ip1, Ip2, Op] : noexit :=

(1pl2dtipl: Bit; exit (dtipl, any Bit) (* dlow oneinput *)
|l
Ip2 ?dtip2 : Bit; exit (any Bit, dtlp2)) (* alow other input *)
>> accept dtlpl, dtlp2 : Bitin (* accept both inputs *)
( Op !(dtIP1 nand dtlp2); (* output nand of inputs*)
Nand2 [Ip1, Ip2, Op]) (* repeat behaviour *)

endproc (* Nand2 *)

In contrast to the specification in section 3.2, the above process does not concern delay aspects of logic
gates. A signal propagating through an inertial delay component or a pure delay one can have only the
same stable level, and only this stable level is of interest in synchronouscircuits. Details of the delay types
are therefore better to be abstracted away. Another differenceis that inputs are no longer receptive. This
appears unrealistic, but in the context of synchronous circuits, every input has only one stable level during
aclock cycle, so it is not necessary to make it receptive.

Because inputs and outputs alternate in this model, there should be no cyclic connection within a
combinational stage, for otherwise a DiLL specification would deadlock. This arises because feedback
connections make inputs and outputs dependent on each other. Figure 8 gives examples of such cyclic
connections, with the right hand one being a common building block of latches and flip-flops. Thisiswhy
storage elements cannot be specified in the structural style.

3.3.3 Specifying Storage Elements

A storage element can store one logic value (1 or 0). The stored value is decided by the inputs of the
element during the effective instant of a clock cycle (for example, a positive transition of the clock) and
remains unchanged until the next effective instant comes. Temporary input changes between these two
effectiveinstants, which are regarded as hazards, do not have effects on the value held in storage elements.

Storage elements are modelled in the behavioura style. The following takes as example one of the
simpler storage elements: a D flip flop (DFF). A DFF (Delay Flip-Flop) has input D, clock input Clk and
output Q (some may aso have the inverted output). Here the DFF is assumed to be positive edge triggered,
which means that output Q changes to the same level as D after the Clk changes from 0 to 1. Unlike the
specification of basic logic gates, storage elements have states associated with them, which is reflected in
value parameters dtD.

process DFF [D, Clk, Q] (dtD, dtClk : Bit) : noexit :=
D ?newdtD : Bit; DFF [D, Clk, Q] (newdtD, dtCIk) (* input new data*)

I
Clk ? newdtClk : Bit; (* input clock pulse*)
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([(dtClk eq 1) and (newdtClk eq 0)] > (* ignore-ve pulse *)

DFF[D, Clk, Q] (dtD, newdtClk) (* continue behaviour *)
[(dtClk eq 0) and (newdtClk eq 1)] > (* react to +ve pulse *)
Q! dtb; (* output stored data *)
DFF[D, Clk, Q] (dtD, newdtClk)) (* continue behaviour *)

endproc (* DFF *)

Suppose there is an internal output feeding into this flip-flop. If the clock signal is not constrained, it
is possible that the clock moves to the next cycle before the combinational logic has settled down. The
model of a synchronous circuit must exclude this possibility. After a positive-going transition of the clock
signal, if the D input of the flip-flop has not occurred yet then the next positive-going transition of clock
signal must not occur. Thisis ensured by the following constraint on the D flip-flop specification. Process
Cons_DFF deals with the initia state of the flip-flop, where the D input and Clk input can occur in any
order. However, after the first positive edge of the Clk signal, the next positive edge has to wait for the D
signal to ensure its previous combinational stage has settle. This is specified in process Cons_DFF _Aux.
The return of Clk to O is allowed either before or after the D event. Thus there are two possibilities in
Cons_DFF_Aux. It is attractive to specify Cons DFF in the same way as Cons DFF Aux, i.e. it appears
reasonabl e to assume that the clock arrives after the data input D has settled down from the initial state.
However, thiswill result in specification deadlock when two DFFs are connected in series. In other words,
when the Q output of the first DFF is the D input of the second. Suppose this shared port is called QD,
then QD should wait until CIk has happened for the first DFF, while it should happen before Clk for the
second one. Deadlock is therefore inevitable. The full specification of a D flip-flop combines DFF and
Cons_DFF, i.e. DFF | [ D, CIk] | Cons.DFF [D, CIK].

process Cons_DFF [D, CIKk] (dtClk : Bit) : noexit :=

D ?ewdtD : Bit; (* input new data*)
Cons_DFF [D, CIK] (dtClk) (* continue behaviour *)
[
Clk 7newdtClk : Bit; (* input clock pulse*)
([(newdtClk eq 1) and (dtClk eq 0)] > (* react to +ve pulse *)
Cons_ DFF_Aux [D, CIK] (newdtCIKk) (* after one clock pulse *)
I [(newdtClk ne 1) or (dtclk ne 0)] > (* ignore other pulses*)
Cons_DFF [D, CIK] (newdtClk)) (* continue behaviour *)
where

process Cons_DFF_Aux [D, CIK] (dtClk : Bit) : noexit :=
D ?newdtD : Bit; Clk !0; Clk 11; (* input before -ve pulse *)
Cons_.DFF_Aux [D, CIK] (1) (* continue behaviour *)

[

Clk !0; D ?newdtD : Bit; Clk !1; (* input after -ve pulse *)
Cons. DFF_Aux [D, CIK] (2) (* continue behaviour *)

endproc (* Cons_. DFF_Aux *)
endproc (* Cons_DFF *)

3.34 Specifying Circuit Behaviour

Specifying behaviour of a whole circuit uses a clock cycle-by-cycle basis. In each clock cycle, output
behaviour is specified according to inputs and internal states. Essentially a synchronouscircuit is a storage
element, but may have more complicated logic and more internal states. Clock signals can be implicit at
the highest level of specification because no connection is required at this level. In fact, it is found that it
is more convenient to make clock signalsimplicit during high-level specification. Moreover, smaller state
spaces result due to implicit clocks.
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3.3.5 Case Study: Specifying a Single Pulser

In this section, asmall synchronouscircuit called the single pulser is specified in behavioural and structural
styles. Thesingle pulser is astandard hardware verification benchmark documentedin [SK96]. Thesimple
behaviour and small size of its design make it a good example for illustrating the DiLL approach.

A Single Pulser is a clocked-sequentia device with a one-bit input P 1n and a one-hit output P Out. It
deals with a debounced switch that is on (true) in the down position and off (false) in the up position. The
god isto devise a circuit to sense the switch being turned on, asserting an output signal lasting one clock
cycle. The system should not allow additional outputs until the user has turned the switch off.

The description does not make clear when the output pulse should be asserted: on pressing the switch
(P_In from false to true), or releasing the switch (P 1n from true to false)? For convenience, the first case
istermed positive triggered and the other one is negative triggered.

In the following, the input P_n is assumed initially in the off position and the clock signa isimplicit.
In each clock cycle, if there is an active edge 2on signal P_In, P_Out is asserted. Otherwise, if P_In does
not change or is not going an active edge, P _Out should be 0. Thisensures P Out is asserted only at active
edges of P_In, and lasts for just one clock cycle.

process SP[Ip, Op] : noexit := (* Single Pulser *)
i; SP_P[lp, Op] (0) (* +vetriggered implementation *)
i; SP_N [Ip, Op] (0) (*-vetriggered implementation *)
where
process SP_P[Ip, Op] (dtl: Bit) : noexit :=
Ip 7newl : Bit; (* get new input *)
(Op!'1[(dtl eq0) and (newl eq 1)]; (* output 1 on 0 >1 input *)

SP_P[Ip, Op] (newl)

Op !0 [not ((dtl eq 0) and (newl eq 1))]; (* else output 0 *)
SP_P[lp, Op] (newl))
endproc (* SP_P*)
process SP_N [Ip, Op] (dtl: Bit) : noexit :=
Ip ?newl : Bit; (* get new input *)
(Op!'1[(dtl eq1) and (newl eq 0)]; (* output 1 on 1 >0 input *)
SP_N [Ip, Op] (newl)

Op !0 [not ((dtl eq 1) and (new! eq 0))]; (* else output 0 *)
SP_N [Ip, Op] (newl))
endproc (* SP_N *)
endproc (* SP*)

Figure 9 shows a design for the single pulser that is given in the benchmark. The clock is hidden in the
structural specification:

hide Inp, N_Find, Find, Clk in

((DFF |[N_Find, Inp]| (Inverter |[Find]| And2)) |[CIK, Inp]| DFF)
|[P-1n, CIk, P_Out]|
Env [P-In, CIk, P_Out]

The Env process serves as the environmental constraint on the circuit. It permits P _In to come before each
positive-going clock transition, and allows the next clock cycle to come only after P Out has occurred. The
constraint between P_In and Clk ensures that P_In is synchronised with Clk, and the constraint between
Clk and output respects the slow-clock reguirement: P_Out must settle down before the next positive going
clock transition. These assumptions are not automatically guaranteed by the circuit specification, but they
arerequired by the DiLL synchronouscircuit model. In outline, Env is specified as follows:

2For positive triggered single pulser, the active edge is the positive edge of the P In, it is the negative edge of P In if the single
pulser is negative triggered.
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Figure 10: Anisochronic fork

process Env [P_In, Clk, P_Out] : noexit :=
(P_In2dtPIn : Bit;

Clk 11;

(ClIk 10; exit ||| P-Out 2dtPOut : Bit; exit)
) >> Env [P_In, Clk, P_Out]
endproc

3.4 Specifying Asynchronous Circuits
3.4.1 Classesof Asynchronous Circuits

Unlike synchronous circuits, which have a unified structure, asynchronous circuits exhibit a variety of
forms due to the different delay and environment assumptions made. An asynchronous circuit can only
behave correctly when these assumptions are met.

Delay insensitive circuits (DI): DI circuits [Udd86] are the most robust class in the asynchronous circuit
family since they take the most pessimistic view about delays and the environment. Delays on
both components and wires are assumed to be unbounded, and the environment is in input/output
mode (see section 3.1.2). DI circuits can operate correctly regardless of delay magnitudes on wires
and components, as long as they are finite. Martin [Mar90] has proved that the class of purely DI
circuits designed using single-output gates is limited, which means that most meaningful DI circuits
cannot just be built purely from basic logic gates. Some special components [MFR85] are therefore
designed.

Quasi delay insensitive circuits (QDI): QDI circuits augment the delay model of DI circuits with the
isochronic forks assumption [Mar90]. Isochronic forks are forking wires on which the difference
of delay magnitudes is negligible, as shown in figure 10 where delays on wl and w2 are regarded
as equal. This seems the weakest compromise to pure DI circuits to build practical circuits using
single-output gates [Mar90]. QDI circuits assume input/output mode environment.

Speed-independent circuit (SI): Design of Sl circuits was pioneered by Muller [MB59]. In this class
of circuits, gates are assumed to have unbounded delay while wires have zero delay. If al gates
have just one output, SI and QDI are actually identical, see section 3.4.2 for more detail. Sl circuits
assume input/output mode environment.
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Fundamental mode Huffman circuits: A Huffman sequential circuit [Ung69] can be modelled asacom-
binational logic block with a subset of outputs feeding back to inputsto hold states. Gates and wires
are assumed to have bounded delay, and the environment is in fundamental mode. In its most basic
form, only oneinput is allowed to change each time, and the next input change has to wait until the
circuit is stable. Obviously thiskind of circuit is not so useful in real designs as the speed of circuits
can be very slow.

Burst mode circuits. Burst-mode circuits [DCS93]) are an extension of fundamental Huffman circuits.
They alow one or more input bursts to occur at each state. Inputsin aburst may occur in any order,
and the circuit does not react until the entire input burst has finished. The next input burst can come
only after the specified output burst has completed, and the circuit has been stable. In fact burst-mode
systems still require the fundamental mode assumption, but only between different input bursts.

Micropipeline: Ivan Sutherland introduced the concept of micropipelinein his 1988 Turing Award lecture
[Sut89]. A micropipeline can be divided into two parts: acontrol part which assumes an unbounded
delay model and thus could be implemented, for example, in DI circuits, and a datapath part which
adopts a bounded delay model. Between two stages of a micropipeline, a bundled data protocol is
applied: the delay on datawires must be less than that on control wires so that stable dataistransfered
from one stage to the other before the corresponding control signals occur.

Specifying bounded delay needs a formalism which supports quantitative timing specification. This
chapter mainly studies those classes assuming unbounded delays, namely the DI, QDI and Sl circuits.
Chapter 6 deals with specifying bounded delays using ET-L OTOS.

3.4.2 DiLL and Speed Independent Circuits

Among different classes of asynchronous circuits, speed independent circuits match the modelling tech-
niques of DILL most closely: in speed independent circuits, propagation delays of components are un-
bounded. In LoTos the interval between the occurrence of two concatenated events is also unbounded. In
DiLL wiring up two portsis done by synchronising the L oTOs events, which actually assumes that delay
on the connecting wires is negligible, an assumption which is also adopted by Sl circuits.

The other circuits with unbounded delay models, namely DI (delay insensitive) and QDI (quasi-del ay-
insensitive), can be easily changed to Sl circuits by inserting artificial delay components. In figure 11,
a DI circuit(figure 11 (A)) can be remodelled as an Sl circuit (figure 11(B)) by inserting artificial delay
componentson each wire. Notethat in the figure lowercase | etters represent delays on wires or components.
Actually, as unbounded delay plus unbounded delay is still unbounded, so most of the wire delays can be
accumulated with their preceding components. Only forks and components with more than one outputs
should be otherwisetreated, as shown in figure 11(C). Figure 11(D) is the S| representation of figure 11(A)
when it is regarded as a quasi delay-insensitive circuits. Since h = ¢ and k& = [, only wires from the
components with multi-outputs are inserted with additional delay components. Figure 11(D) also shows
that if every component has a single output, QDI and Sl areidentical.

Speed independence is closely related to the concept of semi-modularity. Under the delay model of
speed independent circuits, if no componentsin a circuit can ever receive an input which can change the
level of pending outputs, the circuit is termed semi-modular [BM91, BZ97]. For instance, suppose a two-
input And2 gate has a pending output 1. If it receives a O input on one of its inputs before the output 1 is
produced, the And2 gate is not semi-modular since this 0 input might change the pending output from 1 to
0. Non-semi-modularity indicates that at |east one component in a circuit has speed dependent behaviour.
In the above example, after receiving the input 0, the output of the And2 gate depends onits speed: afaster
gate can produce 1 followed by 0, while a slower one can only produce 0. Semi-modularity is usualy
regarded as a basic characteristic of speed independent circuits [BBM94, KKTV94].

3.4.3 BasicLogic Gatesin S| Circuits

Unlike the case of modelling synchronous circuits, modelling asynchronous circuits requires that L oTos
events represent signal transitions since every transition may influence the behaviour of circuits.
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Figure 11: Modelling DI, QDI as S|

The specification in section 3.2 is one of the possible models of the basic logic gatesin Sl circuits. It
is only suitable for those gates exhibiting inertial delay, since it alows new inputs to pre-empt pending
outputs. If inputs which may result in the pre-emption are prohibited, it becomes a model which satisfies
the requirement of semi-modularity. Take the example of the Nand2 gate. Suppose its inputs and output
Ipl, Ip2, Op areinitialy 1, 1, 0. After Ipl changes to O, its output should change to 1 accordingly. If,
before the output happens, 1pl changes back to 1, then the new output will eventually be 0. The model in
section 3.2 allows the change on 1p1, resulting in speed dependent behaviour. If thisinput is not allowed, a
new model of basic logic gates which respects semi-modularity can then be obtained:

process Nand2[1pl, Ip2, Op] ( dtipl, dtip2, dtOp : Bit) : noexit : =

let newQut : Bit = dtlpl nand dtlp2in (* potential output *)

(Ip1 ? newl: Bit [(newl nedtlpl) and (* signal transition *)

((dtOp eq newOut) or (* no new potentia output *)

((dtOp ne newOut) and (* thereis potential outputs*)

((newl nand dtlp2) eq newOut)))]; (* but it won't be changed *)

Nand2[Ip1, Ip2, Op] (newl, dtlp2, dtOp) (* continue behaviour *)

Ip2 ? new2 : Bit [(new2 ne dtlp2) and (* signdl transition *)

((dtOp eq newOut) or (* no new potential output *)

((dtOp ne newOut) and (* thereis potential output *)

((new2 nand newl) eq newOut)))]; (* but it won't be changed *)

Nand2[Ip1, Ip2, Op] (dtlpl, new2, dtOp) (* continue behaviour *)
I

Op ! newOut [dtOp ne newOut]; (* new output produced *)

Nand2[1p1, Ip2, Op] (dtipl, dtip2, newOut)) (* continue behaviour *)

endproc

Compared to the specification in section 3.2, the only differenceis the selection predicates behind input
events. Here the constraint of semi-modularity is required. Aninput offer can only happen when there is
no potential output, or even though there is such output, the new input will not alter it ((newl nand dtl p2)
eq newOut).

A question is raised as there are two models of basic logic gates for S| circuits: which one is better?
The onein section 3.2 isafull specification of logic gatesin the sense that it specifies the behaviour under
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all possibleinput situations (i.e. it isinput receptive). But it requiresthat the specified hardware hasinertial
delay characteristics. When the assumption cannot be guaranteed, the model may not be a suitable one.
As for the model above, it is a partial specification in the sense that it does not allow certain input events
to happen at some times. More precisely, those inputs which may alter potential outputs are prohibited.
Thisisthe stricter model of the two, and can be used for checking if acircuit isreally semi-modular or not.
For some components, such as the other basic building blocks of SI which will be introduced in the next
section, full specifications are not available since these components are not yet as standard as basic logic
gates. Different implementations of the components may have different behaviour under the unexpected
inputs, in which case partial specifications are the only choice.

3.4.4 Other Basic Building Blocks of SI Circuits

Besides basic logic gates, there are other “basic' building blocks for constructing Sl circuits. These ele-
ments are “basic' in the sense that they are normally not decomposed into smaller units in logic designs,
athough their implementation may be based on smaller units such as basic logic gates or transistors. These
elements are assumed to satisfy some properties such as speed independence or delay insensitivity by
themselves. The followings gave afew of them and their DiLL specifications.

Wires are most simplest components. They are not needed for Sl circuits as delay on wires are assumed
to be zero. But when DI or QDI circuits are transformed to Sl, some of the wires should be explicitly
specified to introduce delays. Suppose the input of awire is A and output is B, When awireis not
stable, i.e. there is a pending output, the input has to wait until the output changes, otherwise the
component will not be speed independent.

process Wire [A, B] (dtA : Bit) : noexit :=

A ? newA : Bit [dtA ne newA]; (* accept input *)
B! newA; (* output *)
Wire[A, B] (newA) (* continue*)

endproc (* Wire*)

For the rest of the components, a shorthand notation is exploited to save space. In the notation
a process definition is prefixed with ":=', and every LoTOS gate can represent either positive or
negative signal transitions. For example, the Wire component now looks like:

Wire[A, B] := A; B; Wire[A, B]

Fork components are also necessary when a DI or QDI circuit istransformed to Sl. A fork has one input
Ip and two output Opl, Op2. The value on input Ip is fanned out to Opl and Op2. Because of the
delay on wires,the two outputs may occur at different times. New input hasto wait until both outputs
have been produced.

Fork [Ip, Opl, Op2] := Ip; (Opl; exit ||| Op2; exit) >> Fork [Ip, Opl, Op2]

C-Elements are very important elements in asynchronous design. A C-Element serves as a transition
synchroniser in asynchronous design because the output can only change after both inputs have
changed. For thisreason, it is sometime also called Join Element. Precisely, a C-Element has two

inputs A, B and an output C. C changes to 1 when both inputs have changed to 1, and changesto 0
when both of them have changed to 0.

C-Element [A, B, C] := (A; exit ||| B; exit) > (C; C-Element [A, B, C])

Merge components ‘merges signals on the input ports to the output. Each merge component has two
inputs Ipl, Ip2 and one output Op.

Merge[lpl, Ip2, Op] :=
Ip1; Op; Merge[lpl, Ip2, Op] [] Ip2; Op; Merge[Ipl, Ip2, Op]
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Selectors nondeterministically produce output on either Opl or Op2 after receive aninput. A selector has
one input Ip and two outputs Ip1, Ip2.

Selector [Ip, Opl, Op2] :=
Ip; (i; Opl; exit [] i; Op2; exit)>> Selector [Ip, Opl, Op2]

Sequencers havethreeinputsipl, Ip2, N and two outputs Opl, Op2. They wait for asignal on at least one
of thelpi (i=1, 2) inputs. Having received input signalson I pi (i=1, 2) and N, the sequencer produces
asigna on output Opi (i=1, 2).

Sequencer [1p1, Ip2, N, Opl, Op2] :=

(S1[Ip1, Op1] ||| S2[Ip2, Op2]) |[Op1, Op2]| S3[N, Opl, Op2]

where

S1[lIpl, Opl] := Ipl; Opl; S1[Ipl, Opl]

S2[1p2, Op2] := 1p2; Op2; S2 [1p2, Op2]

S3[N, Op1, Op2] := N; (i; Opl; S3[N, Opl, Op2] []i; Op2; S3 [N, Opl, Op2])

Latches arethe storage elements in asynchronous circuits. A latch has three inputs Ipl, 1p12, C, and two
outputs Opl and Op2. It waitsfor asignal on exactly one of thelpi (i=1, 2) inputs and asignal onthe
C input. In contrast to a Sequencer, the environment must guarantee mutual exclusion of the inputs
Ipi (i=1, 2). Having received input signals on Ipi (i=1, 2) and C, alatch produces a signa on output
Opi (i=1, 2).

Latch[lpl, Ip2, C, Opl, Op2] :=
((Ip1; exit ||| C; exit) >> Op1; Latch [Ipd, Ip2, C, Opl, Op2])

((Ip2; exit ||| C; exit) >> Op2; Latch [Ip1, 1p2, C, Opl, Op2])

RGD Arbiters have four inputs rl, di, r2, and d2 and two outputs gl and g2. For eachi in 1,2, signal
starts with ri, followed by an acknowledgment of gi, then concurrently di and ri. The intervals from
gl to d1 and from g2 to it d2 are mutually exclusive. RGD stands for Request (ri), Grant (gi), and
Done (di).

When a RGD Arbiter receives two requests, it will grant exactly one of them (and delay the other).
The specification |eaves the choice open.

RGD [R1,G1,D1,R2, G2,D2] :=
(SL[R1, G1] ||| S2[R2, G2)) |[G1, G2]| S3[G1, D1, G2, D2
where
S1[R1, G]] := R1; G1; S1[R1, G1]
S2[R2, G2] := R2; G2; S2[R2, G2]
S3[G1, D1, G2,D2] := (i; G1; D1; S3[G1, D1, G2, D2))
0

(i; G2; D2; S3[GL, D1, G2, D2))

3.45 Input Receptiveness

For convenience, the thesis has so far used the terms input events and output events. The more accurate
phrases however should be events corresponding to input ports (or output ports). Since LOTOS never
makes a difference between input and output events in its semantics, all events are treated equally. In
L oT0os, communication between processes is based on symmetric synchronisation at agate. Thus an event
can happen only when all processes offer events at this gate. If, however, one of the processes is not able
to do so, other processes just wait there, or participate in other eventsif possible. In the second case, the
event does not occur.

Asiswell known, digital hardware makes a clear difference between inputs and outputs. Signals come
to inputs and are produced on outputs. A component can never refuse input signals, and output signals it
produces can never be blocked by others.
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Figure 12: Two wiresin series

If LoTos events model physical signal transitions, as has been done for specifying asynchronous cir-
cuits, aDiLL specification and the real circuit may have different behaviour when inputs are allowed to be
refused. In section 3.4.3, behaviour of basic logic gates was defined for only desirable input situations. It
is assumed that undesirable inputs are not allowed in order to respect the requirement of semi-modularity.
This follows the convention of writing LoTos specifications that only desirable behaviour is specified.
There is no need to specify undesirable behaviour because it cannot happen even though proposed by en-
vironment. When this convention is used in the context of digital circuits, an input transition which will
definitely happen in real world but will not happenin a DiLL specification. Consequently, the behaviour of
aDiLL specification is just a subset of real behaviour, so analysis based on the specification is not exact.
Especidly if no problemisfoundinaDiLL modd, it does not necessarily mean that thereis no problem
in the real circuit.

To be more concrete, think about a very simple circuit which just has two wires connected in series as
shown in figure 12(a). The specification of wiresis according to section 3.4.4, which is a partial specifica-
tion. Thecircuit is not speed independent under the environment shown in figure 12(b), becauseif a second
a comes beforethe first wire producesits output b, the behaviour of the circuit is undefined. However from
experience there is no way to highlight this speed dependency since the circuit behaviour (figure 12(c)) is
observationally equivalent to figure 12(b). The reason is that the DiLL specification can refuse the second
input a when the first wire is not ready to accept it, while the real circuit cannot.

