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Abstract

This report investigates modelling and verifying synchronous circuits in DiLL (Digital Logic in
Lotos). The synchronous circuit model used here is quite similar to the classical one exploited in digital
logic design, but some additional restrictions are applied to simplify analysis. The basic logic gate
and storage element models are modified from previous versions of DILL to suit synchronous design.
To evaluate the approach, two benchmark circuits are specified and then verified using CADP (Caesar
Aldébaran Development Package).

Keywords: Bus Arbiter, CADP (Caesar Aldébaran Development Package), Digital Logic, DiLL
(Digital Logic in LoTos), Hardware Verification Benchmark, HDL (Hardware Description Language),
Lortos (Language of Temporal Ordering Specification), Single Pulser, Verification
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1 Introduction
1.1 Problem Addressed

This report summarises work on modelling and verifying synchronous circuits in DiLL (Digital Logic in
LoTos). Lotos (Language Of Tempora Ordering Specification [7]) is a general-purpose formal specifi-
cation language. When DiLL was first developed, it was intended for both synchronous and asynchronous
design. Thisisquitenatural becausein the real world most synchronousand asynchronouscircuits are built
from the same basic logic gates (and, or, inverter, etc.). In previous versions of DiLL [9, 10] these basic
logic gates were modelled in an uniform way so that they could be used in both design styles.

However, after attempting to verify some synchronouscircuits modelled by DiLL, it was found that this
uniform model of basic logic gates introduces some difficulties during verification. As an example from
the original approach, a two-input Nand gate is modelled as follows:

process Nand2[Ipl, Ip2, Op](dtlpl, dtip2, dtOp : Bit) : noexit: =
Ipl ? newdtlpl: bit [newdtlpl ne dtlipl];
Nand2[Ip1, Ip2, Op] (newdtlpl, dtip2, dtOp)
I
Ip2 ? newdtlp2: bit [newdtlp2 ne dtip2];
Nand2[1p1, Ip2, Op] (dtipl, newdtlp2, dtOp)
I
(
let newdtOp : bit= dtlpl nand dtlp2in
Op! newdtOp [newdtOp ne dtOp];
Nand2[1p1, Ip2, Op] (dtipl, dtlp2, newdtOp)
)

endproc

In this model, inputs can accept input changes at any time (termed receptiveness in some literature),
and an output changeis not forced to occur before other inputs. In other words, afast input may pre-empt
a pending output. In fact the model adopts the assumption of inertial delay used by hardware designers,
which states that if the input changes are faster than the delay of a component, a pending output should not
occur. A comprehensive discussion of delay modelsin DiLL can be foundin [10].

Althoughthismodel precisely reflectswhat happensinreal digital circuits, it resultsin non-deterministic
behaviour when basic logic gates are connected. For instance, as shown in Figure 1, suppose that a Nand2
gate is built by connecting an And2 gate in series with an Inverter. Sequences like Ip1!1, 1p2!1, Ip1!0,
Op!landlIpl!l, Ip2!1,i (Int!'1), Ip1!0, Op!0 are possible behaviours of the implementation. The difference
depends on whether 1p1!0 comes before or after the output of the and gate, i.e. whether the change on Ipl
isfaster or slower than the propagation delay of the and gate. In thefirst sequence above, Iplisafast input
change thus the pending output is pre-empted; Op stays at 1. However in the second sequence above, the
output of the and2 gate occurs before Ip1!0, so it is possible for the Inverter to produce Op! 0. If the circuit
is examined just by observing the externa events of the circuits, its behaviour appears non-deterministic:
after the same input sequence, the output may be different. In fact the circuit is deterministic provided the
propagation delay of each component is known and the times when inputs changeis determined.

Int (i)

Ip1

Ip2

Op
And2 Inv [——

Figure 1: An Implementation of a Nand2 Gate

Standard LoTos does not support quantified timing specification. (E-LoTos (Enhancementsto LoTos
[8]) does however support timing.) To avoid the non-deterministic problem just described, the model of a
basic logic gate hasto be constrained as explained in Section 3.



1.2 Structure of Report

Section 2 whichfollowsintroducesthe synchronouscircuit model. Itisfollowed by adiscussionin Section 3
of how to specify basic logic gates and storage componentsin this kind of circuit. Section 4 explains how
state hold components are modelled. The verification of two benchmark circuits specified in the new DiLL
is presented in Section 5. Finally the conclusions drawn from the case studies are given.