When a specification is input receptive, in other words when every input is allowed in al states, the
DiLL model can represent the real circuit faithfully. However input receptive specification is not available
for most of the basic building blocks of Sl circuits as behaviour with unexpected inputs is unknown. One
way to shorten the gap is by explicitly introducing stop behaviour when unexpected inputs happen. Here
unexpected inputs are regarded as “evil' and their appearance means something is wrong in the circuits,
which is indicated by deadlock. Another possible way is to treat an unexpected input as “benign’. For
example, when it happensa circuit does nothing but just staysin the same state. For Sl circuits, the former
solution seems better considering that unexpected inputs are usually undesirable ones. Thus this solution
isadopted in DiLL when partial specification cannot meet validation reguirements.

Finally, it should be pointed out that input receptiveness is not so important in synchronous circuits
because in most cases, the environment can guarantee thereis no unexpected input.

3.4.6 Input Quasi-Receptiveness

Analysing Sl circuits based on partial specifications of building blocks has the disadvantage of not being
exact. If more accuracy of analysisis sought, input quasi-receptive specification of these blocks should be
used.

Informally, a DiLL specification isinput quasi-receptiveif it can always participate in al input events,
except when it is in a deadlock state. Before a formal definition of input quasi-receptiveness is given,
consider the simple example of the wire component.

Apparently, specification of wire in section 3.4.4 is partia in that input A is not allowed when the wire
wants to produceits output. An input quasi-receptive specification can thus be obtained by adding a choice
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option when there is a potential output. The choice option is made up of forbidden input events followed
by adeadlock state.

process Wire [A, B] (dtA : Bit) : noexit :=

A ?newA : Bit [dtA ne newA]; (* new input *)

(B ! newA; exit (newA) * new output *)
[ (* or*)
A ? newnewA : bit [newnewA ne newA]; (* forbidden input *)
stop) (* deadlock *)
>

accept newA : Bitin

Wire[A, B] (newA) (* continue*)

endproc (* Wire*)

However, for those components which can not be simply specified using sequence (;) and choice ([])
operators, such as Sequencer or Latch in section 3.4.4, writing an input quasi-receptive specification is not
straightforward. In this case, a partial specification is used to generate the corresponding LTS (Labelled
Transition System). An LTS is actually a LoTos specification in form of sequence and choice operators,
therefore input quasi-receptive specification can be obtained by modifying the LTS. Precisely, for each
state which cannot participate in al input events, outgoing edges are added which are labelled with these
missed inputs and which lead to deadlock state. An exampleis shown in figure 13(a) and (b). Note that in
thefigure theinput set isIpl, Ip2.

This method works very well for LTSs without internal eventsi. But for those containing i events,
things become very subtle. For examplein figure 13(c), state s1 cannot engage in event 1p2, but one cannot
simply think that Ip2 is rejected in this state, as the component may decide to accept it at state s2 through
an interna event. Such kinds of peculiar situation may not be the intention of specifiers, but can appear in
an LTS through hide operations.

Notice that when a specification is understood from the point of view of input receptiveness, internal
events seemsto lose their necessity. Take the example of the RGD arbiter. Internal events are used to indi-
cate that the component will decide which outputs (g1 or g2) should be produced, and that its environment
has no influence on this decision. If the internal events are omitted, the environment can choose which
output to accept and which one to refuse. However, if the environment is input receptive, which means it
can always receive all inputs (the outputs of the RGD), it loses its selective power. Whichever the output
produced by the RGD, the environment just acceptsit. In other words, no matter if the internal events are
specified or not, the environment cannot affect the decision made by the RGD.

Based on this observation, LTSs with internal events are determinised before outgoing edges are added
(figure 13(d)) to obtain input quasi-receptive specifications

Definition 3.1 (DeterministicLTS) AnLTSp =< S,L,T,s0 > isdeterministicif Vs € S, s 7l> and V
a € L, safter acontainsat most 1 element.
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Definition 3.2 (Determinization of LTS) Let p =< S,L,T,s0 > bean LTS P(S) is the powerset of S
Thedeterministic LTSpy =< Sq4, L, T4, s04 > can be obtained by:

Sa =aes  P(S)\{0}
Ti  =def {qi>q’|a€L,q7q’ESd,q':{s’ES|E|s€q:s:a>s'}}
s04 =qer {s'€S5]|s0 = s'}

Now, the formal definition of input quasi-receptive can be given.

Definition 3.3 (Input Quasi-Receptive) Let L be partitionedinto L ; and Ly, andlet c =< S, L, T, s0 >
be a deterministic labelled transition system. c isinput quasi-receptive if for every state s € S, either for
alaec LyULy,s#,0r Ly C {a| s =}. Ifcisnot a deterministic LTS, it should be determinised
according to the previous definition.

From the above definition, an LTS is input quasi-receptiveif after determinization, all its states, except
the terminal ones, can engaged in al the eventsin L ;.

3.4.7 Case Study: Specifyinga FIFO

In this section, an asynchronous FIFO (First In First Out) is specified. The FIFO has two inputs InT, InF
and two outputs OutT, OutF. Itsinput and output data conform to dual rail encoding in which representing
one bit needs two signal lines. When InT (OutT) is 1 and InF (OutF) is 0, the transmitted (received) data
is1. Similarly when InT (OutT) is 0 and InF (OutF) is 1, the transmitted (received) datais 0. When the
signal on both linesis 0, it indicates idle, which means no valid data on the lines. Lines have to be reset to
idle between two transmissions.

Suppose a FIFO with one stage (figure 14(a)) is initially empty. It can accept either 1 or 0 by raising
InT or InF. The accepted data can be delivered to its environment by output ports. After one successful
transmission, the raised input and output portsreturn to O to wait for other data. The behaviour of one stage
can be easily specified:

process Stage [InT, InF, OutT, OutF] :noexit :=

InT ! 1 of bit; OutT ! 1 of bit; (* transmit 1 *)

InT ! O of bit; OutT ! O of bit; (* gotoidle*)

Stage[InT, InF, OutT, OutF] (* continue*)
I

InF! 1 of bit; OutF! 1 of bit; (* transmit 0 *)

InF! 0 of bit; OutF! O of bit; (* gotoidle*)

Stage [InT, InF, OutT, OutF] (* continue*)
endproc

The behaviour of a FIFO of more than one stage can be obtained by composing several stages. For
simplicity, a FIFO with two stages (figure 14(b)) is specified with:
process SpecHIFO [InT, InF, OutT, OutF]
hideil,i2in
Stage [InT, Inf,i1,i2]
i1, i2)
Stage[il, i2, OutT, OutF]
endproc
A possible implementation of one stage is given in figure 15. Apart from the data path, there are
another two lines controlling the data transmission. Req comes from the environment of a stage; it indicates
that environment has valid data to transfer. The Ack line goes to the environment, indicating that the
stage is empty and is thus ready to receive new data. Both of these control signa are high active. The
implementation use two C-Elements and a Nor2 gate. Initially both Req and Ack are 1. When thereisvalid
dataon InT or InF, it is passed to OutT or OutF. At the same time, Req should be reset to O until InT or InF
returns to the idle state. After receiving data on OutT or OutF, the Ack reset to O indicates that the stage
is full. When the data on output lines is fetched, output returns to the idle state and is ready for the next
transmission. The corresponding DiLL specification of thiscell is asfollows:
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Figure 15: Implementation of a cell of FIFO

process OneCell [InT, InF, OutT, OutF, Reg, Ack] : noexit :=
(CElement [InT, Reg, OutT] (0 of Bit, 1 of Bit, O of Bit)

|[Req]|
CElement [InF, Reg, OuTF] (0 of Bit, 1 of Bit, O of Bit)

)
|[OutT, OutF]|

Nor2 [OutT, OutF, Ack] (0 of Bit, O of Bit, 1 of Bit)
endproc

To ensure a FIFO works correctly, the environment has to be coordinated. For example, it should
provide correct input data according to the dual rail encoding. To make things easier, it is convenient to
think about the environment in two parts: EnvF and EnvB. EnvF is a data provider which is always ready
to produce data. EnvB is a data consumer which can always accept data.

process EnvF [Req, InT, InF] : noexit :=
InT ! 1 of bit; Req! 0 of bit; InT ! 0 of bit; Req! 1 of bit;
EnvF [Req, InT, InF]

InF! 1 of bit; Req! 0 of bit; InF! 0 of bit; Req! 1 of bit;
EnvF [Req, InT, InF]
endproc

process EnvB [Ack, OutT, OutF] : noexit :=
OutT ! 1 of bit; Ack ! 0 of bit; OutT ! 0 of bit; Ack ! 1 of bit;
EnvB [Ack, OutT, OutF]

I
OutF! 1 of bit; Ack ! 0 of bit; OutF! 0 of bit; Ack ! 1 of bit;
EnvB [Ack, OutT, OutF]

A two-stage FIFO can then be implemented:

process TwoStages [InT, InF, OutT, OutF] : noexit :=
hide Reg, X1T, X1F, X1R, Ackin
EnvF [Req, InT, InF]

[[Reg, InT, InF|
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OneCell [InT, InF, X1T, X1F, X1R, Req]
|[XT, X1F, X1R]|

OneCell [X1T, X1F, OutT, OutF, Ack, X1R]
[[Ack, OutT, OutF||

EnvB [Ack, OutT, OutF]
endproc

In the next chapter, the implementation will be verified against its specification. When speed inde-
pendence needs to be verified, each building block, including the environment, should be specified in the
input quasi-receptive style. The DiLL library aready contains such specifications of basic building blocks.
EnvB_QR is the input quasi-receptive specification of EnvB. EnvF has no inputs so there is no need to
modify it.

process EnvB_QR [Ack, OutT, OutF] : noexit :=
OutT! 1; (Ack! O; (OutT! O; (Ack! 1; EnvB _QR [Ack, OutT, OutF]

[JOutT ! 1; stop
[JOutF ! 1; stop)
[JAck! 1; stop
[JOutF! 0; stop)
[JOutT ! O; stop
[JOutF ! O; stop)
I
OutF! 1; (Ack! O; (OutF! O; (Ack! 1; EnvB_QR [Ack, OutT, OutF]
[JOutT ! 1; stop
[JOutF! 1; stop)
[JAck! 1; stop
[JOutT !0; stop)
[JOutT ! O; stop
[JOutF! O; stop)
Ack! O; stop

endproc (* EnvB_QR *)

3.5 Redated Work

Hardware Description Languages (HDLs) were initially designed to cope with the inefficiency of circuit
diagrams when the size of circuits became more and more large. They were subsequently used in simu-
lation, synthesis and verification of digital logics. The most popular HDLs used in industry are perhaps
VHDL, Verilog and ELLA. These languages are very expressive and can give very detailed models of rea
hardware circuits. But circuits described in these languages cannot be formally analysed because there is
no formal semantics associated with them.

Some formal languages are specifically designed for specifying circuits, such as Ruby [JS90], CIRCAL,
Synchronous Transitions [Sta97], DI-algebra [JU93] and so on. Many other general purpose formal lan-
guages or notations are also applied in the area of hardware specifications. To name a few, these includes
HOL [HG92], CSP [Hoa85], Occam [TTW97], and trace theory [Dil89]. Some of them can just deal with
synchronouscircuits, such as Ruby and HOL . Others are mainly employed to tackle asynchronous circuits,
such as DI-algebraand CSP. CIrRcAL and Synchronous Transition have been used in both areas. Among
these formalisms, DiLL most closely resembles CIRCAL in that both have a behavioural basis in process
algebra, and both have been used in synchronous and asynchronous circuit designs. In fact, DiLL was
inspired by the success of CIRCAL. However, the integrated data types in LOTOS makes it much more
expressive than CIRCAL. In the authors experience, DiLL can be used successfully at a variety of abstrac-
tion levels. However, CIRCAL appears to be less effective at higher levels. For example, describing the
behaviour of a synchronouscircuitin CIRCAL reguires the corresponding Mealy or Moore machinesto be
defined manually, and then translated into the CIRCAL notations. This makes CIRCAL amost impossible
to specify relatively complicated behaviour.



3.6 Conclusion

This chapter provides the LoTos models of synchronous and asynchronous circuits. The models are the
basis of further analysis of digital circuits.

Specification of basic logic gates represents the basic modelling technique for DiLL. In this chapter
there were four different models developed for basic logic gates. Initially a unified model was preferred
becauseit can be used in both synchronous and asynchronouscircuits. Thisidearesulted in the specification
in section 3.2. However, |ater investigation revealed that the same components may need different models
in different environments. One of the such examples are the modelsin 3.2 and 3.4.3, with the latter being
specialy developed for validating semi-modularity of asynchronous circuits. Aswill be seen in chapter 6,
a timed model of basic logic gates will aso be provided for analysing behaviour related to quantitative
timing.

Process algebra, such as CCS, CSP, Circal, and LoTos have been used in specifying and analysing
digital circuitsfor many years. However, the thesisis thefirst one which clearly points out the gap between
the behaviour modelled by process algebras and the behaviour of real circuits. Moreover, it reveals that
when an event models a signal transition, the behaviour of a LoTOS specification is just a subset of the
behaviour of areal circuit, resulting the analysis based on L oTOSs models being inaccurate . The author of
[Gop92], who used CCS to model asynchronous circuits, also realised the gap, but the solution proposed
is not complete: to get a specification which is similar to the input quasi-receptive style employed here, all
components are still specified in normal style but their inputs are preceded with an artificial wire which is
input quasi-receptive. Thissolution cannot deal with al the unexpected input situations and thus haslimited
usage. In[CT97], CCS aso used to specify and analyse asynchronous circuits. The authors suggested to
use the 'quenching' specifications to bridge the gap. This solution is actualy identical to the first model
of basic logic gates discussed in section 3.2, where the pending outputs can be pre-empted by new inputs.
Their solution is therefore covered by thisthesis.

In this thesis, in order to discover violations of speed-independence (or really semi-modularity), com-
ponents are specified in input quasi-receptive style or if possible, input receptive style. Except for explicitly
using stop, there is an aternative solution which is similar to the one used in chapter 6, that is using an
extragate Err to indicate violation. This unfortunately would result in much bigger state space comparing
with the solution adopted here, simply because every component should have an extra Err gate and these
gates interleave with each other. In chapter 6, analysisis mainly achieved by simulation and testing, state
space is not a severe problem in these two validation methods.
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4 Verification of Digital Logic Circuits

This chapter applies formal verification techniques to verifying DiLL specifications of digital circuits. In
section 4.1, background knowledge about formal verification of L 0T0s specificatinoswasintroduced, with
the focus onthetemporal logic ACTL (Action based CTL [DV90]) and relations between LTSs. ACTL will
be used to express properties of circuits, and relations will be used to compare specifications at different
abstraction levels. The following sections, section 4.2 and section 4.3, present how the DiLL specifica
tions of synchronous and asynchronous circuits are verified respectively. Verifying synchronouscircuitsis
straightforward, thanks to the DiLL model developed in section 3.3. Conventional verification techniques,
such as model checking and equival ence checking, can be conducted using general L oTos tools. Verifying
asynchronous circuits needs more consideration, such as the input receptiveness of components and the
importance of the environment of asynchronous circuits. These extra considerations are necessary mainly
because input and output signals are different in real circuits but are treated equally in the LoTos model.
In section 4.3.3, new relations between LTSs are defined by taking the difference between inputs and out-
puts into account. Throughout the presentation of the chapter, examples and case studies are provided to
illustrate the approaches.

4.1 Background
This section gives the preliminary knowledge required to verify DiLL specifications.

4.1.1 Whatistobeverified

Formal verification comprises techniques used to prove the correctness of the models of a rea-world sys-
tem. According to [Sta93] there are mainly three different verification tasks when talking about verification
of circuits:

1. Verifying that a circuit specificationis what it should be, termed requirements capture

2. Verifying that a given implementation behavesidentically to a given specification, termed implemen-
tation verification

3. Verifying important properties of a given implementation, termed design verification

In the phase of requirements capture, higher level specifications of circuits are analysed to see if they
satisfy some reguirements. Requirements capture can be performed either formally or informally, depend-
ing on how the requirements are expressed. In figure 1, it is also termed specification validation. Imple-
mentation verification involves comparing two specifications of the same circuit. By convention, the higher
level specification is termed the specification of a circuit, while the lower level one is the implementation
of the circuit. A relation has to be defined in order to compare the implementation with the specification.
Although task 2 emphasises the identity, weaker relations are also used in practice. Like implementation
verification, design verification also aims to verify the correctness of lower level implementations of cir-
cuits, but it focuses on the properties of implementations rather than their relationships with higher level
specifications.

The properties that different circuits possess may vary. For convenience these properties are divided
into different categories, such as freedom from deadlock, freedom from livelock, safety and liveness. In-
formally:

o deadlock meansthat a system can evolve into a state from which no further action is possible.

o livelock means that a system may get into an internal loop and make no further progressin terms of
visible inputs and outputs.

o asafety property means that nothing bad will happen during the progress of a system.

e aliveness property means that something good will eventually happen.
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To formally express these properties, formal specifications are required. Many hardware verification
systems formulate properties in a temporal logic or modal logic such as CTL (Computational Tree Logic
[CES86]), ACTL, HML (Hennessy-Milner Logic [HM80]) or u-calculus [Lar90]. Other formalisms are
also available. For example, to verify L OTOS specifications, LT Ss are sometimes used to express properties.

Themethod of formally verifying whether afinite-state model sati sfies some propertiesistermed model
checking. Efficient algorithms[BCM +92] have been devel oped for model checking temporal logic formu-
lae.

For implementation verification, arelation should be formally defined to indicate that in what sense an
implementation is correct with respect to a specification. LoT0s inherits abundant relations from process
algebra. Most of them belong to three categories. preorder, equivalence and congruence. An equivalence
holds when two specifications have exactly the same behaviour. A congruence relation requires that not
only are two specifications equivalent, but also one can substitute for the other in all circumstances. Based
on the way behaviour is observed, each category contains a spectrum of relations. Choosing a suitable
relation for verification is sometimes not easy. It needs reasonable knowledge of both specification and
implementation, and also depends on the intention of verification. As arule of thumb, if a specification is
non-deterministic, then a preorder relation should be used when verifying one of its deterministic imple-
mentations. If an implementation is a refinement of a specification, e.g. by giving more detail about how
to build the system, an equivalence relation might be preferred. If the implementation is to be used within
alarger system, then a congruence relation has to be considered.

Properties and relations are also related. Some relations respect certain properties while the others do
not. For example, trace eguivalence does not preserve deadlock freedom, while observationa equivalence
does. Observational equivalence, on the other hand, does not preserve livelock freedom. Thisfactor should
also be taken into account when conducting verification.

The existing L oTOs verification techniques and tools support all the three verification tasks mentioned
at the beginning of this section. For example, temporal logic model checking can be employed to fulfil
task 1 and task 3. Verification of equivalence or preorder relations, which has been intensively studied for
Labelled Transition Systems, can be used to solve task 2. When a property is expressed in the form of an
LTS, relation checking can also be used for task 1 and task 3. The following two sections introduce the
temporal logic ACTL and several relations used for verifying DiLL specifications.

4.1.2 Temporal Logicand ACTL

In the preceding section, it was mentioned that modal and temporal logics are used to specify properties
of circuits. Modal logic is an extension of propositional calculus. In addition to the usual propositional
operators A, V, -, etc. there are also modalities which express the “modes’ of truth, such as necessarily
true or possibly true. Temporal logics extend modal logics with timing operators, which indicates when a
statement is true. Four temporal operators are commonly used in various temporal logics: X (istrue at the
next time instant), F (is eventually true), G (is dways true from now on) and U (istrue until - - ).

Traditionally the properties of systems modelled in process algebra are expressed in the modal logic
HML and u-calculus. Both logics are interpreted over labelled transition systems (LTS), which is aso the
semantic model of process algebra.

However, because the expressive power of HML is limited, and p-calculus requires exponential time
for model checking, this thesis employs the temporal logic ACTL to specify properties. It is shown in
[DVO(Q] that ACTL is more expressive than HML, and the time complexity of ACTL model checking is
linear in both the length of formulae and the size of the models to be analysed.

Most temporal logics developed so far are state-based. These logics are interpreted over a Kripke
Structure. The structure is essentially afinite state-transition system of which each state is labelled with
a set of atomic propositions. All formulae refer to the states in Kripke Structure. Among such logics,
the most popular one is perhaps CTL, which has linear time for model checking and is adopted in many
well-known hardware verification tools such as SMV [McM93], VIS [BH T96], etc. But these state-based
temporal logics cannot be used to express the properties of LTSs, because in LTSs only transitions are
labelled and there is no proposition associated with states. ACTL was developed in [DV90] to overcome
the problem. Therest of this section describesit.
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Definition 4.1 (Path)
LetL e LTS <S A T, 0 >, asequence (0, a0, s1), (s1, al, 2), ... is called a path from S0 if there is
DU s1B 2., ofwhicha;(i =0,1,...) € AUT.

ACTL isanalogousto CTL but interpreted over actions. In order to expressthe predicates over actions,
asmall auxiliary logic of actionsis needed. If Aisthe set of actions, then the action formulaea € AU {7}
3 are defined by:

az=truelal a|laNa

The usual derived boolean operators are also allowed: there are true for —(a A —a), false for —true,
aV a for —(-a A —a) and so on.

Action formulae « are interpreted over the actionsa (e € AU {r}) of an LTS model M = <S A, T,
s0>. The satisfaction of an action formulaa by an actiona (e € AU {r}), denotedby a =3 a (0ra = «
when model M is understood), is defined inductively by:

a [ true aways;

alEb iff a=1b;
a =« iff a o
alEana iff alEaanda o

The syntax of an ACTL formula o is defined by the following grammar:

e u= true| - |eAp| EXap | AXap
| ElpaUe] | ElpaUat] | AlpaUe] | AlpaUat]

The satisfaction of an ACTL formulay by astates € S of anLTSM = <S A, T, SO>, written s =7 ¢
(or s = ¢ when M is understood), can be defined inductively:

s = true aways;
s =y iff s [~ 5
sEeAY iff sEeands = ¢';
skE EXap iff 3s > s’ € Tsuchthata = aands’ = o
sE AXqap iff Vs 55 €T,al=aands | y;
s = ElpaUy']  iff Js(=s0) B 514 ... € path(s)
3k > 0suchthat s, = ' andVi € [0;k — 1], 5, | panda; E o
s ElpaUd ] iff 3s(=50) LB 515 ... € path(s)
3k > Osuchthat s, = ' andVi € [0; &k — 1], s; = pand
Vi€ [0;k —2],a; Eaandar_ Eo;
s | AlpaUg'] iff Vs(= s0) P = = path(s)
3k > 0suchthat sy, = ' andVi € [0;k — 1], 5, | panda; E o
s = AlpalUng'] iff Vs(=s0) 22 s1 %3 ... € path(s)

3k > Osuchthat sy, = ' andVi € [0;k — 1], s; = pand
Vi€ [0;k —2],a; Eaandar_ Eo;

Besides the usual derived boolean operators, the following are some useful modalities:

(a)p = EXap
[l = ()
EFae = E[trueaUgo]
AF,p = Altrue,Uy]
EGa(p = ﬁAFa_‘Qp
AGop = —EF,—p

Likein CTL, al thelegal ACTL formulae are state formulae, which are true if the current state satisfies
theformulaor falseif otherwise. Inthe ACTL formulae, A and E are path quantifiers which define whether
aproperty of current state should be true for al its possible paths (A) or only for some path (E). The basic
temporal operators of ACTL are X and U; F and G are derived operators. The following givesthe intuitive
meaning of several common ACTL formulae:

3The original ACTL does not include 7 in the action set.
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e EX,p (i.e. (a)yp) istrue of astate if it has an action satisfying « and the action leads to a state
satisfying ¢. Thisis also the diamond operator in HML.

e AX,pistrue of a state if the state can only do actions satisfying « and the actions lead to states
satisfying ¢.

e [a]pistrueof astateif all its actions which satisfy « lead to states satisfying . Thisis also the Box
operator in HML.

e EF,pistrueof astate if some of its paths can begin with a series of actions satisfying a then reach
astate satisfying . If the state itself satisfies ¢, then the formulais also true.

o AF,pistrueof astateif al its paths can begin with a series of actions satisfying « then reach a state
satisfying ¢. If the state itself satisfies ¢, then the formulais also true.

e EGy istrueof astateif there exists one or more paths on which all states satisfy .
e AGyp istrue of a state if all the states on al its paths satisfy ¢. It is also said that ¢ is satisfied
globaly.
4.1.3 Relationsbetween LTSs

The operational semantics of LoTos is defined based on labelled transition systems. In this section, severa
common relations between LT Ss are presented. Morerelations can be foundin [Gla90, Gla93] and [Nic87],
where a spectrum of equivalent and congruent relations are compared in terms of distinguishing power.

Definition 4.2 (Strong Equivalence)
Arelation, R C LTS(L) x LTS(L) isastrong bismulationif (P, Q) € Rimplies, Va € L U T, that:

e if3P': P 5 P'then3Q’ : Q 5 Q'with(P',Q’) € R, and
e if3Q": Q 5 Q'then3aP’ : P 5 Q' with(P',Q') € R.
Two processes P, Q are strongly equivalent, written P ~ Q if there exists a strong bisimulation R such

that (P, Q) € R. Therelation ~ is defined to be the largest strong bisimulation, i.e. the union of all strong
bisimulations.

Strong bisimulation equivalence can distinguish more processes than any other equivalent relations.
However it is usually too strong to be used in practice since it requires two processes to match each other
even on internal behaviour. For example process g; i; i; b; stop is not strongly equivalent to process a; i;
b; stop. Internal events are unseen to external observers, and thus are meaningless in most circumstances.

Definition 4.3 (Observational Equivalence)
Arelation, R C LTS(L) x LTS(L) isaweak bisimulationif (P, Q) € R implies, Va € L U 7, that:

e ifIP : P % P'thendQ’: Q = Q'with(P', Q') € R, and
¢ if3Q': Q 5 Q'thendP’ : P £ Q' with(P',Q') € R.

Two processes P, Q are observationally equivalent, written P =~ Q if there exists an weak bisimulation R
such that (P, Q) € R. Therelation ~ is defined to be the largest weak bisimulation, i.e. the union of all
weak bisimulations.

In the above definition, P = Q has the same meaning with P = Q when a is not an internal event.
Otherwise it meansthe same as P = Q. Recall that P = Q isdefinedas P = Q or P %" Q, and for
a€L,P= Qisdefinedas3sy,ss : P = s; — so = Q. From the definition, the internal events 7 may
be ignored when determining if two processes are observational equivalent or not. As an observer interacts
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with a system through its external interface, observational equivalence is often used for characterizing
systems.

Observational equivalenceis not a congruence. Precisely it is not preserved by the choice operator of
LoTtos. For example, although i; b; stop ~ b; stop, it is not true that a; stop [] i; b; stop ~ a; stop [] b;
stop. The consequenceisthat if i; bisreplaced by b; stop, the new system is not observationally equival ent
to the original one.

It is known that observational equivalenceis a congruence with respect to other L 0oTOS operators such
as prefix (;), paralle (|||, | [ -] |) and hide [ISO89, Mou94]. In the DiLL approach, composing compo-
nentsis done by putting the processesin paralel, then hiding the internal connecting ports. Observational
equivalence can be used as a congruence in this circumstance. In other words, if two components A and B
are proved be observationally equivaent, then a circuit which contains the A component can be changed
to anew one by substituting A for B. The resultant circuit is still observationally equivalent to the original
one.

Observational equivalence can preserve deadlock freedom. If two processes are observationally equiv-
aent, they are both free from deadlocks or both possessing deadlocks. However, this equivalence cannot
preserve livelock freedom, or liveness properties.

Definition 4.4 (Branching Bisimulation Equivalence)
Ardation R C LTS(L) x LTS(L) isabranching bisimulationif (P, Q) € R implies, Va € L U 7, that

e if3P': P % P'theneithera = rand(P’,Q) € R, or
HapathQ = Ql i> Q2 = Q,With(P7Q1> € Rv (PlaQZ) € Rv (Pva,) € Rv and

e if3Q": Q 5 Q'theneéithera = rand(P,Q') € R, or
JapathP = P, % P, = P'with(P1,Q) € R, (P,,Q') € R,(P',Q") € R

Two processes P, Q are branching bisimulation equivalent, written P ~;, Q if there exists a branching
bismulation R such that (P, Q) € R. Therelation =, is defined to be the largest branching bisimulation,
i.e. theunion of all branching bisimulations.

Branching bisimulation equivalence [Gla90] is stronger then observational equival ence but weaker than
strong equivalence. Essentially the definition is the same as observational equivalence. The differenceis
that it compares the states not only at the start and finish of a = sequence, but also the states along the
sequences. Branching bisimulation equivalence is a congruence and preserves liveness properties when
both processes are livelock free [DV9Q]. In other words, if two LTSs are free from livelock and are rel ated
by branching bisimulation equivalence, they satisfy exactly the same set of liveness properties.

Definition 4.5 (Simulation Preorder and Simulation Equivalence)
Ardation R C LTS(L) x LTS(L) isasmulationif (P, Q) € Rimplies, Va € L U 7, that:

e if3P": P 5 P'then3Q’ : Q = Q'with(P',Q’) € R.

The simulation preorder < isdefined as the largest simulation.
The simulation equivalence ~ ; is defined by ~ =<, N(>¢) L.

Definition 4.6 (Safety Preorder and Safety Equivalence)

Arelation R C LTS(L) x LTS(L) isasafety simulationif (P, Q) € RimpliesforVa € LU T
e if AP : P % P'then3Q’ : Q = Q' with(P',Q’) € R.
The safety preorder < is defined asthe largest safety simulation.
The safety equivalence ~, is defined by ~ =<, N(>,)~!.

Safety equivalenceis named after its important feature: it preservesall safety property, i.e. if two LTSs
are related by safety equivalence, they satisfy the exactly same set of safety properties[BFG T91].

To verify hardware, testing equival ence/preorder and trace equival ence/preorder are al so used. Because
they arenot used inthe DiLL approach, theformal deldfinitionsare not given here. Intuitively, two LTSsare
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Figure 16: Different equivalence relations with different strengths

testing equivalent if any possible observer, whichis also modelled asan LTS, cannot distinguish them after
interacting with the two LTSs. This relation is weaker than observational equivalence. Trace equivalence
is the weakest equivalent relation between LTSs; it only requires that two LTSs have the same trace set.

Figure 16 givesthe relative strength of these relations. In the figure R1 — R2 means that R1 is a finer
relation than R2, i.e. Rl is able to differentiate at least as many specifications as R2 is. Thus according to
thisfigure, if two relations are strong bisimulation equivalent, they must also be observational equivalent,
but not vice visa

Note that when LTSs are deterministic, all the equivalence relations in the above figure coincide.

414 CADP

CADP (Cassar Aldébaran Devel opment Package [FGK *96]) is an automated toolset for analysing concur-
rent systems expressed in LoT0s or other formalisms whose semantics are based on LTSs. It is perhaps
the most comprehensive tool available to support LoTos currently. CADP includes several tools each of
which fulfil a specific functionality. Caesar. ADT and Caesar compile the data part and the behaviour part
of a LoTos specification respectively. The result is afinite state graph (i.e. an LTS) which describes the
exhaustive behaviour of the corresponding specification. Aldébaran performs verification using the LTS
or a network of LTSs (i.e. afinite state machine connecting several LTSs by LoTos parallel and hiding
operators). It is able to either compare or minimize LT Ss with respect to bisimulation or simulation rela
tions. XTL (Executable Temporal Language) is a functional-like programming language that allows the
implementation of temporal logic operators. Several temporal logics such as ACTL have been embedded
in XTL. The tool with the same name can be used to perform model checking XTL formulae against LTS
models. To partialy resolve the problem of state space explosion, CADP incorporates advanced verifi-
cation techniques such as compositional generation, on-the-fly comparison, and BDD (Binary Decision
Diagram) symbolic representation of LTSs. These techniques make it possible to verify relatively large
specifications.

CADP also supports customized verification tools. It provides a programming interface through which
the LTSs of LoT0OS specifications can be manipulated. This interface is used to implement a verifier for
asynchronous circuitsin chapter 4 and atest generation tool in chapter 5.
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4.2 Verification of Synchronous Circuits

In this section, the benchmark circuit single pulser will be investigated to demonstrate how synchronous
circuits are verified. The behavioural and structural specifications of this circuit have been given in sec-
tion 3.3.5.

As mentioned in section 3.3.5, the behavioural specification is non-deterministic since it allows two
different implementations: one asserts an output pulse when the button is pressed, the other asserts the
output when the button is released. The structural implementation given in the benchmark is deterministic;
in particular it produces the output pulse when the button is pressed. In the sequel, propertiesas well asthe
relations between the two levels of specification will be verified by CADP.

421 Verifying Properties

First of all the basic properties, i.e. freedom from deadlock and livelock, are checked after the LT Ss of both
specification and implementation are generated. It is found that they both satisfy the properties.

The implementation is also required to fulfil other properties. Two of them and their corresponding
ACTL formulae are listed below. In these formulae, an event with ellipsis means the corresponding signal
can either be 1 or 0. For example, Op. .. representsbothOp ! O and Op ! 1. To make the formulae more
readable, [7* ]y is used as a shorthand notation for the weak form of the Box (O0) operator, meaning that
after the path of [7*«], formula should hold. Its equivalent ACTL formulais —Etrue, U, (—¢)].

Property 1. If thereisarising edge oninput P 1n, eventually the output P Out becomes true.

AG[P-InIQ|[7*P-Out. . .][7*P.In' 1] A[truet,ve Up_outn true]

A rising edge on P_In refers to two clock cycles. Inthefirst cycleit is O, then it changesto 1 in the
second cycle. The aboveformulacan beread as. for every state in the state space, after arising edge
onP_In, P_Out! 1 will be eventually reached.

Property 2. Whenever P_Out is 1 it becomes 0 in the next cycle; and it remains O at least until the next
rising edgeon P_In.

Although there is the explicit expression of until in the above property, it cannot be written in one
until formula because ACTL is unfair. The p1U 2 operator in ACTL is known as strong until,
meaning that the formulaistrue only if ©2 realy takes placein apath. Since P Inisan input signal,
itispossiblethat it remainsat O forever. Such behaviour resultsin unfair pathsinamodel. Unfairness
of ACTL meansthat it cannot express assertions only on fair paths. In other words, a formulahas to
be analysed on both fair and unfair paths, although the behaviour on unfair pathsis not of interest.

Two formulae are used to capture this property. Thefirst saysthat if P_Outis1inaclock cycle, then
it must be 0 in the next cycle at least until the third clock cycle. The second formula says that if the
P_Out is 0, it cannot changeto 1 unless P_In changesto 1.

AG[P_OUU 1] [T* Plin.. .]A[tl’ue-rup_ouﬂo Up_[n___trUE]

The aboveformulacan beread: for every statein the state space, after thepathP Out! 1, 7 *P_In. . .,
thereisP_Out ! O or 7 until the next P.in....

AG[P_Out!0]—Eftrue-p_in1 Up_ounitrue

The above formula can be read: for every the state in the state space, after P Out ! 0, there does not
exist a path such that after actionswhicharenot PIn! 1, P Out! 1 can be reached.

These two properties are verified to be true by CADP, taking just seconds for each of the formula.
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Figure 17: The LTSs of single pulser specifications

4.2.2 Verifying Relations between Two Levels

Most hardware verification tools provide the feature of model checking temporal logics. But circuits spec-
ified in DiLL can aso be analysed by checking the relations between specifications at different abstract
levels. This provides an alternative or complement to the temporal logic model checking approach.

Figure 17 shows the LTSs which are observationally equivalent to the DiLL specifications. The LTS
which is strongly equivalent to the lower level specification has 97 states o it is not feasible to draw it
here. Since the higher level specification is more non-deterministic than the lower one, a preorder relation
instead of equivalence is considered. CADP can check only two preorder relations: simulation preorder
and safety preorder. It is reveaed that the lower level specification satisfies the safety preorder but not
the simulation preorder when compared with the higher level specifications. Intuitively fulfilling safety
preorder can guaranteethat all the external behaviour of an implementation is allowed by the specification.
Although safety preorder does not in general preserve deadlock and livelock, the implementation has been
verified free from them.

To gain more confidence in the circuit, consider the following verification approach. Because it has
already been known that the design of the circuit intends to implement a positive edge triggered single
pulser, a behavioural specification which deals with the negative edge triggered situation can be extracted
from the non-deterministic specification. The state graph of this specification, not surprisingly, is the
S_P, which is part of the left branch of the Sp Beha (figure 17). It is evident that the implementation is
observationally equivalent to this deterministic specification. Therefore it is ensured that the circuit is a
correct implementation of the deterministic specification.

4.2.3 Case Study

In this section, the DiLL approach is evaluated using another benchmark circuit in [SK96], a bus arbiter.
The purpose of the Bus Arbiter is to grant access on each clock cycle to a single client among a number
of clients requesting the use of a bus. The inputs to the arbiter are a set of request signals, each from a
client. The outputs are a set of acknowledge signals, indicating which client is granted access during a
clock cycle. The documentation also defines some properties that the Bus Arbiter must respect. They are
giveninformally and also in CTL (Computational Tree Logic). Besideslisting the propertiesto befulfilled,
the benchmark documentation also gives an arbitration algorithm in plain English. Finally the gate level
implementation of the Bus Arbiter is provided as a circuit diagram.

Higher-Level Specification in LOTOS

L oTos supports specification at various levels of abstraction. Although the benchmark circuit has
been studied by many researchers, apparently there has not been a formal specification of the arbitration
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Figure 18: A bus arbiter with three cells

algorithm used in the design. With LoTOs, it is possible to provide such ahigher-level specification. There
are two clear benefits of this formalization. Firstly, better understanding of the algorithm can be gained
from rigorous specification. Secondly, correctness of the algorithm itself can be ensured before the circuit
is built and verified. Flaws in the algorithm will be more time-consuming to correct if they are discovered
only after the implementation.

The arbitration algorithm embodied in the design is a round-robin token scheme with priority override.
Normally the arbiter grants access to the highest priority client: the one with the lowest index humber
among al the requesting clients. However as requests become more frequent, the arbiter is designed to
fall back on a round-robin scheme, so that every requester is eventually acknowledged. This is done by
circulating atoken in aring of arbiter cells, with one cell per client. The token moves once every clock
cycle. If aclient's request persists for the time it takes for the token to make a complete circuit, that client
is granted immediate access to the bus.

Trandating the algorithm to LOTOS is quite straightforward. It is realized mainly by LoTos value
expressions. For example each cell has two variables associated with it: token that indicatesif the tokenis
inthe cell, and waiting that indicatesif the request of the corresponding client has persisted for a compl eted
token cycle. Circulating the token, (re)setting the waiting variable and so on correspond to LOTOS value
expressions. For an arbiter with three cells, the L oT0s specification has 79 lines (including comments) for
the behavioural specification.

L ower-L evel Specification in DiLL

The design of the arbiter consists of repeated cells. Each cell is in charge of accepting request signals
from aclient, and sending back acknowledgmentsto the same client. Figure 18 shows an arbiter with three
cells. Figure 19 shows the design of each cell. Thefirst cell is dightly different because it is assumed that
thetokenisinitially in thefirst cell.

The principle of the circuit will not be explained in detail here. Briefly, the ti (token in) and to (token
out) signals are for circulation of the token. The to output of the last cell is connected to the ti input of
the first cell to form atoken ring. The gi (grant in) and go (grant out) signals are related to priority. The
grant of cell i ispassed to cell i+ 1, and indicates that no client of index less than or equal toi is requesting.
Hence a cell may assert its acknowledge output if its grant input is asserted. The oi (override in) and oo
(override out) signals are used to override the priority.

Because the components of each cell are in the DiLL library, it is very easy to specify the process
describing a cell. The specification of an arbiter with three cells is obtained by connecting three such
processes. Asfor the Single Pulser, thereis also an environment constraint in the structural specification to
meet the conditions of the synchronous circuit model discussed in section 3.3.

After both levels have been specified, it is time to verify the circuit. In the following section, all the
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Figure 19: Design of an arbiter cell

three verification tasks mentioned in section 4.1.1 will be carried out. That is to say, the specification and
implementation are checked against several properties, and the equivalence between the two levelsis also
examined.

Verification

The benchmark documentation provides three properties the bus arbiter should fulfil. The following
three formulae refer to client 0; the formulae for other clients have asimilar form. Similar to the weak box
formulain the example of the single pulser, < 7*a > ¢ is the weak diamond operator, the shorthand of
Eftrue, U, ).

Property 1. No two acknowledge outputs are asserted in the same clock cycle (safety).

AG—(EX ger1n (< 7°AckOl1 > trueU < 7*Ack2! 1 > true))

Thisformulais read: for every state in the state spaces, it is not the case that there exists an action
A0 !'1 which can be followed by Ackl !1 or Ack2 !1.

Property 2. Every persistent request is eventually acknowledged (liveness).

AG([RGQO ! 1]A[truetrue URer!OUAckO!ltrue])

Thisformulacan be read: for every state in the state space, after the action Reg0 !'1, eventually AckO
11 will be reached, unlessthereis Reg0 !0.

Property 3: Acknowledgeis not asserted without request (safety).

AG([Req0! O]-E|[true- geqo11 Uackori true])

This formula can be read: for every state in the state space, after the action Req0 ! 0, it is not the
case that there exists a path such that after an action whichisnot Req! 1, AckO ! 1 can be reached.

To verify the higher-level specification against thetemporal logic formulag, the LTS of the specification
was produced first. Caesar generates an LTS with 3649 states and 7918 transitions. Aldébaran reduces this
to 379 states and 828 transitions with respect to strong bisimulation. Both generation and reduction take
seconds. The temporal logic formulae are then checked against the minimised LTS. Each is verified to be
true within 1 minute.

The real challenge comes when the lower-level DiLL specification is verified. The state space is so
large that direct generation of the LTS from the LOTOS specification is impractical. As mentioned before,
there are several advanced techniquesimplemented in CADP to tackle the problem of state space explosion.
Nevertheless, using on-the-fly verification of the arbiter also fails after considerable run-time. CADP does

45



Signal | Cyclel | Cycle2 | Cycle3 | Cycle4 |

Req0 | 1 1 1 0
Regl | O 0 0 1
Reg2 | O 0 0 0
AckO |1 1 1

Ackl | O 0 0 Oorl
Ack2 |0 0 0

Table 1: A counter-example generated by Aldébaran

not currently support the direct generation of BDDs from LoT0s specifications, instead BDDs are only
used in several agorithms after the LTSs of L OTOS specifications are obtained.

Compositional generation was tried out to verify the arbiter. Basically the ideais that of “divide and
conquer'. A LoTos specification is divided into several smaller specifications to make sure that it is
possible for Cassar to generate an LTS for each of them. Then Aldébaran is used to reduce these LTSs
with respect to a suitable equivalence relation. The minimised LTSs are then combined using the LOTOS
parallel operator (and also the hide operator if necessary) to form a network of communicating LTSs (the
CADPterm). At thisstage, an LTS might be produced from the network, or on-the-fly verification might be
performed against the network. In order to get valid verification results, special attention must be given to
the equivalencerelation that is used. The relation must be a congruence with respect to the compositional
operators, here the LoTos parallel and hide operators. The relation must also preserve the propertiesto be
verified. This ensures that the resulting network of communicating LTSs will respect the same properties
asthe original LoTOS specification.

Among the three properties proposed for the benchmark, the first and the third are safety properties
while the second is a liveness property. Safety equivalence [BFG191] preserves all safety properties,
while branching bisimulation equivalence [VW89] preserves liveness properties when there is no livelock
in specifications. Both of these equival encesare congruenceswith respect to the parallel and hide operators.
These two equival ences are thus appropriate to compositional generation.

The design of the arbiter was divided into three pieces, one per cell of the arbiter. After about seven
minutesin total, an LTS which is safety equivalent to the L oT0s specification of the design was generated.
The two safety properties were verified to be true against this LTS, implying that the design also satisfies
these safety properties. Verification of the formulae takes just seconds. However generating the LTS which
is branching equivalent to the design takes a much longer time. To tackle the problem, an environment pro-
cess which restricts the order of input signals Regl, Reg2, Reqg3 is applied to both levels of specifications.
This helps to reduce the state spaces dramatically. It makesit possible to verify that the implementation is
free from livelock and al so satisfies the liveness property.

Observational equivalence is chosen for the implementation verification. As before, compositional
generation was exploited to generate the LTS for the design. Thistime each cell was reduced with respect
to observational equivalence since it is a congruence for the parallel and hide operators. After about eight
minutesin total, the LTS was generated. It was expected that this LTS would be observationally equivalent
to the one representing the higher-level specification. However Aldébaran discovered that they are not!
Table 1 is one of the sequences given as a counter-example. (The Aldébaran output has been rendered
more readable here.) This sequence indicates that in the first three clock cycles only client O requests the
bus; both the high-level specification and thelow-level design grant accessto thisclient. Inthefourth cycle,
client O cancelsits request but client 1 beginsto request access. At this point thetwo levels of specifications
are different: the lower-level specification offers 0 for Ackl, whereas the higher-level specification offers 1
for Ackl.

After step-by-step simulation of the counter-example, it was soon discovered that the circuit does not
properly reset the oo (override out) signal to 0 inthefollowing situation. Supposeacell has been requesting
access, so its Wregister is set to 1. However the cell cancels the request in the very clock cycle that the
token happensto arrive. In this situation, because the client has already cancelled its request it should be
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possible for another client to get the bus. However, the design sets the oo signal to override the priority as
if this client were still requesting. This prevents any other client from accessing the busin this clock cycle.

Fixing the problem was much easier than finding it. The correction was to connect the Req signal to
the And gate that follows the W register. The output of the And gate guarantees that the oo signal is always
correctly set or reset according to the request signal in the current clock cycle. This modified design was
verified to be observationally equivalent to the higher-level algorithmic specification.

Asmentioned in section 3.3, in DILL the inputs are assumed to be synchronized with the clock signal .
If the Req signal in figure 19 is not synchronized with the clock. In this case the problem discussed above
might not happen. As the benchmark documentation does not state if inputs are synchronized with the
clock or not, it is believed that the modified design is more robust.

4.3 Verification of Asynchronous Circuits

Although the method of verifying asynchronous circuits bears many similarities to that of synchronous
circuits, there are some differences due to the nature of asynchronous circuits and the modelling techniques
adopted by DiLL. This section focuses on the differences rather than the similarities

4.3.1 ExtraConsiderationsfor Verifying Asynchronous Circuits

The main difference in modelling synchronous and asynchronous circuits is how to represent digital sig-
nals. In asynchronous circuits, LoTOs events model physical signal transitions. As has been discussed in
chapter 3, the consequence of modelling signal transitionsis that the behaviour of structural specifications
may not model asynchronous circuits faithfully if the componentsin the specifications are not specified in
the input receptive way. In other words, the behaviour of such specificationsis only the subset of al possi-
ble behaviour that areal circuit may exhibit. To solve the problem, input quasi-receptive specifications are
proposed in section 3.4.6.

So far, only those asynchronous circuits which assume unbounded delay models are specified in DILL.
In particular, DiLL specifications have a direct mapping to speed-independent circuits. Recall that speed-
independent circuits assume zero delay on wires and unbounded delay on components. Therefore the
correctness of thiskind of circuit isirrespective of the delay magnitudes of components. In practice, speed-
independent circuits are regarded as the same as semi-modular circuits, where no input should pre-empt
pending outputs. To pinpoint if a circuit is speed independent or not, each of its components should be
specified according to the requirement of semi-modularity, i.e. when an input can potentially pre-empt one
of its pending outputs, the input leads to the deadlock stop, indicating that erroneous behaviour occurs.

The correctness of asynchronous circuits is very sensitive to their environment. Suppose one wants to
know if a Repeater can beimplemented by two Inverter gatesin series. A straightforward way of verifying
the idea is to write both the specification and the implementation of the repeater, and then compare their
state graphs. There have been several models of logic gates developed in chapter 3, and many equivalence
relations have been discussed in section 4.1.3. But whichever gate model is used, it is discovered that the
implementation has more behaviour than the specification; in particular it can receive more inputs than its
specification does. As shown in figure 20. The Inverter in the figure is modelled according to the gate
model in section 3.2, which assumes that pending outputs can be pre-empted. The two level specifications
are not equivalent evenin terms of traces. Infact, trace(S) C trace(l), i.e. they arerelated by trace preorder.
Intuitively this relation means that the implementation can do what the specification dictates, but it can also
do what is not given in the specification. In general thisrelation istoo weak to be agood criterion.