2 Synchronous Circuit Model

The classical synchronous circuit model is shown in Figure 2. In this model, the combinational logic
providesthe primary outputs and internal outputs according to the primary inputsand internal inputs. (Each
piece of combinational logic is referred to as a stage in the following). The internal outputs are then fed
into state hold componentsto produce the internal inputs. Feedback isthe essential feature of all sequential
circuits. Synchronous circuits, as one form of sequentia circuit, are distinguished from the other form
called asynchronous in that the state hold components are controlled by a global clock. Changes of the
internal inputs are synchronised with the clock, in other wordsthey are changed only at a particular moment
of the clock cycle, say the negative-going or positive-going transition of the clock. The internal inputs
determine the state of the whole circuit.

primary — ] —— primary
inputs .| combinational | : outputs
logic
internal : : internal
inputs outputs
state
hold
component
clk —%mP

Figure 2: Synchronous Circuit Model

When designing a synchronous circuit, designers have to ensure that the clock cycle is slower than the
slowest stagein acircuit. Thiscan be done by analysing thetiming characteristics of the digital components
used in the circuit. Because the untimed version of DILL cannot deal with timing aspects, DiLL cannot offer
the functionality of checking if the clock constraint is met or not. Instead as will be seen in Sections 4 and
6.2, properly modelling the storage components and environmentswill ensure that this condition is aways
fulfilled in DILL specifications.

Inthe practice of synchronousdesign, primary inputs are al so synchronised with the clock signal, which
makes designing and analysing circuits much easier. DILL incorporates this practice into its synchronous
circuit model. It assumes that the primary inputs have already been synchronised with the clock signal.

Besides the above, the DiLL synchronous circuit model has two more restrictions. Although combina-
tional logic can be specified in either the structural style or the behavioura style, it isimportant that there
is no cyclic connection within each stage. The other isthat storage components have to be specified in the
behavioural style. These restrictions are related to the way components are modelled, for otherwise the
DiLL specification will deadlock where areal circuit may still work well. This will be discussed in more
detail in Section 3.

3 Modelling Basic Logic Gates

Before modelling basic logic gates, consider again the synchronouscircuit model in Figure 2. Supposethat
there is an environment which offers an event once and only once for each primary input within a clock



cycle. Thisisreasonablebecause DILL assumesthat primary inputs are synchronised with the clock. Under
this assumption, a basic logic gate is modelled in such a way that whenever an input occurs, it will wait
until al the other inputs occur. Then an output event happens according to all the new input values. It is
easy to see that transient signal transitions resulting from different arrival times of different input events
can befiltered out. An output just occurs once during a clock cycle.

Note that this model requires each signal to appear once in a clock cycle, in other words, nho matter
if the value of this signal changes or not there should be an event offer. LoToS events are thus no longer
modelling signal transitions on wires, but rather the signal levels. For instance, the LoTos event I p!0 means
that in a certain clock cycle the signal level on wire Ip is 0. (A similar argument applies for Ip!1). The
level on the same wire during the previous cycle could be 0 or 1, but the event itself does not give any
information about its previous level.

Suppose that in each clock cycle the environment offers every primary input event once. Suppose
further that a state hold component is modelled in such away that it also offers every internal input event
once. Then following the way that basic logic gates are modelled, every wire in a synchronous circuit will
have just one event offer associated with it during a clock cycle.

Thisanswerswhy thereisno need to worry about theinfiniteness resulting from modelling LoTos events
as signal levels. Usudly if an event represents a signal level, there will be an infinite number of events
during an arbitrary time interval because a level is a continuous variable. However as discussed before,
synchronous circuits actually progress in discrete steps under the control of a clock signal, so modelling
signal levels becomes possible if aproper strategy is used.

The following specification presents the new model of the Nand2 gate. It serves as an example of the
behavioural style for modelling al digital componentsin DiLL. This should be contrasted with the Nand2
gate specified in Section 1.1.

process Nand2 [1p1, Ip2, Op] : noexit :=
( Ipl? dtipl: Bit; exit (dtlpl, any Bit)
. Ip2 ? dtlp2: Bit; exit (any Bit, dtip2)
>>) accept dtlpl, dtlp2 : Bitin
( Op! (dtIP1 nand dtlp2);
Nand2 [1p1, Ip2, Op]
en)dproc (* Nand2 *)

This model is not suitable for circuits containing cyclic connections. As discussed before, each
component is modelled in the manner of ‘al inputs arrive, then output happens'. If there is a cyclic
connection within a combinational stage, such as the forms shown in Figure 3, the DiLL specification will
deadlock. This arises because feedback connections make the inputs and outputs dependent on each other.
Theright hand side of Figure 3 isacommon building block of latches and flip-flops. Thisiswhy state hold
components cannot be specified in the structural style.
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Figure 3: Examples of Cyclic Connections