It is a very common phenomenon that a structural implementation has much more behaviour than
the corresponding behaviour of its specification. This does not just happen in the DiLL approach, but
also happens in many other methodologies such as those based on process algebra and trace theory. The
phenomenon makes it unrealistic to set the equivalence between specifications and implementations as the
correctness criterion. In fact an equivalence relation between two LTSs requires that they have the same
behaviour under al possible environments. This requirement is usually too strong since practical circuits
only operatein some expected environments. In most cases an implementationisonly required to be correct
in these assumed environments.
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Figure 20: LTSs of the Specification and implementation of Repeater

The DiLL modelling technique for synchronous circuits assumes a natural environment for al syn-
chronous circuits. The environment provides all inputs once during each clock cycle and it provides clock
cycle slowly enough to let al outputs settle down. Asynchronous circuits, on the other hand, can accept
any inputs at any time, so it isimpossible to provide a unified environment for al circuits.

The features of asynchronous circuits have some implications for verification. Asit is more difficult
to specify componentsin an input receptive or input quasi-receptive manner, verification of asynchronous
circuits may still be based on using components which are not input-receptive. But one should aware that
the result of the verification may not exact; in particular the result could be over optimistic in the sense that
some bugs cannot be discovered. Using components which are input quasi-receptive, on the other hand,
will result in alarger state space and thus make verification more difficult. Since for most asynchronous
circuits no explicit environment is given, assumptions about environments have to be made. The next
section elaborates this point.

4.3.2 Environment of Asynchronous Circuits

When an environment is not explicitly given, following the approach adopted by David Dill [Dil89] many
methodol ogies simply assume that the mirror of a specificationsis the environment of itsimplementations.
The mirror of a specification S has the same behaviour as S but its inputs are the outputs of S and its
outputs are the inputs of S. Moreover, it tends to be the most liberal environment an implementation can
expect. The reason behind thisis that a behavioural specification actually indicates the environment of the
circuits. For instance, the specification of the Repeater expects its environment first to provide Ip, then
waits until Op has been produced by the circuit. David Dill's idea has been applied in approaches based
on trace theory and process algebra, such asin [ESB95, Gop92]. If theideaisto be adopted inthe DiLL
approach, since thereis no difference between inputs and outputsin L oTos, the mirror of the specification
is the specification itself. Suppose S stands for the specification and | represents the implementation, the
verification task then becomes comparing S|| | with S (because S|| Sis still S), or checking if alogic
formulaholdson S|| I.

But verifying S|| | is not aways satisfactory. S|| | represents the joint behaviour of Sand I. When
an implementation can accept more inputs than its specification does, S|| | restricts the considered inputs
only to those specified in the specification. This actually assumes that the environment does not provide
extrainputs, so the inputs which are only accepted by the implementation are ignored when verifying the
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Figure 22: Input quasi-receptive environment

joint behaviour. Thisis reasonable. But it also permits an implementation to produce more outputs than
a specification, since the extra outputs produced by the implementation may also be filtered out. Thisis
however not reasonable since under legitimate inputs, an implementation producing an unexpected output
is normally regarded as erroneous. Moreover, when a specification is non-deterministic, this method may
exclude correct deterministic implementation. Figure 21 illustrates the intuitive effect of composing a
specification with its implementation. SL and 11 are the specification and the implementation of a circuit
respectively. If Sl is regarded as the environment of 11, then S1 || I1 is the process to be verified. It can
be seen that the Ip2 branch will be ignored during verification. So will the Op2 branch. Although S1 || 11
= S1, 11 is normally regarded as an erroneous implementation due to the extra Op2 transitions. The rest
of the LTSs in the figure illustrate the situation where a specification is non-deterministic. 12 is a correct
deterministic implementation of S2. But there is deadlock in 2 || 12. 2 and &2 || 12 are only related by
trace preorder, but in general this relation is too weak to be used in verification.

The key point here is the different roles of inputs and outputs in digital circuits. An implementation
passively accepts inputs so only those inputs available from the environment make sense. At the same
time it positively produces outputs, therefore the environment has no influence on the outputs. A LOTOS
specification however does not distinguish inputs and outputs. When it is used as the environment, it
restricts them equally.

When an implementation is specified in an input receptive or input quasi-receptive way, the difference
between inputs and outputsis actually made. If its environment is also receptive, thenit is possible to detect
the extra outputs produced by an implementation: if an unexpected output is produced, the environment
will go to deadlock after receiving it. Figure 22 appliesthisideato Sl and 11 in figure 21. E1 isthe input
guasi-receptive environment obtained from SL. 11 QR is the input quasi-receptive form of 11. As seen, the
unexpected output Op2 can be detected since E1 || 11.QR leads to deadlock after this output.

However, it isvery hard to get the input quasi-receptive environment from a behaviour specification, es-
pecially when the specification is complicated or containsinternal events. The thesis therefore provides an
aternative method for verifying asynchronous circuits. In section 4.3.3, relations which take into account
the difference between inputs and outputs will be defined. These relations do not require the receptiveness
(or quasi-receptiveness) of the environment or the implementation, and are intuitive criteria of correctness
of asynchronouscircuits.
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Figure 23: Non-deterministic specification and its implementations

4.3.3 Conformance and Strong Conformance

Although there have been many relations defined to characterise the relationship between two LTSs, they
are not very helpful for verifying asynchronous circuits, especially when the environments of a circuit is
not explicitly provided. In this section, two new relations, termed confor and strongconfor are defined to
compare an implementation with its specification. These relationstake into account the difference of inputs
and outputs of a circuit, and are in fact inspired by the ioco relation suggested by Jan Tretmans [Tre96]
(University of Twente) for testing communication protocols. In chapter 5, more details about ioco will be
given.

Suppose a circuit has input set L; and output set L;;. Spec and Impl are the specification and the
implementation of the circuit respectively. Spec may be partial in the sense that in some states it does
not accept some inputs, i.e. it is not input receptive. As discussed in chapter 3, an input is absent in a
state of a specification if the environment of the circuit does not provide this input, if the behaviour of the
circuit upon receiving theinput is not of interest, or if the behaviour is undefined. Although al circuits are
potentially ableto accept all their inputs at any time, most specifications are partial to avoid getting into too
much details. The implementation Impl may either be partial or total in the sense of input receptiveness.

Suppose sp is a state of Spec, and the corresponding state in Impl isim. To define the confor relation,
first consider the input transitions that sp and im can engage in. For convenience, it is also said that they
are the inputs which sp or im can accept. If aninput ip is acceptable in sp, it means that the environment
may providethisinput in that state. Thereforeit is reasonable to require that ip is also accepted in im, for
otherwise the behaviour of the implementation upon receiving the input will be undefined. On the other
hand, if im can accept an input which is not acceptable by sp, thisinput and al the behaviour afterwards can
be ignored. Since the environment will never provide such an input, or even if the input is provided, such
behaviour is not of interest. In short, the input set acceptable in sp should be a subset of that acceptablein
im.

As far as outputs are concerned, intuitively if sp can produce op, it is expected that a correct imple-
mentation should also be able to produce it. If sp cannot produce a certain output, neither should its
implementation. However, when a specification is allowed to be non-deterministic, requiring that im pro-
duces exactly the same outputs as sp does tends to be too strong, since any deterministic implementation
isonly ableto produce a subset of the outputs dictated by its non-deterministic specification. In this case,
a suitable relation should allow output inclusion instead of output equality. The problem is that since an
empty set isincluded in any set, acircuit which “accepts everything but does nothing' may aso be qualified
as acorrect implementation, as shown in figure 23, where both | and I' are regarded as correct implementa-
tions of S. To overcomethisweakness, aspecial action ¢, whichisneitherin L ; norin Ly, isintroduced to
indicate the absence of outputs. ¢ is seen as an output action and, like any other output action, if  belongs
to the output set of im, it must be in the output set of sp for the relation to hold. In other words, im can
produce nothing only if sp can do so. Whenthe § isconsidered, I' is no longer alegitimate implementation
of S

In the above discussion, state im is compared with sp. sp and im are not the states in the LTSs of
the specification and the implementation, but all the possible situations that the circuits may be in after
a certain input-output sequence. Because ¢ is also involved in the sequence, the state spaces of both
specification and implementation are transformed into automata which are explicitly labelled with 6. The
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input-output sequences are actually the traces of the automaton of the specification. If the automaton of the
implementation cannot follow the sequence, i.e. the sequence is not the trace of the automaton, im will be
the empty set.

After discussing theinformal meaning of therelation, therest of the section givesthe formal definitions.
Definition 4.7, definition 4.8 and definition 4.10 comes from [ Tre96].

Definition 4.7 (Quiescent Trace and Quiescent State)
Letpe LTS (LI ULU)7L] NLy=0

o Astatesof pisquiescent, denoted by 6(s), if Vu € Ly U {7} : s A

e Aquiescent traceof pisatrace o which may lead to a quiescent state:
Ip’ € (p after o) : §(p')

e 0ut(s) =45 {r €Ly |s>}Ui{d]|d(s)}

o out(S) =g4er U{out(s)|se S}

. Iﬂ(s) =def {x € Ly | S i)}

e in(S) =qer U{in(s) | s € S}

A quiescent state is onethat cannot perform any output transition or an internal transition. out(s) defines
all the output actions that a state can produce. This includes the quiescent “action’ 6 which meansthe state
cannot produce any output. in(s) defines all the input actions that a state can accept.

Definition 4.8 (Suspension Trace)
Letp € CTS(CI @] [,z,{)7[:1 NLy=10

I
. pL#p’ =ger p=pandVu € LyU{r}:p A
e The suspensiontrace of p are: Sraces(p) =45 {¢ € (LU Ly)* | p =}

To define suspension traces, the transition relation — is extended with the refusal of output actions:
self-loop transitions labelled with Ly expressing that no action in the output set can occur. The refusal of
output actions can also be expressed by ¢ transitions. A suspension trace, consequently, not only contains
ordinary actions, but also ds. If L s denotes L U ¢, then asuspensiontrace o € L.

Definition 4.9 (Conformance and Strong Confor mance)
Let: € ETS(EI,Eu), and s € ﬁTS(ﬁI U Lu),ﬁz N Ly = 0 then

i confor s =45 Vo € Straces(s): out(i after o) C out(s after o) and
if i aftero # 0 : in(saftero) C in(zafter o)

i strongconfor s =g4.y Vo € Straces(s) : out(: after o) = out(s after o) and
ifi aftero # 0 : in(saftero) C in(zafter o)

As will be seen in chapter 5, confor is quite similar to the ioco relation except that ioco assumes the
input receptiveness of implementations, so input inclusion is always satisfied.

The confor relation requires that after a suspension trace of s, the outputs that an implementationi can
produce are included in what s can produce, and if i can follow the suspension trace, the inputs that s can
accept are also accepted by i. strongconfor hasthe similar definition except that output inclusionis replaced
by output equality.

The confor and strongconfor relations are more easily observed if the LTSs of specifications are trans-
formed to suspension automata, where ¢ is explicitly labelled.

Definition 4.10 (Suspension Automaton) Let L bepartitionedinto Ly and Ly, andletp =< S, L, T, s0 >€
LTS (L) be alabelled transition system; P(S) denotes the powerset of S, i.e. the set of the subsets of
S, then the suspension automaton of p, T, is the labelled transition system (Ss, Ls, Ts, qo) € LT S(Ls),
where
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Figure 24: The suspension automata of LTSsin figure 23

Ss =aey  P(9\{0}
Ts =aef {0>¢1a€LULy,q.q €Ss,¢ ={s'€S|Is€q:s=5'}}

)
Ug=4d 1q,qd €Ss,d ={seql|dis)}}
Q@ =def {s'€S|so= 5"}

An important property of a suspension automaton is that it is deterministic and the suspension traces
of a system p coincide with the traces of its suspension automaton I, (the proof can be found in [Tre98]).
Moreover, for adl o € L*, out(T', after o) = out(p after o) and in(T',, after o) = in(p after o). Therefore
checking the confor and strongconfor relations can be easily reduced to checking thetraceinclusion relation
on the suspension automata. The key to generating a suspension automaton from an LTS is to build the
transition relation Ts. From the definition, the first term of T's determinises LTS, and the second term adds
0 transitionsto the states S5 which contains a quiescent state of S.

As an example, the suspension automata of the LTSs in figure 23 are illustrated in figure 24. Since
the LTSs are deterministic, their suspension automata are aimost identical to themselves, except for the &
transitions. As can be seen, out(S_Sp after I1p) = {Opl, Op2}, out(l Sp after Ip) = {Opl}, and out(l' S
after Ip) = {J}, therefore| confor Sbut not I' confor S. Thereisaso not | strongconfor S. Normally confor
is used when a specification and an implementation are deterministic, and strongconfor is used when an
implementation is less non-determinisitic than a specification.

A verifier VeriConf devel oped by the author which checks the confor and strongconfor has been imple-
mented in the C language. This verifier was devel oped using the programming interface of CADP. Briefly,
CADP is exploited to generate LTSs of both specification and implementation. Then the verifier is used
to produce the suspension automata from the LTSs and to compare the automata according to the rela
tions. This verifier has been successfully used in verifying several asynchronouscircuits, including the two
examples given in the next section.

4.3.4 Case Studies
435 AsynchronousFIFO

In chapter 3, an asynchronous first-in-first-out buffer was specified. Designed for dual-rail datapaths, this
buffer has two inputs InT, InF and two outputs OutT, OutF. It is assumed to be empty initially. When 1
appearson InT or OutT, the data on the datapath is 1. When 1 appearson InF or OutT, the datais 0. Lines
should be reset to 0 between two transmissions. The specification will not be repeated here. Sec is the
behavioural specification of a FIFO with two stages. In the following, TwoStages represents the imple-
mentation using components which are not input receptive, EnvF, EnvB is the environment of TwoStages,
EnvF_QR and EnvB_QR are the environment specified in input quasi-receptive manner, and TwoStages QR
is the implementation which replaces all the components in TwoStages with their corresponding input
guasi-receptive components. Note that EnviF QR is actually identical with EnvF since EnvF has no input.
For this circuit, the following verification methods are applied:

e The liveness property is specified in ACTL and it is verified that the specification satisfies the fol-
lowing property.
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Property: If thereis an input data 1, then outupt will become 1 eventually:

AG([INT ! 1) Aftrues, e Uouni true])

Theformulafor data 0 is similar and is also verified to be true.

¢ In this example, the environment is explicitly given. It was verified that Spec ~ TwoStages || (EnvB
| [---] | EnvF). Recall that =~ denotes the observational equivalence.

o For checking speed-independence, input quasi-receptive components are used. It was aso verified
that Spec ~ TwoStages QR || (EnVBQR | [ -] | EnvF_QR), which gives more confidence in the
design of the FIFO.

¢ Theimplementation TwoStages QR || (EnvB_QR | [- - -] | EnvF QR) also satisfies the liveness prop-
erty.

e Using VeriConf, it was established that TwoStages QR || (EnvB QR | [ -] | EnvF_QR) strongconf
Spec.

A Circuit with two Components

This circuit is an example in [Ebe91], where it is used to show the difference between speed inde-
pendence and delay insensitivity. Although small, it reveals the necessity of using input quasi-receptive
specifications. Following the specification style of that paper, value offers! 1 and! O are omitted. As
a matter of fact, for asynchronous circuits, value offers are not necessary as long as the initial states of
signals are known. For instance, if signal Ip isinitially O, thenIp,- - -, Ip,- - -, Ip,- - - istheshort formof Ip!
1,-,1p! 0, Ip!1,---. Apparently, keeping the value offer is helpful only for readability.

The behavioural specification is shown in figure 25(a). The behaviour of the two componentsis shown
in figures 25(b) and 25(c) respectively. In fact Elel achievesthe Or function of signal transitions, and Ele2
achievesthe And function. The proposed implementationisin figure 25(c). The verification task isto check
if this implementation is speed-independent and delay insensitive. For analysing delay insensitivity, the
circuitistransformedto figure 25(€), wheretheisochronicfork in (d) isreplaced by an explicit fork el ement.
An dternative transformation is to add two delay elements, as explained in figure 11 of section 3.4.2. The
two methods have the same effect.

The implementation of the figure 25(d) is specified as Impl1, and figure 25(€) is specified as Impl2:

processImpl1[IA, IC, ID, OB, OE] : noexit :=
Elel[IA, IC, OB]

nc)
Ele2[IC, ID, OF]

endproc

process Impl2[IA, IC, ID, OB, OE] : noexit :=
hidex, yin
(Elel[IA, x, OB]
Il
Ele2 [y, ID, OF])
|yl
Fork [IC, x, y]
endproc

The state spaces of Impl1 and Impl2 are much larger than that of Spec. For example, both can accept IC
and ID fromtheir initial states, but Spec cannot. Since no explicit environment is given, adirect verification
approach is to compare Impl 1 || Spec with Spec, with the assumption that Spec is also the environment of
its implementations. According to CADP, they are observationally equivalent. The same result holds for
Impl2, i.e. Impl2 || Spec ~ Spec and Impl1 || Spec ~ Spec. This suggests that both figure 25(d) and (€) are
correct implementation with respect to Spec.
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Figure 25: A circuit with two elements

However, to ensure that both of the circuits are really speed-independent implementations of the spec-
ification , a more accurate model of the components, i.e the input quasi-receptive model, should be used.
Figure 26 shows the LTSs of these input quasi-receptive components. Suppose the implementations are
Impl1_QR and Impl2_QR, using VeriConf it is discovered that although there is Impl1 QR strongconfor
Spec, Impl2_QR does not relate to Spec with respect to both the confor and strongconfor relations. A diag-
nostic traceis given by the verifier: |1A, OB, ID, IC, OE, IC, IA. By analysing thistrace, it can be found that
after the OE is produced, the Spec is able to receive I1A and |C. But for the implementation in figure 25(€),
after OE is produced the Fork element may still be in the unstable state since x has not been produced
yet. In this unstable state, the IC input from the environment makes the behaviour of the Fork component
undefined, which means that figure 25(e) is not speed-independent. More precisely the correctness of the
circuit depends on the speed of Fork. Figure 25(d) is therefore not a delay insensitive implementation of

Soec.

44 Related Work

Formal verification of digital circuits has been insensitively investigated during the last decades. There are
essentially two approachesto formal verification: model checking and theory proving. Several maturetools
have been devel oped, such as SMV (Symbolic Model Verifier [McM93)), VIS (Verification Interaction with
Synthesis [BH196]), and Cospan [HHK96]. These tools are mainly based on model checking to enable
automatic verification. But general purpose theorem provers, such as HOL [Mel93] and PVS [SRC96] are
also employed in verifying digital circuits, especially the datapathes.

CADP belongs to model checking tools so is similar to SMV, VIS etc. But unlike these tools which
only provide the temporal logic model checking, CADP supports relation checking (equivalence, preorder
etc) and therefore provides more verification approaches. It is well known that temporal logic formulae
are difficult to write even for experienced users. Many negative verification results are actually because
of improper formulae instead of erroneous hardware designs. Relation checking helps to get rid of this
problem, and moreover, is able to point out more errors than temporal logic model checking, as has been
discovered in the case study of the bus arbiter. The reason is that a higher level specification of a system
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contains more detail s than a formulawhich expresses an abstract property.

The size of the synchronouscircuit that can be effectively verified is small compared to that handled by
other tools. CosPAN can verify an arbiter with four cells with the consumption of about 1 MB memory, due
to a symbolic representation using BDDs and efficient reduction techniques [FK97]. CIRCAL is reported
to generate the state space of an arbiter with up to 40 cells using reasonable computing resources, although
the actual memory used was not reported [MM93]. Again this is due to the BDD representation of the
CIrcAL specification. Note that in fact the arbiter was not formally verified in CIRCAL. [MM93] just
gives atest pattern to show that even if al clients request the bus, only one can gain access to the busin
each clock cycle. CADP on the other hand consumes more than 100 MB of memory to produce the state
space of athree-cell arbiter. Although the resulting state space is relatively small, the intermediate stages
of generation need considerable memory.

The main reason for the performance limitation is that in synchronous circuits the order in which sig-
nals occur during a clock cycleis not so important. So it is reasonable to imagine that the inputs happen
together and then output occurs. But when modelling such circuitsin DiLL, independent (interleaved) in-
puts are allowed so the state spaceis considerably enlarged. The second reason isrelated to the verification
tool. CADP is perhaps the most mature tool which supports LoTos, but it is still under development and
currently some of its features are mainly based on explicit state exploration. Because CADP cannot pro-
duce the minimised state space in the first place, large amounts of memory have to be consumed before a
smaller LTS can be produced by minimisation. On-the-fly algorithms are of some help, but they apply only
in particular situations. For example, on-the-fly observational equivalence checking is not supported by
CADP. Also CADP does not offer aBDD direct representation of LoTos specifications, although BDDs
are used to represent intermediate data types in some algorithms.

The tools mentioned above mainly deal with synchronous circuits. Verification of asynchronous cir-
cuits, especially Sl and DI circuitsis also an active area. Based on trace theory, Dill [Dil89] built a verifier,
which could be the first automatic tool of this kind. Other tools can be found in [KKTT98, ESB95]. Most
asynchronoustools known to the author are model checking tools, which differ each other only in how the
models are represented, or how to design algorithms to improve the verification performance.

Like DiLL many other asynchronous verification approaches also define relations to indicate that in
what sense a circuit design is regarded as correct. The relations confor and strongconfor in this thesis
resemble the conformance in [Dil89], decomposition in [ESB95] and strong conformance in [GBMN94].
The former two are based on trace theory. They cannot detect deadlocks and livelocks in specifications.
Thelast approachisbased on CCS, soit is possibleto detect deadlocksand livel ocks after the specifications
are obtained. But the strong conformance requires that an implementation should not produce less outputs
than its specification does. This excludes the possibility of applying the relation on non-deterministic
specifications. The confor and strongconf defined in this chapter have clear advantages over theserelations.
Firstly they give a more intuitive interpretation of the correctness of implementations. Secondly they
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consider suspension traces of a specification instead of traces, which makes the relations stronger and is
capableto detect more errors. Finaly unlike the conformance and strong conformance relations which are
intended to suit al kinds of specifications, confor and strongconfor are used with non-deterministic and
deterministic specifications respectively, which helps to make the verification results more accurate.

45 Conclusion

This chapter presentsthe DiLL approach to verifying both synchronous and asynchronous circuits.

DiLL supports all the three kinds of hardware verification tasks, namely requirements capture, imple-
mentation verification and design verification. In DILL requirements capture and design verification are
performed by model checking temporal logic formulae, and implementation verification is conducted by
comparing the relations between LTSs.

Compared to verifying asynchronous circuits, verifying synchronous circuits is more straightforward.
The existing LoTos verification tools can be employed directly so that substantial efforts on devel oping
tools can be saved. Thisis one of the main reasons that LoTOS is considered to be used as a hardware
description language.

For verifying asynchronous circuits, more endeavor is needed. Thisis mainly because of the gap be-
tween the different communication schemesin LoTtos and in digital circuits. In LoTOS the communication
between processesis symmetric, but in real hardware the communi cation between componentsis asymmet-
ric. In LOTOS an event offer can be refused, but in circuits an input signal transition can never be rejected.
The DiLL model of synchronous circuits does not suffer from the gap since a L oTos event does not model
asignal transition directly.

Two efforts are made to bridge the gap. One s at the specification stage. For structural specifications,
their components are specified in input receptive or input quasi-receptive manner, reflecting that inputs
are always acceptable. The second is at the verification stage. New relations confor and strongconfor
are defined to take into account the difference between inputs and outputs. The relations provide an in-
tuitive interpretation of correctness of a circuit implementation, and a verifier VieriConf for them has been
developed.
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5 Testing Digital Logic Designs

Thischapter presentsthe DiLL approachto testing designs of digital circuits. Inthe community of hardware
designers, the term testing usually refers to the activity of detecting manufacturing defects in physical
products. While in the community of formal methods, testing is one of the validation methods, which
can be applied in various stages of design processes. The chapter interprets testing according to the latter
meaning. In this sense an Implementation Under Test (IUT) might either be a physical product, or aformal
or informal model.

The chapter first presents the background knowledge, where the two validation methods: verification
and testing are compared to each other. The theory of conformance testing for LTSs are also briefly in-
troduced in this first section. Testing theory for IOLTSs, the LTSs which differentiate inputs and outputs,
is then elaborated, with the focus on the implementation relations ioconf and ioco, and corresponding
test generation algorithms. Following the introduction of the theory, the chapter applies it in validating
synchronous and asynchronous circuits. Several examples are used to illustrates the suitability of the ap-
proach. To achieve satisfactory coverage of thetest cases generated, an algorithm based on atransition tour
of the state space graph is developed and implemented. A testbench is also devel oped to automate testing
processes. Finally abenchmark circuit, the BlackJack Dealer, is studied to examine the approach.

5.1 Background
511 Testing and Verification

Testing is an operational way to check the correctness of a system implementation by means of experiment-
ing with it. Tests are applied to the implementation under test, and, based on observations made during the
execution of the tests, a verdict about the correct functioning of the implementationis given.

Compared to verification, testing is a more pragmatic way of checking a system. Although both aim
to check the correctness of a system, verification is performed on a mathematical model of the system,
whiletesting is done by operating an executable implementation (either a product or an executable model).
Verification is exhaustive and can ensure the correctness of a system being checked, but this sureness only
applies to the model of the system. Testing is based on observing only a small subset of al possible
behaviour, thus it can never be exhaustive. Unlike verification, testing is normally used to discover errors,
not to prove correctness. Testing can be applied to real implementations, so is extremely useful when a
valid and reliable model is difficult to build or when the system istoo complex to be efficiently verified.

In the previous chapter, circuit designs were verified against their specifications. As has been seen,
the state spaces of circuit implementations are considerable larger than that of their specifications. Some
circuits have such complex behaviour that their state space cannot be efficiently built, making verification
impossible. By means of testing, there is no need to build the state spaces of implementations. Only the
formal models of specifications are required, therefore much larger circuits can be effectively analyzed.
Moreover, testing can be conducted on more detailed models of implementations, which is helpful for
finding subtle bugs which may not be captured by validating aformal model.

5.1.2 Formal Conformance Testing for LTSs

There are many aspects of a system that can be tested. Conformance testing answers the question of “does
an implementation conforms to its functional specification? Other kinds of testing include performance
testing ("how fast can an implementation perform its task?), robustness testing ("how does an implemen-
tation react when its environment does not behave as expected?) and so on. This chapter applies the
developmentsin the area of formal conformancetesting to validate digital circuits.

Formal conformance testing comprises several ingredients: aformal specification, an implementation
under test (IUT), an implementation relation, and a test suite. Preferably there should also be a test gener-
ation algorithm which helps to generate test suites automatically. Specifications can be written in aformal
language such as SDL [ITU92, ITU95], LoTos [1SO89], or Estelle [I1SO97, Tur93]. An implementation
is treated as a black box exhibiting behaviour by interacting with its environment. In order to establish
aformal relation between specification and implementation, it is assumed that any implementation has a
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formal model which can be reasoned about. The assumption that al implementations have formal models
is referred to as test hypothesis in some literature [Ber91]. Note that the model is only assumed to exist,
but it is not known a priori; the implementation relation is the criterion for judging if an implementation
conforms to its specification. Test suites contain the test cases used for experiments. A test suite which
distinguishes exactly between al conforming and non-conforming implementationsis said to be compl ete.
Unfortunately, complete test suites are not always available in practice, as they are usualy infinite. A
weaker requirement is therefore applied: atest suite should be sound, i.e. it gives a negative verdict only
when an implementation is incorrect. In other words, all correct implementation and possibly some in-
correct implementations will have positive verdicts. Comparatively, a test suite is exhaustive if it gives a
positive verdict only when an implementation is correct. In other words, all incorrect implementations and
possibly some correct implementations will have negative verdicts. The errors detected by a sound test
suite arereal errors, and the correct implementations qualified by an exhaustive test suite are really correct.

Formal conformancetesting for Labelled Transition Systems (LTSs) has been intensively studied. Tra-
ditional testing theory for LTSs aims at defining implementation relations, instead of finding test suites
to characterise implementations. Given a class of tests, a transition system p is related to a system q if
for al possible test cases in the class, the observation made of p is in some sense related to that made
of g. Such a definition of implementation relation by explicit use of tests and observations is termed ex-
tensional definition. Many different relations, including bisimulation, testing preorder/equivalence, failure
preorder/equivalence [DH84, Nic87] have been defined in the framework of testing theory. In [Bri8g],
Brinksma studied the possibility of systematically deriving test cases for some implementation relations
from their specifications. In his framework, specifications, implementations and test cases are all mod-
elled as LTSs. He pointed out that it is not known if testing preorder (called red relation in that paper) is
testable or not (i.e. if there exists a complete test suite for any specifications such that the correctness of
an implementation with respect to the implementation relation can be characterised by the test suite). For
this reason, Brinksma defined an implementation relation termed conf. Informally, an implementation i
conformsto a specification s with respect to the conf relation, i.ei conf s, if “testing the trace of sagainst i
will not lead to unexpected deadl ocks that could not occur with same test performed with s” [Bri88]. The
relation conf ensures that an implementation does what it is required to do, but it does not guarantee that
the implementation does not do what it is not allowed to do. It is understood that the latter requirement is
the task of robustness testing. An important property of conf is that it is testable for any specification S,
and that for each Stest suites can be derived from S. Several test generation algorithms were devel oped for
conf relations [PF90, Wez89, Led92] after the work of Brinksma.

Based on Brinksma's theory, conformance testing for IOLTSs (Input Output Labelled Transition Sys-
tems) was proposed by Jan Tretmans[Tre96]. Informally an IOLTSisaspecial LTS inwhich all inputsare
always enabled in any state. The observation is that most real-life implementations distinguish inputs and
outputs of a system. Outputs are actionsthat areinitiated by and under the control of a system, whileinput
actions are initiated by and under the control of the system's environment. A system can never refuse to
performitsinputs, and its outputs can never be blocked by environment. In Tretmans' theory, specifications
are still modelled as LTSs in order to give abstract representations of systems. Implementations however
are assumed to have the model of IOLTS, which is believed to be closer to real-world objects. Several
implementation relations are defined from LTS to IOLTS. Tretmans proved that the relations ioconf and
ioco aretestable and test cases can be derived from any specifications for these two relations. Moreover, he
gave atest generation algorithm which guarantees sound test cases. Because test cases are generated from
specifications, they are also modelled as LTSs instead of IOLTSs. Like the relation conf, ioconf and ioco
can ensure that an implementation does what it is required, but cannot guarantee it does not do what it is
not allowed to do. In section 5.1.5, full detail of IOLTS and the two relations will be presented.

As already pointed out in chapter 3, digital hardware communicateswith its environment viainputs and
outputs. Thus an IOLTS should be more suitable than an LTS for modelling circuits.

5.1.3 Overview of the Approach

In the DiLL approach to testing digital circuit designs, the intended behaviour of a circuit is specified
in Lotos, whose semantics is given by an LTS. The implementation of the same circuit is described
by VHDL (VHSIC Hardware Description Language [IEE93]). The behaviour of a VHDL program is
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presumed to be modelled by an IOLTS. This model is merely assumed to exist — it need not be known
explicitly. Implementation relations ioconf and ioco are used as the correctness criteria for synchronous
and asynchronous circuit designs respectively.

The test suite for a circuit is generated from a LoT0s specification following an algorithm based on
that proposed in [Tre96]. CADP has been explored to generate hardware test suites automatically. Each
test case in the generated test suite is a sequence of input and output signals. Designing test cases as input-
output sequencesis closeto engineering practicein hardwaretesting. Moreover, it allowstest executionand
obtaining test verdicts to be completely automated. Thisis achieved by a VHDL testbench that executes
and evaluates the test cases. If there is an inconsistency between the formal specification and its VHDL
implementation, the implementation is regarded as incorrect. Figure 27 outlines this approach.

5.1.4 Conformance Testing for IOLTS

This section introduces the conformance testing theory for IOLTS, with the focus on implementation rela-
tionsioconf and ioco, and their corresponding test generation algorithms.

515 IOCONF and IOCO

As mentioned earlier, an implementation is assumed to have the model of IOLTSin Tretmans's framework.

Definition 5.1 (IOLTS) Aninput-output transition system p is alabelled transition systemin which the set
of actions L is partitioned into input actions L ; and output actions Ly (L; U Ly = L, Ly N Ly = 3), and
for which all input actions are always enabled in any state:

whenever p==p  thenVac L;:p =

The class of input-output transition systemswith input actionsin L ; and output actionsin L ; isdenoted
byZOTS (L[, LU) CLTS (L[ U LU>

From this definition, it can be seen that the action set of an IOLTS is partitioned into digoint input
actions and output actions. Each reachable state of the system can always participate in al the input
actions.

Specifications, however, are still modelled as an LTS to have an abstract view of systems. Such spec-
ifications are interpreted as incompletely specified input output labelled transition systems. i.e. IOLTSs
where a distinction between inputs and outputs is made, but where some inputs are not specified in some
states. The intention of incomplete specifications might be for implementation freedom, or because the
specifier can ensure that the environment will not provide some inputs.

There are severa implementation relations defined from LTSs to IOLTSs. Some of these relations,
such as the one analogous to testing preorder, are too strong in that they require that specifications are also
IOLTSsfor therelation to hold. Thisis obviously impractical in most cases. Two relations, namely ioconf
and ioco, which are analogous to conf mentioned in the previous section, are defined for the purpose of
conformance testing.

Definition 5.2 (ioconf) Leti € ZOTS (L, Ly),s € LTS (L; U Ly), then
ifoconf s =45 Vo € traces(s): out(i after o) C out(s after o)

Recall that in definition 4.7 (section 4.3.3), out(s) is defined as all the output actions that a state S
can perform, which also includes the quiescent action §. ioconf means an implementation is correct if
after all the traces o of the specification, the outputs which an implementation can produce can also be
produced by the specification. Since this also holds for §, the implementation may not show output only if
specification cannot do so. This means that those implementations which “accept anything but do nothing'
are not qualified as correct implementation according to ioconf. Note that the relation requires only for al
the traces of specification Sthat the out-set inclusion holds. So it allows an implementation to accept more
inputs than a specification does. Theimplementation may do what it wants after it accepts such unspecified
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inputs. Thereforesimilar to the conf relation, it just ensures that an implementation doeswhat it isrequired,
but the relation does not force an implementation do not do more than what is required by the specification.

ioco is similar to ioconf but is stronger. It restricts inclusion of out-sets to suspension traces of specifi-
cations.

Definition 5.3 (ioco) Leti € ZOTS (L, Ly),s € LTS (L; U Ly ), then
iioco s =gy Vo € Sraces(s): out(i after o) C out(s after o)

In the definition, Strace stands for suspension trace, which has been defined in definition 4.8 (sec-
tion 4.3.3). A suspension trace o € L7 is a sequence of ordinary actions and action 4, the latter is used
to denote the absent of output actions. ioco is very similar to the relation confor, the only differenceis
that ioco assumes that implementations are modelled as |OLT Ss which can aways accept all inputs, while
implementations in confor are not necessarily to be input receptive. Consequently, the input inclusion
condition, required by confor, is always satisfied when ioco is considered.

The relations ioconf and ioco areillustrated in figure 28. These aretwo IOLTSsr1l and r2 with L ; =
{ip} and Ly = {opl,o0p2}. Theonly differenceis at the states s14 and s24; r1 can produce output opl
and op2, while r2 can only produce op2. out (rl after(ip-ip)) = out ({sl1, s14}) = {opl, op2}, and out
(r2 after(ip-ip)) = out ({s21, s24}) = {opl, op2}. After comparing al the other traces of r1 and r2, it can
be concluded that r1 ioconf r2 and r2 ioconf r1. Comparatively, for the relation ioco suspension traces are
needed. Thusout (r1 after(ip-d-ip)) = out ({s14}) = {opl, op2}, while out (r2 after(ip-6-ip)) = out ({s24})
= {op2}. Thatisr2iocorl, but not rlioco r2. Intuitively, an ioconf tester cannot notice that a state is
free of output actions when performing testing, but an ioco tester can. In this example, after thefirstipis
applied the ioco tester may observe that there is no output produced. He then provides ancther ip to see
the reaction. rlis able to produce either opl or op2 in response, but r2 can only produce op2. However
because an ioconf tester cannot sense the absent of outputs, he cannot distinguish the behaviour of ip-ip and
ip-0-ip. After providing two concatenated ip inputs, he will observe either opl or op2 for both systems.

Aswill beexplained later when testing synchronouscircuits, § transitions can beignored. Soioconf will
be used for testing synchronous circuits. ioco will be explored for testing asynchronous circuits because it
has more distinguishing power.
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5.1.6 Test Generation

Having seen the models for specifications, implementations and relations between them, it is time to find
out the test cases which characterise correct implementations of a given specification with respect to the
relations.

For ioconf and ioco relations, test cases are modelled as LT S(L 7 U £y, U {d}). For practical reasons,
they have to have finite behaviour, because any experiment should last for a finite time. In addition, they
should be deterministic to allow a tester to have control over test execution. This also requires that test
cases have no choice between multiple input actions, nor a choice between input and output actions, as
both introduce unnecessary nondeterminism during a test experiment. As a result, a state of a test case
is a termina state, or offers one input to the implementation, or accepts all possible outputs from the
implementation (including the § action). Finaly, to be able to decide about the success of a test, the
terminal states of atest are labelled with pass or fail.

Definition 5.4 (test cases and test suites)
e Atestcasetisalabelledtransitionsystem < S, L; U Ly U {6}, T, sO > such that

— tisdeterministic and has finite behaviour;

— Scontains the terminal states pass and fail, with init(pass) = init(fail) = §;

— for V' € S of thetest case, t' # pass, fail, either init(t') = {a} for somea € L, or init(t") =
Ly U {(5}
The class of test casesover Ly and Ly isdenoted as TEST (Ly, Ly).

o Atestsuite Tisasetoftestcases: T C TEST (Ly, Ly).

Recall that init(s) denotes all the actions in which state s can engage, including the initial transition
i (definition 2.2). Note that L; and Ly refer to the inputs and outputs from the point of view of the
implementation under test, so L ; isthe outputs, and L, isthe inputs of test cases.

When an implementationistested by atest (called atest run), it will only stop (i.e. deadlock) at the pass
or fail states. Since for other states, either they can offer an input action, in which case the implementation
can always accept it, or they offer all output actions, including ad transition, in which case at least § can be
accepted by an implementation. If deadlock happens at pass state, it is said that the implementation passes
thetest run. Since an implementation can be nondeterministic, different terminal states can be reached with
different test runs of the same test case. Only when an implementation passes all possible test runs, is it
said that the implementation passes the test case.

To fecilitate the generation of test cases, a suspension automaton (definition 4.10 in section 4.3.3) of
the specification LTS isfirst built; test generation algorithm is then applied on the automaton.

Recall that asuspension automatonI',, of an LTS p is obtained by determinizing p and adding necessary
0 transitions. The suspension traces of p coincide with the traces of its suspension automaton I',. In
addition, for all ¢ € L*, out(T",, after o) = out(p after o). Therefore checking ioconf and ioco can be
easily reduced to checking trace inclusion relation on suspension automata. For ioco, al the traces of
suspension automaton should be used for checking, while for ioconf only traces without ¢ transitions are
checked.

Definition 5.5 (Test generation algorithm) Let T" be the suspension automaton of a LTS s, and let F =
trace(I") for the case of ioco and F = {0 € L* | o € trace(I")} for the case of ioconf, then a test case
t € TEST (Ly,Ly) isobtained by a finite number of recursive applications of one of the following three
nondeterministic choices:

1. (* terminate the test case *)
t := pass

2. (* give a next input to the implementation *)
ti=a;t'

wherea € Ly, suchthat 7' = {oc € L} | a- 0 € F} # 0, and t' is obtained by recursively applying
thealgorithmfor 7’ and I, withT" - T,
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3. (* check the next outputs of the implementation *)

t = > {x;fail |z € Ly U{6},x ¢ out(l),e € F} )
I Z{x;pass|IELUU{é},x&’OUt(F),e ¢ F} 2
I Z{x, ty |z € Ly U {6}, z € out(T")} 3

where ¢, is obtained by recursively applying the algorithmfor {oc € L% | - o € F} andI", with
r5r.

In the algorithm, F is the set of traces after which out-set inclusion need to be checked. The first
choice terminates the generation procedure to ensure test experiment stop at some point even though the
specification may include infinite behaviour. The second choice gives a next input to the implementation.
Asinputs are always enabled, this step will never result in deadlock, thus no terminal state pass or fail can
be reached. The third step checks the next output of the implementation. Any implementation producing
an output x which does not belong to out(T") will result in afail terminal, indicating it is not a conformance
implementation.

This test generation algorithm guarantees to generate sound test cases with respect to ioconf and ioco,
and the set of al possibletest cases that can be obtained is complete. The proof can be found in [Tre96].

5.2 Application to Synchronous Circuits

Two examples are used to illustrate the approach of applying IOLTS-based formal conformance testing to
validating synchronous circuit designs. OneisaJK flip flop, the other is a single pulser which has already
been specified in chapter 3.

5.2.1 DiLL Specifications of the Examples

Recall that the DiLL approach for specifying synchronous circuits is based on a clock cycle-by-cycle (see
section 3.3.4). Clock signalsjust contribute to timing references and are not relevant to functionality. Thus
they are often omitted in top level specifications. On each clock cycle, primary outputs and internal outputs
are decided by primary inputs and internal inputs.

A XK flip-flop is a single-bit memory element with control inputs J and K. If they are both set to O, the
flip-flop staysin the same state. If they are both set to 1, the flip-flop invertsits current value. If Jand K are
set to different values, the value of Jis stored. The output is conventionally called Q, while its complement
is NQ (not Q). Unlike the specifications in chapter 3, the JK flip flop specification below fixes the order
of inputs J, K and outputs Q, NQ. As discussed before, fixing orders might cause deadlock when com-
ponents are connected. However, because testing just concerns the higher level behavioural specification,
no connection is actually needed. By restricting the order of events, the state space can be substantially
reduced when there exist multi-inputs and/or multi-outputsin a component. In the single pulser specifica-
tion, implementations are allowed to assert the output pulse either on the positive going or negative going
transitions of ainput pulse, thus the specification is a non-deterministic one. The specification can be found
in section 3.3.5.

behaviour XK [J, K, Q, NQ] (0) (* initial stateis0*)

where

process XK [J, K, Q, NQ] (dtQ : Bit) : noexit :=
J newd : Bit; K newK : Bit; (* get new Jand K *)
([(newJeq 0) and (newK eq Q)] > (* both O - same state *)
Q !dtQ; NQ !'not(dtQ); (* output current values*)
K [J, K, Q, NQJ (dtQ)

I

[(newJeq 1) and (newK eq1)] > (* both 1 - flip state *)

Q !'not (dtQ); NQ !dtQ; (* invert outputs *)
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Figure 30: Suspension automata of JK flip flop and Single-Pulser

K [J, K, Q, NQ] (not (dtQ))
I
[newd ne newK] > (* both differ - take J*)
Q 'newJ; NQ Inot (newJ); (* use Jasinput *)
XK [J, K, Q, NQ] (newJ))
endproc (* XK *)

5.2.2 LTSs, Suspension Automata and Test Cases

The LTSsthat are observationally equivalent to the above L 0TOS specifications appear in figure 29. Obser-
vational equivalence is used here since conformance testing relates only to externa behaviour of circuits.
The equivalence preserves all external behaviour and has a much smaller state space compared to that of
the original specifications. Figure 30 shows suspension automata built from the LTSs. Self-loops in this
figure denote ¢ (quiescent state) actions. If a specification is deterministic, such as the case of the XK flip
flop, its suspension automaton is almost identical to the LTS except for the ¢ transitions. This is because
suspension automata are obtained by determinising LTSs and adding necessary ¢ transitions. Figure 31
presents several possible tests generated from the automata using the algorithm explained in the preceding
section.



K 12

Figure 31: Several tests of XK flip flop and Single-Pul ser

The modelling approach of DiLL has some implications for testing. Firstly, LOTOS events represent
stable signal values in a specific clock cycle. Therefore all the eventsin figure 31 are stable signalsin a
certain clock cycle. It followsthat applying inputs and observing outputs according to the tests should also
be conducted when a circuit is stable. Thisis not a problem for synchronous circuits since clock cycles
are chosen such that circuits have enough time to settle down. Secondly, asit is assumed the clock cycles
are slow enough, stable values of inputs and outputs are guaranteed to appear once in every clock cycle, so
there is no need to worry about § actions which indicate the absence of outputs. This is why the weaker
relation ioconf is used for testing synchronous circuits. For the same reason it is also less interesting to
generate tests cases similar to JK_t2 that check absence of outputs. They are therefore excluded from the
test generator. Finally, as discussed earlier the order of inputs and outputsis fixed to restrict the state space.
Test case JK_t1 gives aFail verdict when the first NQ !0 is observed. Thiswould not have happened if the
full state space had been generated, so it is afake failure state. The way to solve this problem is discussed
in the following section.

These two examples also indicate why the ioconf relation is a suitable implementation relation for
validating synchronous circuits. If a specification is deterministic then ioconf requires that, in each clock
cycle, for al possible input sequences, al the outputs of an implementation agree with those given by the
specification. This is strong enough to distinguish erroneous implementations from correct ones. On the
other hand, it al'so permits non-deterministic specifications to be tested. Because every output will appear
oncein aclock cycle, a non-deterministic specification will have one or more outputs having contradictory
output values, i.e. the output may produceeither 1 or Ointhat clock cycle, asin the case of the Single Pul ser.
This can be properly captured by the ioconf relation. For exampleif theinput isinitialy O, after it changes
to 1 the output of a positive edge implementation should be 1, or O for a negative edge implementation. As
seen in test case $p_t1 of Figure 31, both design decisions can pass the test so implementation freedom is
respected.

5.2.3 Test Generation and Execution

The test cases generated from the agorithm in section 5.1.6 have the form of trees. This might have a
straightforward mapping to TTCN (Tree and Tabular Combined Notation [ISO91]), a standard form of
test suites. However, it is found that testbenches, which aim to automatically provide test cases to HDL
simulators and report test verdicts to testers, cannot be easily developed from test trees. In addition, the
coverage of atest suite is not easily measured if it is expressed in test trees. This thesis hence uses test
tracesinstead of test trees.

Recording test cases as input output sequencesis avery common way in engineering practice of testing
digital circuits. For example, test case JK_t1 can be stored in afile of theform: J!1; K!0; Q!1; NQ!0; Pass,
indicating that when inputs are J=1, K=0 the outputs should be Q=1, NQ=0. All the other brancheswhich
lead to fail statesin this test tree are in fact not necessary: as the digital signals are assumed to be strict
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binary, if Q isnot 1, then it must be 0. So when 0 is generated from the implementation, the fail verdict
can be obtained automatically by comparing it with the test trace; § can be omitted as discussed. The other
branches are fake tests, which are the consequence of fixing the order of inputs and outputs. It is concluded
that test trees can be transformed to atest trace in which al transitionsleading to the Fail verdict inthe tree
are not explicitly recorded. When implementations have outputs different from the one defined in a test
trace, a Fail verdict should be generated automatically.

This method works well with deterministic specifications. However when the specification has non-
deterministic behaviour, smply generating traces from test trees raises problems. For example, the test
tree of Sp_t1 cannot be rewritten as Ip!1; Op!'l; Ip'l; Op!0; Pass and Ip!l; Op!0; Pass. If a positive
triggered implementation were tested by the first case, it would be given a Fail verdict. Conversely, a
negative triggered implementation would fail the second test. Actually, both of them might be correct
implementations. The problem is that an implementation has to pass al the test cases in a test suite before
it isregarded as correct. But for this example, only passing one of thetest casesis necessary. Thisis solved
by marking outputs at a contradictory branch, i.e. the branch where the same output may produce either 1
or 0. Failing amarked output in atest run gives an inconclusive verdict, indicating that the IUT is alowed
to produce an output other than the one dictated by the test.

At some node of a suspension automaton, suppose the test generation program finds that there are two
possible output transitions with the same gate offering different values. Both of the outputs should be
marked when the corresponding sequences are generated, meaning they are not necessarily matched by an
implementation. Coming back to the example above, the tests then become Ip!1; Op!1x; Ip!1; Op!0; Pass
and Ip!1; Op!0x, Pass. When output Op! 1 from an implementation is compared to the second test case, the
* means this output does not have to be matched. Another test trace is then applied. In this case, outputs
are matched so testing continuesto analyse if the subsequent behaviour is satisfied.

To get the test traces, generation is mainly based on traversing suspension automata. Referring to
Tretmans algorithm in section 5.1.6, if Choice 1 is made, generating a test case is complete. Appending
an input action to atrace corresponds to selecting Choice 2 in the test generation algorithm. Appending an
output event, possibly with a+ mark, equates to selecting Choice 3.

As specifications usually have infinite behaviour, especialy if they involve iterations, a test case can
hardly be a complete trace unless the circuit has a deadlock state. Therefore atest suite can never cover all
the behaviour of a specification. How to generate a test suite with good coverage is an important but hard
theme for the testing community.