4 Modelling State Hold Components

The state hold components are modelled in the behavioural style. The model is almost the same as the one
used inthe previous DiLL library, except for two modifications. The meaning of LOTOS eventsis changedto
represent the signal level, and a constraint is added to meet the clock condition mentionedin Section 2. The
second modification deserves some discussion. Suppose the state hold component isaD (Delay) flip-flop.
With the first modification already applied to the previous DiLL library, a simplified specification would be:

process DFF [D, Clk, Q] (dtD, dtClk : Bit) : noexit :=
D ?newdtD : Bit; DFF [D, Clk, Q] (newdtD, dtCIk)

0
Clk ? newdtClk : Bit;

[(dtClk eq 1) and (newdtClk eq 0)] >
DFF[D, Clk, Q] (dtD, newdtClk)

[(dtClk eq 0) and (newdtClk eq 1)] >
Q! dtD;
DFF [D, Clk, Q] (dtD, newdtCIk)

)
endproc (* DFF *)

Suppose the D flip-flop isin series with a combinational logic circuit as shown in Figure 4. If the Clk
signal of the D flip-flop is not constrained, it is possible for the clock to change too fast and move to the
next cycle before the combinational logic has settled down. The specification of a synchronous circuit
should exclude this possibility since the synchronous model adopted here assumes that the clock cycleis
slow enough.

Ipl D Q
Combinational L
lpn - Logic DFF
Clk

Figure 4: Constraint on Clock Cycle

Suppose that, after the positive-going transition of the clock signal, the event at the flip-flop’s D input
has not occurred yet. This means that the calculation of the combinational logic has not yet propagated
to D, i.e. the stage has not settled down. In this case the next positive-going transition of clock signal
should not occur. This ideais embodied in the following DiLL process that constrains the behaviour of
the specification above. The process Cons DFF deals with the initial state of the flip-flop. After the first
positive-going clock transition, the next one has to wait until an event on D has occurred. Thisisensuredin
process Cons_DFF_Aux. The new specification for the flip-flop combines the DFF process and Cons DFF
with the LoTtos parallel operator.

process Cons_DFF [D, CIk] (dtClk : Bit) : noexit :=
D ? newdtD : Bit;
Cons_DFF [D, CIK] (dtClk)
0
Clk ? newdtClk : Bit;
(
[(newdtClk eq 1) and (dtClk eq 0)] > (* ignore-vetransition *)
Cons_DFF_Aux [D, CIK] (newdtClk)

[(newdtClk ne 1) or (dtClk ne 0)] > (* output on +ve transition *)



Cons_DFF [D, CIKk] (newdtClk)
)

where

process Cons_. DFF_Aux [D, CIK] : noexit :=
D ?newdtD : Bit; (* D event happens*)
Clk! 0;
Clk! 1; (* then CIk!1 happens *)
Cons_ DFF_Aux [D, CIK]

I
Clk! 0; (* D event happens*)
D ?newdtD : Bit;
Clk! 1; (* then CIk!1 happens *)
Cons_ DFF_Aux [D, CIK]

endproc (* Cons_. DFF_Aux *)

endproc (* Cons_DFF *)

5 Verifying Standard Benchmark Circuits

The new DiLL model for synchronous circuits has been evaluated on two standard benchmark circuits [15]
that are intended for evaluating different approaches to hardware verification. The machine used by the
authorsfor verification was a SUN workstation with a 300 MHz CPU and 128 MB of main memory.

5.1

CADP

The toolset used for verifying the benchmark circuits was CADP (Caesar Aldébaran Development Package
[3]), jointly developed by INRIA Rhone-Alpes and the Verimag Laboratory (Grenoble, France). Among
CADP' s wide range of features, the following were used for verifying the benchmark circuits:

CADP accepts full LoTos asits input specification language.

CADP contains two compilers Ceesar. ADT and Ceesar. Ceesar.ADT trandates the data part of a
Loros specification into C types and functions, while Caesar translates the LoTos behaviour part.
The trandation of behaviour is combined with the C functions generated by Caesar. ADT to yield an
LTS (Labelled Transition System, used for verification) or C code (used for simulation, etc).

Aldébaran is a verification tool based on an LTS or a network of LTSs (i.e. a finite state machine
connecting several LTSs by Lotos paralel and hiding operators). It alows the comparison and
reduction of LTSs modulo various equivalence and preorder relations.