If covering all behaviour is not achievable, then covering all transitions might be a second-best choice.
A suspension automaton is a directed graph. Generating a sequence that visits every edge in a graph at
least once is the Chinese postman problem [EJ72]; the generated sequence is termed a transition tour.
A single transition tour exists only for a strongly connected graph, i.e. the graph in which every node has
a path to every other node. Otherwise, more than one tour is needed to cover all the edges. As suspension
automata may not be strongly connected, it is not possible to make direct use of transition tour generation
algorithms (e.g. [Hol91]), which guarantee the shortest tour for strongly connected graphs. In the work
presented here, the approach suggested in [HYHD95] is adopted because it is suitable for al kinds of
directed graphs. In this method, depth-first search (DFS) is used whenever possible as it naturally records
the transitions traversed. When an un-visited edge cannot be reached by DFS, breadth-first search (BFS)
is exploited to find a state that has an unvisited edge; DFS then continues from this state. The whole
procedure repeats until thereis no unvisited edge in the graph.

The CADP toolset supports an application programming interface that allows user-written programs
to manipulate the state space of a given LoTos specification. This interface is exploited to program the
test generation agorithm based on transition tour. The algorithm is given below. Note that test cases are
influenced by the order in which the edges of a suspension automaton are stored. This order is adjustable
by changing parameters passed to CADP. If more coverageis required, the test generator can be re-run by
using different parameters.

Test generation based on transition tour:
TestGen()
/* First produce suspension automaton from the LTS */
InitStat = SusAutGen(); /* InitStat istheinitial state of SusAut */

66



[cycle [J]K|]Q[NQ |cycde [J[K[Q][NQ ]
cyclel |11 |1 |0 cycles |0 |0 |1 |0
cyde2 [1[1 [0 |1 Jcoycde6|[1]1 [0 |1
cycle3| 01 |0 |1 cycle7r |00 |0 |1
cycled |10 |1 |O pass

Table 2: Test suite for K flip flop

state = InitStat;
while (1) {
while (1) {
/* DFS traverse from the state, until no unvisted edge can be found */
[* at the same time, for each output transition traversed, */
/* mark it with ™" if it has contradictory neighbour */
statel = DFS(state);

[* When DFS cannot find a state with untraversed edges,*/
/* do BFS search from statel to look for the state */
/* that has an untraversed edge, mark the edges at the sametime */
state? = BFS(statel);
if (state2 = NULL) { [* find astate */
ShortestPath(statel, state?);
AppendPathtoTrace();
State = state2;}
else{ * not find an untraversed edge */
PrintTraceMark();
break;}}

statel = Initstate;

state?2 = BFS (statel);

if (state2 !=NULL) {
ShortestPath(stetel, state?);
AppendPathtoTrace();
state = state2; }

elsereturn}}

Table 2 showsatest casefor the K Flip-Flop generated from theimplemented program. It only requires
7 clock cyclesto test theflip flop, and the test covers many important behaviours. For example, unlike other
input combinations, inputs J=1, K=1 do not produce unigque outputs. The test case thus uses several clock
cycles to test this feature. Table 3 shows the test suite for the Signal Pulser. The first test is actually for
the negative triggered implementation, and the second is for the positive triggered implementation. Any
correct implementation will pass one of them, and will have an inconclusive verdict when tested by the
other. Thusthose getting the fail verdicts are really incorrect implementations.

Each tour generated in thisway isatest case and is saved in atest file. The accumulated test cases are
passed to aVHDL simulator that simulates the lower level implementation of acircuit. A VHDL testbench
is designed to allow the test cases to be applied and executed against the VHDL description. The testbench
isinfactaVHDL programwhich consists of two processesthat are executed concurrently. Thefirst process
generates clock signals for the circuit under test. The second process reads the test suite file and generates
signal stimuli according to the inputs of each test case. It also compares the outputs generated by the
VHDL simulator with the output values required by the test case, giving aFail or inconclusive verdict and
aborting the simulation if they are not the same. The testbench also has to determine when to apply the
input stimuli and to check the output result. This needs some knowledge of the circuit realisation, such as
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cycle | Ip | Op [cycle [Ip | Op |cycle [Ip | Op |
cyclel | O | O cycled |0 |1 cycler |1 | O
cycle2 |0 | O cycle5 |0 | O pass
cycle3 |1 [ Ox |cycle6 |1 | O
cycle |[Ip | Op|cycle |Ip | Op | cycle |Ip | Op
cyclel |1 | 1x |cycde3 |0 |O cycles |1 | O
cycle2 |0 | O cycled |1 |1 pass

Table 3: Two test cases for Single Pulser

the propagation delays of componentsin the circuit. Special care should be given to those outputs which
are marked with x. Between two test cases, a reset signal is generated by the testbench to re-initialise
the circuit under test. The assumption is made that a circuit can always be correctly reset. The LoTos
specifications discussed previously do not specify reset behaviour, so atest need not be generated to ensure
that reset is correctly achieved.

5.2.4 Further Discussion

When a suspension automatonis strongly connected, the transition tour algorithmin section 5.2.3 generates
asingletest case, such asfor JK flip flop. Otherwise, the number of test cases isthe number of the strongly
connected sub-graphsin the suspension automaton, such as in the case of the Single Pulser.

The specification of Single Pulser is non-deterministic in that it allows two kinds of implementations.
But the behaviour of each kind is actually deterministic. Each strongly connected sub-graph in the suspen-
sion automaton corresponds to an implementation, and atest case is generated for it. If an implementation
is tested by atest case that is not for its kind, an inconclusive verdict arises telling the tester that the test
case applied is not a proper one. The test suite has the property that there is always a test case which can
characterise implementations.

However, if the behaviour of an implementation is non-deterministic, for example, if the single pulser
is alowed to assert its output pulse at either negative edge or positive edge transitions of its input, the sus-
pension automaton becomes a strongly connected graph. In this case, thereis only atest case generated by
the algorithm. Many of the implementations, no matter if they are correct or not, will get the inconclusive
verdicts from this test case because when they assert output on the positive edge transition, for example,
they may meet atransition in the test case requiring the output on negative edge. Hence for the specifica-
tions which allow non-deterministic implementations, the algorithm is not so efficient due to the frequent
inconclusive verdicts. In the next section, a solution is proposed for non-deterministic implementations.

Infact, non-deterministic digital circuits arereally rare. Normally people expect digital devicesto have
predictable responsesto al their inputs. Therefore, the test traces generated are satisfactory in most cases.

5.3 Application to Asynchronous Circuits

Apart from using ioco instead of the ioconf relation in the test generation agorithm, the approach of
applying conformance testing to validating asynchronous circuit designs virtually has no difference from
that for validating synchronous circuit designs. Following the way of the previous section, two examples
of asynchronousdesign are used to facilitate the explanation.

In chapter 3, an asynchronous first-in-first-out buffer is specified. Designed for dua-rail data paths,
this buffer has two input InT, InF and two output OutT, OutF. It is assumed to be empty initially. When
1 appears on InT or OutT, the datum on the datapath is 1. When 1 appears on InF or OutT, the data
is 0. Lines should be reset to 0 between two transformations. The specification will not be repeated
here as it can be found in section 3.4.7. Figure 32 givesits LTS (minimised with respect to observational
equivalence), suspension automaton of the LTS, and several tests. As seen, becausethe LTS isdeterministic
the automaton has amost the same structure except for the § transitions, which are represented as circlesin

68



FIFO_Sus

t1 t2 t3

IInF 11 OUITMF '
OutF!1 Fail Fail
%N“T 1 IInT 11

OUtE ! OutT 1 1 Pass  Fail  Fail Pass

InF!

InF!0

Pass Fail Fail

Figure 32: LTS, suspension automaton and several tests of FIFO

thefigure. Test t1 providestwo inputsthen checksthe output of animplementation. If output OutF changes,
the implementation passes the test. However if OutT changes or if there is no output, the implementation
fails the test. Similarly, test t2 checks output after one input is provided. Test t3 checks output right
away. Output changes from the initial states are erroneous behaviour so testing should stop after they are
observed. Only after the ¢ transition, meaning that no output is produced, can testing continue. Note that
thistest has a ¢ transition that does not lead to aterminal state, which could never happen in the test cases
for synchronous circuits.

The second exampleis aselector, which has also beenintroduced in section 3.4.4. Thisisaspecification
which alows non-deterministic behaviour in implementations: after an input changeoninput Ip, depending
on implementations, either Opl or Op2 may change. Figure 33 givesits LTS (minimized with respect to
observationa equivalence), suspension automaton of the LTS, and one of the test cases. Selector-test
indicates that after theinput Ip ! 1, the implementations producing either Opl! 1 or Op2! 1 will passthe
test, which respects the implementation freedom required by the specification.

The above two examples illustrate that the ioco relation is suitable for testing asynchronous circuit
designs. On the one hand it is strict enough to reject erroneous designs, and on the other hand it supports
implementation freedom by passing al possible correct implementations.

Specifications of asynchronous circuits sometimes permit some of their outputs to be produced in any
order.* Thisis usually modelled as interleaving of these outputsin DILL. The situation is relatively com-
mon in asynchronouscircuit specifications. Asin the case of non-deterministic behaviour, their suspension
automata also contain nodes which have more than one outgoing transition labelled with output actions.
Thisis not a coincidence because interleaving outputs actually introduces non-determinism. Concrete im-
plementations usually produces these outputsin afixed order.

In the previous section, the problem caused by non-determinism was solved by marking output transi-
tions which have contradictory neighboursin suspension automata. This technique can be easily extended
here for asynchronous circuits. each output transition which has other neighbouring output transitions is

41n synchronous circuits, the order of outputs is artificially fixed because it does not influence the functionality.
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Selector Selector_Sus Selector_test
Ip!1l
OpliL| \op211

pass fail pass

Figure 33: LTS, suspension automaton and one test of Selector

A possible test trace:
Ip, Opl(*sl), Op2, Opl(*<4), ...
Op3(*4), Ip, Op2(*sl), Opl...

Figure 34: Nodes with more than one outputs and its test trace

marked during test generation, indicating that this output may not be matched by implementations under
test since other outputs are allowed to be produced. As discussed in section 5.2.4, this method is not so
efficient when the behaviour of an implementation is non-deterministic. The problem is that when an in-
conclusive verdict is reached, a test run is aborted and other test cases (if any) should applied. However,
the test case should be still valuableif other neighbouring outputs can be found so that the test run can con-
tinue. To achievethis, all marks are extended with the source nodes of the outputs, i.e. output transitions
are marked with x as well as their source nodes when they have neighbouring outputs. Obviously outputs
with same marks in a test suite are neighbours of each other in corresponding suspension automaton. In
this way the branch structure of atree is mimicked by atrace. Since the transition tour algorithm is ableto
cover al the transitions in a suspension automaton, if an implementation cannot agree with all the outputs
with a certain mark, fail verdict should be issued. This technigue requires a testbench which is able to
search the whole test suite for marks.

Figure 34 is an example for this revised algorithm. If an implementation has the behaviour Ip, Opl,
Op2, Op3, - - -, it will follow Ip, Opl, Op2 in atest run, but when the output Op3 fails at Opl(*s4), a
testbench should look for another output with the same mark to see if the two can match. In this case it
finds Op3(xs4), then the testing continues. If an implementation behaves as Ip, Op3, - - -, there will be no
output marked with (xsl) that can match the Op3; the implementation is therefore regarded as erroneous.

Asfar as the testbench is concerned, it will be more complicated than its synchronous counterpart. To
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1 2 3 4 5 6 7
InF=1 InF=0 OutF=1 | InF=1 OutF=0 | OutF=1 | InF=0
8 9 10 11 12 13 14
InT=1 OutF=0 | InT=0 OutT=1 | InT=1 OutT=0 | OutF=1
15 16 17 18 19 20 21

) InF=0 OutF=0 | InT=1 OutT=1 | InT=0 InT=1
22 23 24 25 26 27 28
OutT=0 | OutT=1 | § InT=0 OutT=0 | ¢ pass

Table 4: Test suite of FIFO

1 2 3 4 5 6 7

IP=1 | Opl=1xsl | Ip=0 Opl=0%s2 | § Ip=1 | Op2=1xsl
8 9 10 11

) Ip=0 Op2=0xs2 | pass

Table 5: Test suite of Selector

be able to deal with non-deterministic implementations, it should be able to search a whole test suite for
marks. Normally a search should be carried out in the rest of atrace when an inconclusive point is met, so
that testing can go forward. However, sometimes such marks only exist in the previous part of the trace,
forcing the search to go backward. This means that there may exist loops during testing. The testbench
thus should have a strategy to break such aloop. A testbench also needs to maintain a timer. In the real
world, no component really has unbounded delay, so when a § transition is seen, the testbench uses the
timer to record the time that elapses. If thereis no output within a certain amount of time, the § transitionis
assumed to be satisfied, otherwise the fail verdict will be given. The value of the timer relies on the delays
inacircuit. A testbench will also have to decide when to provide inputs. For the test case t1 in figure 32,
if InF ! Ois provided too late after the first input InF ! 1, an output may have aready been produced. The
behaviour should be tested by other test cases such ast2. But as testers may not aware this, t1 may still be
used, which will produce faulty test results.

As a conclusion of this section, the test suites of the above two examples produced by the revised
transition tour algorithm are given in table 4 and 5. Both have just one test case. The one for FIFO has a
length of 28 transitions, with alength of 11 transitions for the selector. The second test suite is atest with
inconclusive marks. A selector which insists on sending its input to Opl can follows the test sequence 1,
2,3,4,56,2,3, -, aloop that atestbenches must break.

54 Case Study

This section evaluates the approach by generating test cases for a DILL specification of a circuit, then
executing them against its implementation described by VHDL code. This is a synchronous circuit: the
BlackJack Dealer[ SK96], afamous card game which is also called pontoon or “21”.

A BlackJack Dedler is adevice which plays the dealer's hand of a card game. The inputs of the circuit
are Card_ Ready and Card_Value (Ace..King, Clubs..Spades). Its outputs have boolean values: Hit (card
needed), Sand (stay with current cards) and Broke (total exceeds 21). The Card _Ready and Hit signalsare
used for ahandshake with ahuman operator. Aces havevalue 1 or 11 at the choice of the player. Numbered
cards have values from 2 to 10. Jack, Queen and King count as 10. The Black-Jack deadler is repeatedly
presented with cards. It must assert Stand (when its scoreis 17 to 21) or Broke (when its score exceeds 21).
In either case the next card starts a new game. Figures 35, 36 and 37 are the implementation of the circuit
givenin [SK96].

In the DiLL specification of the BlackJack dealer, a new data type Value is defined to represent the
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Figure 35: The controller of the Black-Jack Deadler

card value. Although the L oTos standard data type NaturalNumber might appear suitable, CADP cannot
generate the corresponding LTS for an infinite datatype like this. The key point in the specification is how
to handle the ambiguous value of an Ace. To solve the problem, the specification uses the method given by
[WP8Q]. Specification behaviour occupies about 80 lines including comments.

Using CADP and the test generator program implemented for the algorithm in section 5.2.3, atest suite
for the Black-Jack Dealer was derived. The test suite is able to test 181 different hands of cards that a
dealer may hold. The VHDL implementation given in [WP80] was evaluated against this test suite.

Although the circuit was expected to pass the test suite, a Fail verdict was recorded after the dealer was
given the following cards. 5, 5, 3, 2, 1, 10. In this case the dealer should be Broke because the sum of the
cards is 26, which exceeds 21. However the circuit outputs neither Sand nor Broke since it considers the
total to be just 16. Other card combinations including an Ace that should cause Broke exhibited the same
problem. Thisindicated that the problem was related to processing an Ace.

The circuit should initially take an Ace as 11. It should be re-valued as 1 (subtracting 10 from the
sum) the first time the result would be Broke. If the following cards would make the sum exceed 21, no
re-valuation should be done as no Aceis 11. By carefully simulating the traces which led to the failure, it
was discovered that the given benchmark design still re-values the Ace card, so the circuit is not Broke in
this case. In the design of the BlackJack Dedler, thereis aflag register (AcellFlag in [SK96]) indicating
if there has been an Ace evaluated as 11. The problem of the circuit is that this register is not reset to
zero properly after an Aceis reset to 1, because the effective duration of the signal used to reset it is too
short.> By dlightly modifying the circuit to remove the cause of this short duration, the circuit was able to
successfully passthe test suite.

5.5 Redated Work

For validating hardware designs, simulation has been and is still the predominant method in industry. Test
cases for simulation are mainly manually defined or randomly generated. Recent developmentsfor solving
the problem lie in combining formal methods with traditional simulation techniques. In [VK95], tests are

50ne of the registersin the design of the circuit is negative effective, but all the other registers are positive effective. Consequently
the effective duration of ClearAcellFlag isjust half acycle, which is not enough to clear the AcellFlag signa. The circuit designer
might wish to save one clock cycle to improve the speed of the circuit by using a negative triggered register.
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generated from behavioural VHDL programs using traditional software testing techniques. In [HYHD95,
MAH98], test generation is based on an FSM (Finite State Machine) or an ECFM (Extracted Control Flow
Machinge), which represents the control logic of acircuit. The generated test cases are then applied to both
higher level and lower level specificationsin Verilog or VHDL, verdicts are obtained by comparing outputs
from two levels. The basic idea of these two papersis quite similar to the one presented here, except that
they extract a formal model from circuit design and use the techniques essentially based on FSM testing
theory. Butinthisthesis, tests are derived from higher level specifications using conformancetesting theory
for LTSs. In[RSM97], test generation does come from a higher level specification of an FSM, then applied
to aVHDL simulator, but it cannot handle the case where specifications involve nondeterminism. Theaim
of that paper isto fill the gap between the abstract tests and concrete signals; test generation is based on a
commercial tool.

Finally, within the CADP toolset atest generation tool TGV [FIIV96] is under development, the im-
plementation relation exploited is very similar to the ioconf used in this paper. TGV had not been released
by the time this thesis was finished, thus a comparison could not be given.

5.6 Conclusion

In this chapter, the framework of forma methods in protocol testing was used for testing digital circuits.
The chapter first gave a brief introduction to formal conformance testing based on the formalism of LTSs,
then focused on a recent extension to this theory, namely testing implementations which are modelled as
IOLTSs. Itisbelievedthat an IOLTSisamorefaithful model of digital hardwarethan an LTS. Subsequently
two implementations relation ioconf and ioco and associated test generation algorithm were presented.
From the examples and the case study, it can be seen that this forma framework can be successfully
applied to testing digital circuits designs

A tool TestGen has been implemented in a C programm which produces suspension automata from
DiLL specifications and generatestest suites based on the transition tour of the automata. The main purpose
of developing such aprogram is to automatically generate test suites which have reasonable coverage, and
to facilitate automatic test execution. To achievethis, atestbench writtenin VHDL was developed to bridge
the test cases and VHDL simulator. A revised version of the generation agorithm was also implemented,
which alows non-deterministic implementations to be tested. This revised algorithm requires a relatively
complicated testbench, which has not been implemented at the current stage.

The case study of the Black-Jack dealer shows the benefits of the approach. By executing test caseson a
more detailed model of digital circuits, hereitisaVHDL description which containstiming characteristics
of components, it is possible to reveal subtle bugs which cannot be captured by analysing aformal model.
The problem identified in the case study actually related to the timing characteristics of the circuit. Al-
though a DiLL specification does not contain timing information at all, timing bugs can still be discovered
by the approach.
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6 Specification and Analysisof Timed Circuits

This chapter specifies circuit behaviour by explicitly including quantitative timing magnitudes. In the se-
quel, such specifications are termed timed specifications and the specified circuits are timed circuits. In the
background section, the specification language ET-L oTos(Enhanced Timed-L oTos [LL97]) isintroduced.
It is followed by the investigation of building the DiLL model of timed circuits. A timed circuit has three
parts: functionality, delays and timing constraints. Aswill be discussed, the model is compositional and the
untimed DiLL specifications are just the special cases of the timed ones. The chapter also gives the speci-
fications of various delays and timing constraints. For analysing timed circuits, TE-L OLA (Time Extended
LoTtos Laboratory [PLR95]) isused. Finaly a case study is investigated to examine the approach.

6.1 Background

So far in the thesis, digital circuits specified are untimed, i.e. quantitative timing characteristics are ab-
stracted away in specifications. For synchronous circuits, clock cycles are assumed to be slow enough so
that the period of a clock can be abstracted as a time unit. For asynchronous circuits, only those designs
based on unbounded delay models are modelled.

However, timing characteristics have never been something negligiblein digital circuit design. Timing
analysisis critical becauseit determinesif a circuit can function correctly. For example, an improper clock
cycleisadisaster for synchronouscircuit. In asynchronous circuits, potentia race conditions and hazards,
which are caused by propagation delays of components, can result in acircuit malfunctioning. In addition
high-speed performance is a very important criterion in today's competitive market. Formalisms which
support timed specification and analysis are therefore highly desirable.

6.1.1 ET-LoToSin Brief

The thesis chooses ET-L 0oTOS as the formalism for specifying timed circuits. ET-LoToS is closely related
to thefuture | SO standard E-L oTos (Enhancementsto L oTos [IS098)). It ishoped that the work presented
here will be easily transferable to E-L OTOS once the standard is mature.

ET-LoT0s supports both discrete and dense time domains. Informally, in a discrete domain time pro-
gressesin discrete steps. In adense domain however, it is aways possible to find atime value between any
two given time values. The discrete time domain is represented by the natural numbers, and the densetime
domain by real or rational numbers. In ET-L 0TOS, only countabletime domains (such as rational numbers)
are permitted in order to give operational semantics using Labelled Transition Systems. Time domains are
defined as data types. This makes ET-L 0TOS very flexible as time values can be treated like any other data
values.

Three new operators relevant to time are introduced, namely delay, life reducer and time measurement.

Life Reducer: Action-prefix is extended in ET-LOTOS: the expression g{d} means g will not be offered
after d. In other words, g can only occur in the interval of time [0, d]. The temporal attribute {d} is
termed alife reducer.

The precise semantics of g{d} is asfollows: if after adelay time d, the behaviour g{d}; ... hasnot
been performed g, the g offer is removed without executing the subsequent behaviour, i.e. the process
starts behaving like the idle process stop. Note that the life reducer does not enforce the execution
of gwithintheinterval [0, d], it just states that g cannot occur outside thisinterval. When thereisno
life reducer, the standard L 0TOS syntax applies. The default value of the life reducer is thus co for
observable actions, which matches the L oT0OS semantics that observable events can happen at any
time.

Comparatively, applying the life reducer to the internal event, i {d}, means that i must occur non-
deterministically within the next d time units. Necessity and non-determinism apply because internal
actions are not controlled by the environment; in particular, the time of occurrence is decided by
system itself. Nonetheless, an aternative action may pre-empt the occurrence of an internal action.
If the life reducer is omitted, it is regarded asi {0}, i.e. the internal event must occur at once (if at
al).
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Delay: The delay operator A9 meansthat the subseguent behaviour will be delayed by d. In ET-LoToSs a
time value is relative to the instant when the previous action occurs. So the behaviour a; A 4P will
delay for d after event a occurs and then behave like P.

Time Measurement: Thetime measurement operator @t is used to measure the time el apsed between the
instant when the event has been offered and the instant when it occurs. Thetimevalueis stored in't.
In ET-LoTos, time measurement can be used for both observable actions and internal actions. For
observable actions, the time measurement variablet can appear in selection predicates. For example
a @t [t < 5]; P denotes a behaviour which can perform a only within the first 5 time units and then
behave like P. The time when it takes placeis recorded in t.

Apart from these basic operators, there are also some shorthand notations for flexibility and convenience:

Generalized Life Reducer on Observable Action: g@t[dl <t<d2]; Pcanberewrittenasg{d1,d2}; P
provided that t does not appear in process P. It can also be expressed in terms of the delay operator
and the life reducer, such as A4! g {d2-d1}; P; the same condition applies.

Generalized Life Reducer on Internal Action: The behaviour A4l i @t {d2};
[t+d1/t] P can berewritten asi @t {d1,d1+d2}; P, where t+d1/t means every t appearing in process
P isreplaced by t+d1.

The formal semantics of ET-LOTOS is given by labelled transition systems. There are two kinds of
transitions: discrete and timed. Discrete transitions correspond to the execution of actions. If a is an
action, P % P’ meansthat P may perform action a and then behave like P’. Timed transitions correspond

to the passage of time. If d is a variable of sort Time, then P % P' means that P may idle for d then
behave like P’. The semantics will not be discussed in detail here but two points are emphasized below.
Full definitions of the semantics can be found in [LL94].

ET-LoTos adopts maximal progress [Wan91] for hidden actions. Maximal progress means that if
a hidden action can occur, it must happen now (unless an alternative action occurs) and should not be
postponed. In other words, hidden actions are urgent in ET-LoOT0S. In the DiLL approach, each digital
component is modelled as a process which usually synchronises with others. Input or output ports are
modelled by LOTOS events. Ports used inside a design are hidden and their events become urgent under
the assumption of maximal progress.

For i events, urgency is not always available. In the behaviour i {d}; stop the internal action can be
postponed until d time units. But after that, it must happen (unless an alternative action occurs). Aninternal
event is thus urgent only at its upper time bound.

6.2 LoTtos Mode of Timed Circuits

Before developing a model to specify timed digital components, it is necessary to identify which kinds
of timing characteristics need to be specified for digital designs. By intuition, timing characteristics are
temporal relationships among inputs, among outputs, and among inputs and outputs. The relationship from
input to output is normally called delay. It is the time interval between a signa change on an input and
the resulting signal change on an output. The relationship among inputs is called a timing constraint in
this thesis, meaning that digital circuits can work correctly only when the constraints are met. There is
no need to specify the relationships among outputs directly, as they are determined by delays and timing
constraints.

Severa possible approaches exist to specify atimed digital component, classified here as either an in-
tegrated method or a combined method. In an integrated method, a digital component is specified in one
process that deals with both functionality and timing. Although the integrated method may result in com-
pact specifications, it is not a “structural’' method and is hard to apply. The approach is not compositional
in the sense that functional and temporal characteristics of acomponent are not merely combined. It isalso
important to have untimed behaviour as a simple case of timed behaviour, i.e. to be able to isolate pure
functionality.
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Figure 38: The specification model for atimed component

Attention has therefore been focused on developing combined methods. The idea is to separate the
functionality and the timing characteristics into different processes, and then to combine them in an appro-
priate way.

The model adopted is aresult of considerable experimentation with different approaches. The selected
approachis called the parallel-serial model. Asshownin figure 38, the functionality is assumed to be spec-
ified with no (in other words, zero) delay. Timing constraints (TC) are placed in parallel with the functional
specification to check if input requirements are met. Delays are placed in series with the functionality to
provide delay for each output.

Note that the Err(or) gates in the figure are for analysis purposes only; they have no counterpart in
real physical components. It indicates that a timing constraint has not been met. It is found that modelling
circuit behaviour under unexpected inputs conditionsis really difficult, and even impossible sometimes. In
fact, it is more important to detect and correct design errors than to know what happens after the errors.

If the timing constraints are void and the delays may be arbitrarily large, the timed model is equivalent
to an untimed model. The model thus has the nice property that an untimed specification is a special case
of timed one.

6.3 Specifying Functionality

The functionality part of atimed component has zero delay. In other words, outputs change immediately
after an input change. Specifications of functionality are based on the model developed in section 3.2, i.e.
the first model for basic logic gates. Only a small modification is made to reflect the zero delay condition,
that isevery output hasaO lifereducer. Asdiscussed, thefirst basiclogic model isvery faithful toreal world
components except for its inertial delay assumption. Because no delay is associated with the functionality
part of timed circuits, this shortcoming is therefore got rid of. Again, the specification of a Nand2 gate is
taken as an illustration.

process Nand2 [Ipl, Ip2, Op] : (dtlpl, dtip2, dtOp : Bit) noexit : =

Ipl ? newdtlpl : Bit [newdtlpl ne dtlpl];
Nand2 [Ip1, Ip2, Op] (newdtlpl, dtlp2, dtOp)
[
Ip2 ?newdtip2 : Bit [newdtIp2 ne dtip2]
Nand2 [Ipl, Ip2, Op] (dtlpl, newdtlp2, dtOp]
[
let newdtOp : Bit = Apply (Nand, dtlpl, dtlp2) in
Op ! newdtOp {0} [newdtOp ne dtOp] ;
Nand2 [1pl, 1p2, Op] (dtlpl, dtip2, newdtOp)
endproc (* Nand2 *)
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6.4 Modelling Delays
6.4.1 Basic Delay Types

As mentioned in chapter 3, there are two basic delay types: pure delay and inertial delay. Suppose the
delay of adigital component is D. A pure delay retards a waveform by time D, but does not dter it. An
inertial delay may alter the shape of a waveform by eliminating the glitches shorter than D.

Sometimes, the delay of a component has a more general form. There may exist athreshold T < D
such that the component absorbs input pulses whose width is less than T. However output follows input
if the pulse width is more than T. In DiLL this is termed general delay. In fact, it could be considered
as aninertial delay T cascaded with a pure delay D-T. Figure 39 shows how inputs are related to outputs
for different delay types. For clarity, inertial and pure delays, which have be illustrated in chapter 3, are
re-drawnin thisfigure.

The following sections introduce the delay elements that have been included in the DiLL library. Al-
though these are components in the sense of building blocks, they do not like most of the componentsin
the library (gates, flip-flops, counters, etc.). Pseudo-components might be a more proper name for them.
Unlike the fixed delays D discussed above, all delays have a non-deterministic range from MinDel (the
minimum delay) to MaxDel (the maximum delay). Thisis termed non-deterministic delay or interval time
delay in the sequel. For general delay, MinWidth corresponds to the threshold T. It is obvious that the
assumption of non-deterministic delaysis more redlistic and flexible than that of fixed delays.

6.4.2 Inertial Delay

The following is a naive attempt at specifying a delay. The example reveals an interesting point related to
one aspect of ET-LoTOS semantics. maximal progress on hidden events.

process DelayNaive [Ip, Op]
(MinDel, MaxDdl : Time, Datalp, DataOp : Bit) : noexit :=
Ip ? NewDatalp : Bit; (* new input *)
DelayNaive[lp, Op](MinDel, MaxDel, NewDatal p, DataOp) (* continue *)
[
[Datalp ne DataOp] > (* potential output ? *)
Op! Datalp {MinDel, MaxDel }; (* output within [MinDel, MaxDel] *)
DelayNaive[lp, Op] (MinDel, MaxDel, Datalp, Datal p) (* continue*)
endproc (* DelayNaive *)

The specification uses the ET-LOTOS generalized life reducer to model inertial delay. Outputs happen
after the delay[MinDel, MaxDel] input has occurred. If another input comes before the delay is due, i.e.
the input pulse is less than the delay magnitude, output will not occur. Note that in this specification,
the moment when the output Op is produced is also determined by the environment, because the delay
range is associated with an observable action. But in DiLL what should really be specified is that the
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delay is decided by the component itself. Moreover if the component with the delay is connected to other
components in a larger design, the Op port might well be hidden. This would mean that the delay time
is exactly MinDel instead of being a non-deterministic value, due to the adoption of maximal progress for
hidden eventsin ET-LoTos. MinDdl is the earliest moment the hidden Op can occur, thus it should occur
at that moment.

To overcome the problem, a revised specification is given below:

process Delaylnertial [Ip, Op]
(MinDel, MaxDel : Time, Datalp, DataOp : Bit) : noexit :=

Ip ? NewDatalp : Bit; (* new input *)
Delaylnertid [Ip, Op] (MinDel, MaxDel, NewDatal p, DataOp)

I
[Datalp ne DataOp] > (* potential output *)
i {MinDel, MaxDel}; (* non-determinisitic delay within [MinDel, MaxDel] *)
Op! Datalp {0}; (* output immediately after delay *)

Delaylnertia [Ip, Op] (MinDel, MaxDel, Datalp, Datal p)
endproc (* Delaylnertia *)

The specification takes advantage of internal events. The internal event i introduces non-deterministic
delay, which means the output port can change its value at any time between MinDel and MaxDel. The
exact delay valueis determined by the component itself and is not affected by its environment. Moreover,
even after the Op is hidden in alarger circuit, delay is still non-deterministic since only hidden events are
urgent.

As mentioned in section 6.1.1, the internal event i has the necessity semantics, in other words i is
necessarily performed within the time defined by the life reducer. However this property is local and so
has no effect on other processes. Especially in a choice context, i has no priority over other actions. In the
above casg, if thereisalp beforethei action, i can still be prevented. This exactly correspondsto inertial
delay, where short pulses are eliminated.

After the occurrence of i, Op has to happen immediately according to the O life reducer. This needs a
cooperative environment which is able to participatein Op at that moment, otherwise the specification will
deadlock. This may indicate either an improper specification or wrong behaviour of the specified circuit.

6.4.3 PureDelay

Specification of pure delay is done by process forking. A delay component can be regarded as an un-
bounded first-in-first-out buffer with each output being delayed by a value within [MinDel, MaxDel].

process DelayPure[1p, Op]
(MinDel, MaxDedl : Time, Datalp, DataOp : Bit) : noexit :=

Ip ? NewDatalp : Bit; (* new input *)
([NewDatal p eq DataOp] > (* if no potential output *)
DelayPure[Ip, Op] (MinDel, MaxDel, NewDatal p, DataOp)
I
[NewDatalp ne DataOp] > (* if thereis potential output *)
(
(i {MinDel, MaxDel }; (* delay for [MinDel, MaxDel] *)
Op! NewDatalp {0}; (* output *)
stop

)

| (* at the same time, process forking *)
DelayPure[Ip, Op] (MinDel, MaxDel, NewDatal p, NewDatal p)

)

)
endproc (* DelayPure*)
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Figure 40: Catch-Up phenomenon with pure delay

In the above specification, every output occurs after delay[MinDel, MaxDel] from an input occurring.
Before the delay is due, there might be new inputs and consequently new outputs produced. When delay
isfixed, although all these outputs are interleaved according to the specification, the proper order of output
sequences can still be preserved because the time that each output appearsis determined by the delay mag-
nitude. However when delay is assumed to be non-deterministic rather than fixed, the above specification
may result in disordered output sequencessuchasOp! 0; Op! 0; Op! 1; ..., wherethesecondOp! O
overtakes Op ! 1 and causes the two consecutive Op ! 0 events. For convenience thisis called catch-up
in the sequel. Figure 40 illustrates that catch up occursif alater input change takes less time to reach the
output than an earlier input change. In the figure the delay is between 3 and 9 time units. As one can see, if
both eventsOp ! 0 and Op ! 1 happen within the overlapped region then catch up may arise. Suppose the
width of ainput pulseis W. A necessary condition for catch-up to occur is W < MaxDel-MinDsel.

In fact, catch-up may occasionaly emergein rea hardware if delays vary significantly, which is often
associated with an unstable environment. However as delays usualy fluctuate in a narrow range, the catch-
up condition is rarely met in practice. In DiLL any delay model that is based on pure delay (e.g. the
general delay component to be discussed soon) as well as non-deterministic delay may suffer from this
phenomenon. This is not a problem in the inertial delay model since an input change will prevent any
pending output; it is therefore not possible to catch up a pending output.

6.4.4 General Delay

As mentioned before, general delay has a threshold MinWidth. Input pulses whose width is less than
MinWidth will be absorbed by the component. They will appear at the output if their width is greater than
or equal to MinWidth. The general delay element in DiLL is specified such that it can model not only a
general delay but also inertial and pure delay. Thisis achieved by choosing appropriate timing parameters.
The following specifies the delay component.

process Delay [I1p,0p]
(Minwidth, MinDel, MaxDel : Time, Datalp, DataOp : Bit) : noexit :=
Ip ? NewDatalp : Bit; (* new input *)
Delay[Ip,0Op] (MinWidth,MinDel,MaxDel,NewDatal p,DataOp)

[(Datalp ne DataOp)] > (* thereis potential output *)
([MinWidth It MinDel] > (* general delay *)
(A(MinWidth) i; (* input holds at least MinWidth *)
((i {MinDel — MinWidth, MaxDel — MinWidth}; (* nondeterministic delay *)
Op! Datalp {0}; (* output *)

Stop

I|] (* processforking *)
DelayAux [I1p,Op] (MinWidth, MinDel, MaxDel, Datal p, Datal p)
)
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)
)
I
[MinWidth ge MinDel] > (* inertial delay *)
(i {MinDel, MaxDdl} ; (* nondeterministic delay *)
Op! Datalp {0}; (* output *)
DelayAux [Ip,0Op] (MinWidth, MinDel, MaxDel, Datal p, Datal p)
)
)

endproc (* Delay *)

This specification is essentially the combination of those for inertial and pure delays. When MinWidth
> MinDel it is identical to the inertial delay specification. When MinWidth < MinDdl, it is the case of
pure delay. The component first waits for MinWdth, during which input Ip has a chance to prevent output,
eliminating glitches shorter than MinWidth. Then it enters the pure delay phase, which is aso specified by
process forking.

Different combinations of the time parameters bring different kinds of delay components:

0 < MinWidth < MinDel < MaxDel < Inf describes general delay.

MinWidth = 0, MinDel < MaxDel < Inf isthe case of pure delay. The difference between general delay
and pure delay is that in the latter MinWidth is zero so that the component does not absorb a narrow
pulse.

0 < MinDel < MaxDd < Inf, MinWdth > MinDel isthe case of inertial delay. It appliesif the threshold
MinWdth is greater than MinDel. MinWdth is often set to Inf for inertial delay.

MinDel = 0, MaxDel = Inf, MinWidth > O isequivalent to the untimed delay component specified in sec-
tion 3.2. Usualy MinWdth is given the value Inf.

6.4.5 Delay Componentsfor Higher Level Specifications

In higher level specifications of components, delays from severa inputs to the same output may well
different. The delay components specified above assume the same range of delay for all inputsto the same
output, which turns out to be unrealistic when used with higher level components. For example, consider
a D (delay) flip-flop with asynchronous pre-clear.® Suppose the delay from clock (Ck) to outputs (Q and
QBar) is 20-30 ns, while the delay from the asynchronous clear to the output being reset could be as little
as 10-15 ns. Forcing a common range for them is hence unreasonable.

A delay component for higher level specifications is thus required. When a change turns up at an
input of the delay component (in this example, InQ), if there is no indication of the source of the change
(a clock transition or a clear), the delay component will have no idea about which delay value should be

6This is a one-bit memory element that stores data D under the control of a clock signal Ck. Its outputs Q and QBar (negated
output) can be reset with a clear signal at any time irrespective of the clock. If aclear is not being requested (value 1), after the
positive transition of Ck the input data will appear at the output after some delay. If a clear isrequested (value 0), the output will be
cleared asynchronously no matter what the level of the clock is.
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applied (20-30 ns or 10-15 ns). To make things clear, it requires the functional specification to declare
delay magnitudes when outputs are offered. For example, after Clear isreset to 0, the flip-flop must offer
INQ! 0! 10! 15to ensure that on this occasion InQ should be delayed for 10 to 15 ns. If InQ is changed
because of a clock transition, the flip-flop must offer InQ! 0! 20! 30.

As one might expect, because different delay values are applied to one delay component, the catch-up
phenomenon will arise in a pure delay specification, even if each delay valueis fixed. Delay components
for higher level specificationsinthe DiLL library are therefore based only on inertial delay.

6.5 Modedling Timing Constraints

Timing constraintsin DiLL are used to check if inputs of a component satisfy some conditions. There are
various common timing constraint such as setup, hold, pulse width and period etc.

Setup and hold times are always associated with flip-flops. For a D (delay) flip-flop, setup time is
the time interval between a change on input D and the trigger that stores this data (e.g. a positive-going
transition of the clock Ck). The data signal must then remain stable for a minimal time interval if correct
operation of theflip-flop isto be guaranteed. For aflip-flop, the hold timeistheinterval in which input data
must remain unchanged after triggering by the clock. Again, this minimum must be respected for correct
operation. A timing diagram showing setup time and hold time is given in figure 42.

The setup time constraint is specified as follows, supposing that the active clock transition is positive-
going. As explained in section 6.2, an additional gate Err isintroduced to detect violation of the constraint
and to simplify specification under erroneousinputs. After input on D takes place, it is hecessary to notice
the next event and the time it appears. If within the setup time there are no events at al, this D passes the
check. If anegative clock transition shows up, the time is recorded so that further events can be checked in
the remainder of the setup time. If a positive transition of clock signal comes within the checked time, the
Err gate has to be used to show that a violation was detected. It is also possible that several Ds comein a
string. In this case, the moment that the last D happensis used as the start point of the setup time:

process SetupDel [D, Ck, Err] (SetupTime: Time) : noexit :=

D ? NewDatalp: Bit; (* new datainput *)

AfterD [D, Ck, Err] (SetupTime, SetupTime) (* check setup time*)
[

Ck ? NewCk : Bit; (* new clock input *)

SetupDdl [D, Ck, Err] (SetupTime) (* no setup time to check *)

endproc (* SetupDel *)

process AfterD [D, Ck, Err] (SetupTime, SetupRem : Time) : noexit : =

A(SetupRem) i; (* no events during SetupTime *)
SetupDdl [D, Ck, Err] (SetupTime) (* goto the next round *)
Ck ? NewCk : Bit @ t; (* new clock input *)

[NewCk eq Q] > (* negative-going clock? *)

AfterD [D, CK] (SetupTime, SetupTime — t) (* check remaining setup time *)
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[NewCk eq 1] > (* positive-going clock *)
Err ! SetupError; (* setup time violated *)
SetupDdl [D, Ck, Err] (SetupTime) (* goto the next round *)

)

[

D ? NewDatalp: Bit; (* new datainput *)
AfterD [D, Ck, Err] (SetupTime, SetupTime) (* set the new start point *)

endproc (* AfterD *)

The hold time constraint is specified in a very similar way. There are also other timing constraintsin
the DiLL library. For example, the width timing constraint defines the minimum width that an input pulse
should have. The period timing constraint is the minimum period for an input signal, especialy clock
signals. Figure 43 illustrates the two constraints.

6.6 CaseStudy: A 2-to-1 Multiplexer

In this section, a small circuit (a 2-to-1 multiplexer) is specified and validated. The validation goal is
to examine if there are hazards in the design, which is usually done by analysing delays of components.
Of course a DiLL specification can also be used for other purposes such as deciding clock periods for
synchronous circuits, calculating timing performance, etc. But because of the limitation of tools, only
small examples are studied so far.

A 2-to-1 multiplexer has two data inputs A and B, a selection input Sand an output C. The behaviour
is such that if the selection input is 0, the data at A will appear at C after some delay. Alternatively if the
selection input is 1, the data at B will appear at C. The delays used in the example are inertial, mainly
because they are easy to handle and are more general than pure delay.

The multiplexer is specified at two levels. The higher level specifies the required behaviour and timing
performance. The lower level specifies the structure of the component by connecting basic logic gates.
The lower level implementsthe higher level. The timed specifications are analysed through simulation and
testing.

6.6.1 TE-LoLA

As standard LoTOS is untimed, there has been little tool support for timed extensions of LoTos. The
only tool available is TE-LoLA, which supports TE-LOTOS (Time Extended LoTos [RQ96]). Although
ET-LoTtos and TE-L oTOs adopt different semantic models, the equival ence between them has been estab-
lished [LR95]. It istherefore possible to translate ET-L 0T0S specificationsinto TE-L OTOS ones. Because
of their similarity, the trandation is always possible although some subtle differences need attention. For
example, i {d} in ET-LoTos meansi will happen non-deterministically between 0 and d time units, but in
TE-LoTos it means that i will occur at exactly time d. The correct translation should be i {0..d} in TE-
LoTos. In order to avoid confusion, the following specifications will still use ET-L 0oTOS syntax, athough
the actual analysis was made with TE-LOTOS.



The validation functions of TE-LOLA are simulation and testing, which are both exploited in this case
study.

6.6.2 Behavioural Specification and Validation

Behavioural specification of the 2-to-1 multiplexer uses two processes, one defines the functionality and
the other defines the delay type and magnitude. The higher level specification of the multiplexer is specified
simply by composing these two parts. Multiplexer[A, B, S InC] (0, 0, O, 0) is the process for zero delay
multiplexer with every portsinitially being at 0. Delaylnertia [InC, C](10, 15, 0, 0) is the instantiation of
theinertial delay specified in section 6.4.2, with the delay in the range 10 to 15 time units.

process Multiplexer [IA, 1B, IS, OC] (dtlA, dtIB, dtlS, dtOC) : noexit :=

IA ? newdtlA : Bit [newdtIA nedtlA] ; (* IA ischanged *)
Multiplexer [1A, 1B, IS, OC] (newdtlA, dtIB, dtlS, dtOC)

I
IB ? newdtlB : Bit [newdtIB nedtIB] ; (* IB ischanged *)
Multiplexer [IA, IB, IS, OC] (dtlA, newdtIB, dtlS, dtOC)

I
IS?newdtlS: Bit [newdtiSnedtlS] ; (* 1ISischanged *)

Multiplexer [IA, 1B, 1S, OC] (dtlA, dtlB, newdt!S, dtOC)

let newdtOC : Bit = (dtlA and not(dtlS)) or (dtIB and dtlS) in

([newdtOC ne dtOC] = OC ! newdtOC {0}; (* output change immediately *)
Multiplexer [IA, IB, IS, OC] (dtlA, dtIB, dtlS, newdtOC)
)
endproc (* Multiplexer *)
hideInCin (* internal gateto delay *)
Multiplexer [A, B, S, InC] (0, 0, 0, 0) (* multiplexer instance *)
[[InC]| (* sync with delay *)
Delaylnertial[InC, C] (10, 15, 0, 0) ) (* delay instance *)

The behavioural specification was validated by the simulation and testing functions of TE-LOLA. The
aim isto ensure that the specification is as expected. Asiswell known, both simulation and testing are not
exhaustive validation. Thisis especially true for timed specifications with a dense domain: an event can
take place at any time so there is no way to give al possible execution paths. The strategy for validation
is to focus on representative “states, for example A! 1 {0}; B! 1 {0}; S! 1 {0} is used to stand for the
situations where al inputs changesto 1. They may change to 1 at different times in different orders, but
itisimpossibleto list all of the situations. There are three inputs here so there are 8 input “states' in total.
Simulation is done by randomly choosing these input states one by one to see if the outputs are right. The
recorded simulation paths can also be used as the criterion when the lower level specification is validated.

Testing is amore efficient and reliable method compared to simulation because one test case can cover
many simulation paths. In TE-LOLA testing is done by composing test processes in paralel with the
original specification. Each test processis atest case. If the test process can be followed for all executions
of the composed specification, the result of testing is must pass. If thetest process can be followed only for
some executions, the result is may pass. Otherwise the test is considered to be rejected.

For thisexample, testing can be conducted in two steps. First, it should be made surethat fromtheinitial
state there is no problem to move to any other states. Seven test processes are defined corresponding to
moving to the seven states other than theinitial one. For instance, after moving to the state A=1, B=1, S=0
the output should be C=1 after 10 or 15 time units. Second, it is necessary to check that after the first
correct movement, the specification can always changeto any other state correctly. 56 (8 x 7) processesare
designed because each one of the 8 states can moveto the other 7 states. If it isassumed that the multiplexer
has iterative behaviour (thisis actually a testing hypothesis), the above 63 (7 + 56) test processes should
have satisfactory coverage. In fact, TE-LOLA supports executing all test cases from a batch file, thus a
single run can obtain all the test results.

The higher level specification is proven to be correct according to simulation and testing.

85



Al n

Figure 44: Structure of 2-to-1 multiplexer as timed logic gates
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Figure 45: Hazards and their LOoTOS specifications

6.6.3 Structural Specification and Validation

The structure of the 2-to-1 multiplexer is shown in figure 44.7 The logic gates in the diagram are timed
gates. Each of them consists of zero-delay logic and a delay component. The inset in the figure shows
the structure of the and gate G2; 0_D in the figure means zero delay. Other gates have the same kind of
structure. All gates are supposed to have a fixed delay which is 5 time unitsin this example. The design of
the multiplexer is “classical' and can be found in textbookslike [Ki83]. However, aswill be seen later this
design contains timing hazards.

Hazards are unwanted transitionsthat appear on the outputsof digital circuitsin responseto the changes
on inputs. For example, suppose that the output should stay the same (e.g. 1) after an input changes from
state I; to I,. But what happens in an actual implementation is that the output changes from 1 to 0 and
then back to 1 after the input. The consecutive unwanted transitions 1 to 0 and 0 to 1 are regarded hazards.
Figure 45 illustrates kinds of common hazards in circuits and their corresponding L oTOS specifications.
Cases (a) and (b) are called static-0 and static-1 hazards respectively, while (c) and (d) are called dynamic
hazards.

The simulation paths and test processes for validating the higher level specification are re-used to
analyse the lower level design. Below isone of thetest cases which aimsto detect if thereis a hazard when
the circuit moves from state 111 to 110 (A=1, B=1, S=1to A=1, B=1, S=0). This test case should have
been rejected if there were no hazard, however theresult is may passindicating a static hazard exists during
this transition.

process Test111 110Hazard [A, B, S, C, OK] : noexit :=

A11{0};B!1{0};S!1{0}; (* changeto state 111 *)
C!1{10, 15} (* output 1 *)
S10{2}; (* changeto state 110 *)

(C'0{10, 15}; C'y; (* hazard *)

"The types of the gates are omitted. The triangle with acircle is an inverter, the *D' shapes are and gates, the shield shapeisan or
gate.
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| Transition | Typeof Hazard | Number of Changed Inputs |

000to 101 static-0 2
010to 101 static-0 3
011 to 100 static-1 3
011to 110 static-1 2
111 to 100 static-1 2
111to 110 static-1 1

Table 6: Hazards in the 2-to-1 Multiplexer
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Figure 46: The hazard-free Multiplexer

OK; stop

)
endproc (* Test111_110Hazard *)

Evaluating all test processes shows that 6 of them pass the test (when they should have been rejected).
Table 6 lists these transitions and the corresponding hazards. The test results indicate that when the delays
of each gate are fixed, the circuit exhibits static hazards. One of the hazards happens when thereisasingle
input change; the others occur when more than one input changes simultaneously.

By analysing a passed test sequenceit is possible to discover the cause of the hazard: the inputs follow
different lengths of path to reach the output. Figure 46 is a very simple solution to the problem (though
it may not be realistic): three redundant delay components are used to guarantee that each input-output
path is exactly three gate delays. It is obvious that each delay component should have the same delay
value as the basic logic gates used in the design. In practice, they could be repeaters or some other digital
components which have the desired delay value. This revised design is proven to be correct by the same
testing procedure.

Finally, it should be pointed out that the original design of the multiplexer is usually used in syn-
chronous circuits, which means the hazards discovered will have no influence when clock cycles are slow
enough (for example, longer than 15 time units). Apparently, the design must not be used in building
asynchronous circuits due to these hazards discovered.

6.7 Related Work

Industrial HDL s (hardware description languages) such as VHDL ([IEE93]) and Verilog ([|EE9S5]) support
simple timed specifications of digital circuits. Among various timing characteristics, only fixed inertia
and pure delays are specifiable in these two languages. To improve timing accuracy, OVI (Open Verilog
International) adopted SDF (Standard Delay Format) for representation and interpretation of timing data
at any stage of circuit design. A wide variety of timing data can be specified in great detail in SDF. For
example, delays are allowed to be non-deterministic and different kinds of delays, such as port delays, path
delays and interconnect delays are modelled. Dozens of timing checks (setup timing, hold timing, . ..)
and timing environments (path constraints, period constraints, . . .) are also supported. At the specification
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stage, SDF files can be used as supplementsto VHDL or Verilog program to introduce more precise timing
information. SDF will become a future | EEE standard [|EE99].

Formally specifying and analysing timed circuits has attracted reasonabl e attention only after the resur-
gence of asynchronous circuit design. For synchronous circuits, quantitative timing is normally abstracted
in both specification and validation. Although it is also possible to avoid timing in delay-insensitive (DI)
or speed-independent (S1) circuits, timed asynchronous circuits can be significantly smaller and faster than
those assuming unbounded delays.

In [HB97], CSP was used to specify asynchronous circuits. After a CSP program was transformed
into a safe Peri Net, non-deterministic time delays (called interval delays in that paper) were annotated
on the places of the nets. An algorithm was then developed to determine the extreme separation in time
between two communication actions of the CSP program. The specification aspect of this methodology is
apparently poor; the authors main attention was to develop an efficient analysis algorithm.

In[MY96], timed automata ([AD94]) were employed to specify the behaviour of MOS transistors di-
rectly, aswell the behaviour of inputsand environment. A circuit isthen the composition of these automata.
TCTL (Timed Calculation Tree Logic [ACD90]) is the formalism for specifying properties. Verification is
done by model checking of the TCTL formula against the timed automata, which is performed automati-
cally by thetool KRONOS ([DOTY 96]).

[MPO5] utilized the same tool to analyse gate level asynchronous circuits. The authors developed a
formalism called timed boolean functions to specify circuits. Each gate is specified by a function, and a
circuit is simply a set of al gates. Each function is actually the combination of two sub-functions. one
for the functionality of the gate, the other for the delay associated with the gate. Inertial delay (termed
latency in the paper) and pure delay (termed ideal in the paper) are modelled, although only inertial delays
are really used in circuit specifications. The authors proved that each circuit modelled by timed boolean
functions could be transformed into an equivalent timed automaton, allowing analysis based on verification
tools such as KRONOS.

The process algebra CIRCAL has also been used in rea time systems ([CKM98a, CKM98h]). Unlike
LoTos, CIRcAL itsalf is not extended for this purpose. Instead, an action t is regarded as a global tick,
and specific processes are defined with respect to t to model various delays. The approach becomes very
complicated when adense time domain is considered. Except for aglobal clock, each process should have
its own local clock, and there are also local clocks for every two processes which have interactions. All
local clocks can be set and reset when necessary, which is the responsibility of specifiers. Moreover, in
order to keep each local clock progressing at the same rate, there should be a processto control the progress
for every two local clocks. The advantage of the CIRCAL methodology is that the language itself needs
no extension, neither do the tools supporting it. The disadvantages are that the burden of maintain timing
mechanismsis actually moved to circuit specifiers.

By using ET-LOTOS, the thesis can specify timed circuits at various level of abstraction, i.e. not just
gate level or whatever. Specifications are intuitive and concise, thanks to the timed semantics of ET-
L oTos. Because specificationsinclude the most important timing characteristics, namely delaysand timing
constraints, various properties can be analysed. The main impediment at the moment is that because ET-
L oTos has not yet become an | SO standard, few tools support it. Thiswill be overcomein the near future
with the appearance of the new standard E-L 0TOS.

6.8 Conclusion

This chapter has used ET-L 0TOS to specify timed circuits. Two important timing characteristicsin digital
circuits, namely delays and timing constraints, have been identified. A timed component is modelled as a
zero delay part followed by adelay component. If necessary, timing constraints are used to guard the inputs
to ensure that input timing conditions are respected. The model is compositional, and has the nice property
that untimed components are just special cases of timed ones. Various delays and timing constraints are
provided by the DiLL library. It should be pointed out that when pure delays are associated with non-
deterministic values, DiLL specification will suffer from the catch up phenomenon, which might not be a
realistic representation of real hardware.

Timed specification can serve as the basis of various analyse. For example, it can be used to check
whether timing requirements on a digital design are respected. This can be done by using the timing
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constraint components. As in the multiplexer example, it is also valuable in discovering potential timing
errorslike hazards. It can aso be used to analyse the timing properties of alogic design such asits minimal
and maximal delays.

To gain these benefits really needs the help of tools. In the case study of the multiplexer, test cases
were generated manually, It would be ideal if all tests could be generated automatically. Testing theory of
ET-LoTOS has been established in [L97]. What is missing is conformance relations and test generation
algorithms, which require further theoretical investigation. Future work based on this thesisisto formally
verify timed circuits. One possibility is to used the tool KRONOS, which checksif the system described by
atimed automaton satisfies a requirement expressed as aformulaof TCTL. A method for transforming ET-
LoTos specifications to timed automata has aready been implemented in [DOY 95, Her97]. Verification
of atimed DiLL specification may thus be possible.
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7 Conclusion

This chapter concludes this thesis. Because the former chapters have already contained individual sum-
maries, this chapter focuses on the main contributions of the thesis, then provides suggestions for future
work.

7.1 Main Contributions

Thethesis uses the formal language L 0TOS to specify and analyse digital circuits. It investigates the topic
from severa different but closely related aspects, namely specification, verification, testing, and timing.

The underlying modelling approach of DiLL was developed in [TS94], which mainly included the
models for signals, wires, components, the connection of components, and a specification of basic logic
gates which has been presented again in section 3.2 . All the larger circuitsin [ TS94] were built from basic
logic gates. Inorder to support the design procedureused in industry, thethesisidentified that it is necessary
for DiILL to specify circuits at different levels of abstraction. Therefore not only structural specifications
should be supported, but also behavioural specifications. Many common components were subsequently
provided with behavioural specifications. At the same time, the data type BitArray was defined to aid
higher level behavioural specification.

The basic modelling approach was then applied in specifying synchronous and asynchronous circuits.
Since circuit structure can be specified routinely, chapter 3 focused on the behavioural specifications. Apart
from providing specifications of common building blocks of both synchronous and asynchronous circuits,
this chapter resulted in several important observations: 1) The same component may have different models
in different kinds of circuits. 2) The same component may have different model when different verification
purposes are required. 3) When LoT0osS events models signal transitions, as in the case of modelling
asynchronous circuits, the behaviour of a L oTOs specification may not represent its corresponding circuit
very well since LoTos does not differentiate inputs and outputs. 4) To overcome the problemin 3), input
receptive and input quasi-receptive specifications should be employed.

Chapter 4 provided the approach of verifying digital circuits specifiedin LoTos. Unlike most hardware
verification approaches and tools, DiLL supports the three conventional formal verification tasks, namely
requirements capture, implementation verification and design verification. Basically implementation ver-
ification is achieved by comparing the relations between LTSs, and the other two tasks can be done by
model checking temporal logic formulae. The chapter reveals that the existing relations characterising the
relationships between two LTSs are not suitable for implementation verification of asynchronous circuits.
Two relations are therefore defined to solve the problem. The relations consider the difference between
inputs and outputsin hardware, and providesintuitive criteriafor the correctness of asynchronous circuits.
A verifier VeeriConf was implemented for checking the relations. The case study in the chapter discovered
abug in the design of a Bus Arbiter, a benchmark circuit which has been verified by many researchers.

Chapter 5 explores a new direction of applying formal methods in digital circuit design. Here, test
vectors (called test cases in the community of formal verification) are generated automatically from the
behavioural specification of a circuit, then fed into a commercial VHDL simulator to simulate the design
of the circuit. The method alleviates the state explosion problem by avoiding generating the state space
of circuit designs, which are usually much larger than their corresponding behavioural specifications. The
approach is helpful in finding subtle bugs which cannot be detected by formal verification, since a simula-
tion model of acircuit (e.g. The VHDL description of the circuit) is usually closer to real hardware than a
formal model. A test generator has been implemented, which guarantees to cover al possible transitions
of the state graph of the behavioral specification. The case studied in the chapter discovered a bug in an-
other benchmark circuit, namely the BlackJack Dedler. This circuit is also studied by other researchers
using formal verification. But this bug, which is related to the wrong timing in the design, might never be
discovered by formally verifying a model which does not contain timing information.

Chapter 6 used ET-L 0TOS to write circuit specifications which contain quantitative timing magnitudes.
This chapter identified the important timing characteristics in digital circuits, namely timing constraints
and delays, then specified them in ET-LoTos. The model for timed components and circuits was also es-
tablished. Unlike most formal hardware specification and verification approacheswhich ignore quantitative
timing, this chapter is a new attempt to address the issue. Timed specifications of digital circuits provide
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the basis for thoroughly analysing circuit behaviour which is sensitive to timing, and can also be used in
evaluating the speed performance of digital circuits.

One of the motivations of the thesis was to examine the possibility of applying LOTOS outside its
traditional area. Through the investigation, it was discovered that LOTOS is suitable for specifying digital
circuits, including both synchronous and asynchronous circuits. Compared with other formalisms used in
hardware specifications, L 0TOS has a clear advantage in higher level specifications, such as at the system
level or the algorithm level. Its status as international standard helps to reduce the efforts in developing
analysis tools greatly. The thesis demonstrated that most general LoT0s tools can be used in analysing
DiLL specifications directly. Even when such tools are not available, customized tools can be quickly
developed by using the programming interface provided. Thanks to these well-developed tools, the thesis
was able to span several different aspects of validating digital circuitsin arelatively short time.

The thesis also identifies some limitations when LoTOS is used in the area of digital circuits. The
overhead of the language makes it more difficult for formal verification. The state space generated directly
from a LoTos specifications is normally much larger than the real state space of a circuit. Current LOTOS
tools can only generate the larger LTSs then minimise them to smaller ones. However if the initia state
spaces are not able to be generated in thefirst place, minimisation cannot be applied. Althoughthisisreally
the problem of verification tools rather than that of the language, it restricts DiLL from analysing larger
circuits. The breakthrough might lie in using the syntax based verification approach; hopefully there are
aready such theories developed for LOTOS such asin [Kir94, ST97, MT94].

Thereis aso a gap between the process communication scheme adopted in LoTos and the communi-
cation scheme between real hardware components. This happens when LoT0OsS events model signal tran-
sitions. In LoTos the communication of processes is achieved by the synchronisation of common events.
Processes can refuse events when they are not ready to accept them. But in rea hardware, input signal
transitions can never be refused by components. As aresult of the difference, behaviour which happensin
real hardware might not be represented by their LoTos model. To accurately model circuit behaviour, the
thesis suggest input receptive and input quasi-receptive specifications. It should be pointed out that these
specifications are usually more difficult to write, and that input quasi-receptive specifications usually result
in alarger state space which makes verification more difficult.

The second moativation of the thesis was to provide theories and tools to aid designing correct hardware.
DiLL advocates the component-based specification style which emphasizes the re-use of trusted compo-
nents. It comes with a comprehensive library which contains the validated specifications of commonly
used digital components. Using these library componentswill help to reduce errorsin specifications. DiLL
supports implementation verification, as shown in the case study of the bus arbiter, it is a complementary
approach to design verification and should be used when possible to detect as many bugs as possible in
designs. DiLL also explores the new area of combining formal methods with the traditional simulation
approach. The results of the exploration show that L OTOS testing theory can be successfully employed
in the area. Two tools were developed along the theoretical investigations, namely VeriConf and TestGen,
which help to support the case studies in the thesis, and which as well can be employed to validate other
hardware circuits.

7.2 Future Work

With E-LoTos becoming the new standard of LOTOS, new investigation should be made into using E-
LoTos to specify and analyse digital circuits. The investigation will provide feedback of advantages and
limitations on the language, which should be of interest to the language developers since E-L oTos is till
in the course of standardization. It will also benefit the community of hardware designersfor the following
reasons:

e E-LoTOs adopts many feature of common imperative languages so that it is more user friendly than
LoTtos. DiLL specifications will be easier to write if E-LOTOS is to be used as the underlying
formalism.

e Thecurrent DiLL approach provideslimited support for analysing timed specification, dueto thelack
of proper tools. After E-L 0TOS becomes an international standard, more tools will be developed to
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support it. It is hoped that the new tools will make it possible to analyse the timing characteristics of
practical circuits.

Another immediate research direction is the test selection problem. In chapter 5, a test suite is guar-
anteed to cover al the transitions of the state space of a specification, but how much it covers the whole
behaviour of the specification is unknown. Moreover, when the circuits are relatively complex, the size of
the test suite might be very large resulting in considerable simulation run-time. The methodologies of test
selection advocated in [BTV91, ACV93, CG97] might help. Heuristics related to circuits should also be
explored, which is extremely useful for testing important parts of a circuit, or the parts that are subject to
errors.
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A Glossary

ACTL: Action based Computational Tree Logic [DV90], atempora logic whichis similar to CTL but is
interpreted over actions.

ADT: Abstract Data Type, alanguage which support ADT does not imply the particular implementations
of datatypes.

Asynchronous Circuit: A circuit in which components change state independently at their own rates.

Behavioural Specification: A behavioura specification looks at a system as a black box. It specifies the
behaviour of acircuit exhibited on its interface to the environment.

BDD: Binary Decision Diagram, a data structure for representing a boolean function [Bry92].

Basic Logic Gate: abasic component that evaluates asimplelogical function such as and, nand (not and),
xor (exclusiveor).

Bounded Delay: acomponent has bounded delay if an upper and lower bound for the delay magnitudeis
known.

CCS: Calculus of Communicating Systems [Mil89], a process algebra used to specify parallel and con-
current systems.

CircAL: Circuit Calculus [MM92]. A process algebra derived from CCS for specifying and analysing
digital circuits.

Combinational Circuits: Circuits whose outputs depend only on the current inputs.

CSP: Communicating Sequential Processes [Hoa85], a process algebra used to specify paralel and con-
current systems.

CTL: Computational Tree Logic [CES86], a branching time temporal logic which is interpreted over
states.

Design Verification: One of the hardware verification tasks which checksif an implementation of acircuit
design satisfies some properties.

DI Circuit: A delay insensitive circuit assumes unbounded delays on its wires and components, thus the
correct function of the circuit is insensitive to the actual delays on wires and components.

E-LoTos: Enhancementsto LoTos [1SO98].
ELLA: A hardware design language from DRA Malvern.
ET-LoTos: Enhanced Timed-LoTos[LL97].

Flip-Flop: Clocked one-bit memory element whose output is decoupled from its input. New data may be
read into aflip-flop while previous datais being output. A D (Delay) flip-flop has a single data input
that is read on clock signals. A JK flip-flop has two data inputs (corresponding to 0 and 1 outputs)
that are read on clock signals. Other varieties include MS (Master-Slave), RS (Reset-Set) and T
(Trigger) flip-flops.

Fundamental Mode: The environment of a circuit is said to be in fundamental mode if it can provides
inputs only when the circuit is stable.

Hazard: Transient and undesired signal transitions appeared on the outputs of digital circuitsin response
to the changes on inputs.

HDL: A hardware description language is alanguage for rigorous definition of hardware components and
circuits. It generaly provides support for multi-level description and realisation of hardware, and
may have aformal basis.
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HML: Hennessy-Milner Logic [HM80], alogic which is interpreted over actions and is used to express
the properties of concurrent systems.

HOL: Higher Order Logic. A proof generating system for higher order logic [Gor87].

Inertial Delay: An inertial delay component may filter out the narrow pulses of its input signals, conse-
guently the shape of its output waveform may be altered.

Input Receptive: The specification of acircuit isinput receptiveif every input is acceptable at every state
of the specification.

Input/Output Mode: The environment of a circuit is said to be in input/output mode if it is alowed to
provide inputs no matter if the circuit is stable or not.

Implementation Verification: One of the hardware verification tasks which checks if a circuit specifica-
tion related to another one with respect to aformal relation.

LoTtos: Language of Temporal Ordering Specification [1SO89], a formal language standardised by 1SO
in 1989.

LTS: A Labelled transition system is an automaton consisting of a set of states (including theinitial state),
aset of actions and a set of transitions. Each transition is related to two states and an action, repre-
senting that the system changesits state from one to the other after the action takes place.

Model Checking: Themethod of formally verifying whether afinite-state model satisfies some properties.
u-Calculus: A modal logic [Lar90] which is an extension of HML.

Pure Delay: A pure delay component does not change the waveform of its input signal; all the signa
transitions are smply delay by a certain magnitude.

QDI: A guasi-delay insensitive circuit assumes unbounded delays on its wires and components, but delays
on forked wires are assumed to be the same.

Occam: A language based on CSP developed in INMOS to specify concurrent processes which commu-
nicate via one-way channels.

Race Condition: a situation where the relative speeds of components decides the behaviour of a circuit.
A race condition is usually undesirable as it can lead to non-determinism of digital circuits.

Requirements Capture: One of the hardware verification tasks which checks if a circuit specification is
what it should be.

RTL: A specification at register transfer level specifies the data flows between registers of digital circuits.
Ruby: A relational language for describing and designing circuits [JS90].

Semi-Modular: A circuit is semi-modular if for all componentsin the circuit, their inputs cannot change
any pending outputs.

Sequential Circuit: A circuit whose outputs depend on the states of components at a previous time. Se-
guential circuits generally have some kind of feedback, such that previous outputs affect future val-
Ues.

Sl Circuit: A speed independent circuit assume zero delays on its wires but unbounded delays on its
components. The correct function of the circuit is independent the actual delays on components.

Structural Specification: A structural specification specifies how a system is built from smaller compo-
nents.

Synchronous Circuits: A circuit in which components change state under the control of a master clock.
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Unbounded Delay: A component has unbounded delay if the upper bound of its delay magnitude is un-
known, except that it is positive and finite.

TE-LoTos: Time Extended LoTos [RQ96].

Temporal Logic: A logic with the notion of timeinvolved. A temporal logic formulacan express the fact
about past, present and future.

VHDL: Very High Speed Integrated Circuit (VHSIC) Hardware Description Language. An | EEE standard
HDL [IEEQ93].

Verilog: A hardware description language which was standardised by |EEE [IEEQ5].

B DiLL Library Components

This section summarises the componentsin the DiLL library. The components of synchronous circuits are
foundin table 7, of asynchronouscircuitsin table 8, and of timed circuitsin table 9.

Component Variants
Adder 2/4 inputs, behavioural/structural, half/full/parallel/ripple
And, ... 2/3/4/8 inputs, 0/1-active
Clock -
Comparator 1/4/8/n inputs, behavioural/structural
Counter behavioural/structural
Decoder 2/3 inputs, behavioural/structural, 0/1-active outputs, BCD-Decimal/Excess-3/Gray
Demultiplexer | 1/2 inputs, behavioural/structural
Divider 2/4/8 inputs, behavioural/structural, +ve/-ve trigger
Encoder 4/8 inputs, behavioural/structural, 0/1-active outputs
FlipFlop D/IK/MS/RS/T, behavioural/structural, +ve/-ve trigger, preset, preclear, lockout
Inverter 1/4/8 inputs, 0/1-active tri-state enable
Latch D/RS, 1/4/8 bits, behavioural/structural, preset, preclear, clocked
Memory behavioural/structural
Multiplexer 2/4 inputs, 1/8/n-bit, behavioural/structural
Ore, ... source of logic 1/0, sink
Parity 8 inputs, white-box/gate-level
Register 4/8/n bits, black-box/gate-level, +ve/-ve trigger, load enable/preclear,
bucket brigade/pass-on/shift
Repesater 1/4/8 inputs, 0/1-active

Table 7: The components of synchronouscircuitsinthe DiLL library

Component Function

And, ... basic logic gates

C_Element (Join) | used for synchronising signal transitions

Fork forking wires

Latch storage components

Merge for merging signal transitions on two inputs
RGD Arbiter request—grant—done arbiter

Selector selecting nondeterminisiticly from two inputs
Sequencer sequencing two inputs

Wire for explicitly introducing delay

Table 8: The components of asynchronous circuits

LoTos Syntax

103



This section gives selected syntax for LoTos in table 10. Only the informal explanations are presented
here. The definition of LoTos syntax and its formal semantics can be found in [I1SO89].

ET-LoTOS Syntax

This section givesthe syntax of ET-LoTos which is related to its timing featrues. The definition of the
syntax of ET-LoT0s and its formal semantics can be found in [LL97].

Component Function

GeneralDelay | generd delays, can include inertial and pure delays
Hold hold timing constraints

Inertia Delay inertial delays

Period timing constraints, for checking the periods of signals
PureDelay pure delays

Setup setup timing constraint

Width timing constraints, for checking the widths of signals

Table 9: Timed componentsin the DiLL library
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Notation Meaning

(* text *) acomment

stop abehaviour that does nothing (no further action)
exit abehaviour that immediately terminates successfully
exit (results) successful termination with result values

gate a “port' at which event offers may synchronise

gate !value an offer to synchronise on a given value

gate variable:sort

gate!... ?... [predicate]

process name [gates] (parameters) :  noexit
:= behaviour
process name [gates] (parameters) @ exit

(results) := behaviour
name [gates] (parameters)
offer ; behaviour

[guard] — behaviour
behaviourl [| behaviour2
behaviourl >=> behaviour2

exit (results) >

accept declarations in behaviour
behaviourl > behaviour2
behaviourl || behaviour2
behaviourl ||| behaviour2

behaviourl |[gates]| behaviour2

an offer to synchronise on any value of the given sort, binding the actual
value to the given variable name

an event offer with a predicate on values synchronised

anamed process abstraction with given gates and value parameters, but
no termination (e.g. it repeats indefinitely)

aprocess that terminates successfully with the given result sorts

an instantiation of a named process

prefixes an event offer to some behaviour (“followed by')

offers behaviour only if the guard condition is satisfied (Vif')

offers a choice between two behaviours (“or')

alows the second behaviour to occur if the first behaviour terminates
successfully (“enables)

successful termination with export of result values

allows the second behaviour to disrupt the first behaviour unless this
terminates successfully first ("disabled by’)

allows two behaviours to run in parallel, but fully synchronised on their
events (“synchronised with')

alows two behaviours to run in parallel, but with independent occur-
rence of their events (Cinterleaved with')

allows two behaviours to run in parallel, synchronising on all events at
the given gates (“synchronised on gates with’)

Table 10: Selected LOTOS syntax
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Notation Meaning

AT Q process Q is delayed by d

exit {d} successful termination within [0, d], otherwise behaves like stop
exit (results) {d} same as above but termination with results

gae!... 2. @t thetime when gate!... ?... takes place isrecorded in t

gate!... 2. {d} gate!... ?... happens within [0, d], otherwise behaves like stop
gate!... 2... @t [f(t)] | thetime when the event takes place satisfies f(t), otherwise stop
i {d} i must happen within [0, d]

i @t{d} i mut happen within [0, d] and the time isrecorded in t

Table 11: Seclected ET-LOTOS syntax
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