XTL (eXecutable Temporal Language) is a functional-like programming language designed to allow
an easy, compact implementation of various temporal logic operators. Several temporal logics like
ACTL (Action-Based Computational Temporal Logic [2]), CTL (Computational Temporal Logic),
HML (Hennessy-Milner Logic[6]), and LTAC [14] have been embedded in XTL.

To partiadly resolve the problem of state space explosion, CADP incorporates several advanced
verification techniquesinto its algorithms, namely compositional generation, on-the-fly comparison,
and BDD (Binary Decision Diagram) based symbolic representations of LTSs. These techniques
makeit possible for CADP to verify relatively large applications.



5.2 Verification with CADP

The CADP toolbox offers two different verification methods: bisimulation (using the Ald &baran tool) and
temporal logic property checking (using the XTL tool). For verifying LoTos specifications, ACTL is an
obvious candidate because the semantics of LoTos is also based on actions. The modal operators of HML
(BOX O, WBOX (Weak 0O), DIA <, WDIA (Weak <)) are also employed.

For brevity, the following gives only an informal explanation of the temporal operatorsthat are used in
property specification. More detailed information about ACTL and HML can be found in the references
cited earlier. The semantics of the temporal operatorsis defined over an LTS M consisting of (Q, A, T, g0):

e Qistheset of states

e Aisthe set of actions

e TinQ x A x Qisthetransition relation
e JOinQistheinitial state.

The informal meaning of formulae for property specification is as follows. A, B and C are action sets,
while F and G are formula sets.

AG (F): al reachable states must satisfy F.

AG_A (A, F): for al reachable states, al outgoing actions (if any) that satisfy A must result in states
satisfying F.

BOX (A, F): for the current state, all outgoing actions (if any) that satisfy A must result in states satisfying
F.

WBOX (A, F): this has amost the same semantics as the BOX operator except that it allows internal
actions preceding those in A.

ACTL_INEV (A): from the current state, actions satisfying A areinevitable.

AU_A B (F, A, B, G): thisistheuntil operator /. The form used in the following property specifications
is AU_A_B (true, A, B, true). Thismeans that for the current state, each of its paths should have the
following property: the actions along the path satisfy A until thereis an action that satisfies B.

ACTL_NOT_TO.UNLESS (A, B, C): this can beread as ‘not A to C unless B'. From the current state,
after an action satisfying A there is no path such that actions not satisfying B could lead to an action
satisfying C.

EF_A (A, F): fromthecurrent state, there exists a path such that actions along this path satisfy A until they
lead to a state satisfying F.

EX_A (A, F): fromthe current state, there exists an action satisfying A that can lead to a state satisfying F.

WDIA (A, F): thissaysthat from the current state there exists a path along which several internal actions
then one satisfying A must lead to a state satisfying F.

6 Verifyingthe Single Pulser

6.1 Informal Description

Theinformal description of the Single Pul ser case study isdocumented i nthe standard benchmark document:



A Single Pulser is a clocked-sequential device with a one-bit input I, and a one-bit output O.
The purpose of the circuit is described asfollows. We have adebounced push-button: on (true)
in the down position, off (false) in the up position. Devise a circuit to sense the depression
of the button and assert an output signal for one clock pulse. The system should not alow
additional assertions of the output until after the operator has rel eased the button.

The documentation also defines informally some properties that the Single Pulser must respect:
Property 1. Whenever thereisarising edge at I, O becomes true some time later.

Property 2. Whenever O is true it becomes false in the next time instance, and it remains false at least
until the next rising edgeon 1.

Property 3: Whenever thereis arising edge, and assuming that the output pul se does not happen immedi-
ately, there are no more rising edges until that pulse happens. (There cannot be two rising edgeson |
without a pulse on O between them.)

The implementation of the Single Pulser is defined by the benchmark as shown in Figure 5.

N_Fi nd .
kg inp| DFF ""l T P Qut
DFF
o in ! AND2

Figure 5: Implementation of Single Pulser

6.2 Specification in DILL

It isvery straightforward to represent the implementation of the Single Pulser in DiLL. Becausethe clock is
implicit inasynchronouscircuit design, describing circuit propertiesdoes not alwaysrefer toit. Experience
also showsthat hiding the clock signal can make the temporal logic formulae clearer and tidier. The Single
Pulser is specified as follows:
hide Inp, N_Find, Find, Clk in
(

(
DFF [Inp, Clk, N_Find]
[[N_Find, Inp]|

Inverter [N_Find, Find]
|[Find]|
And2 [Find, Inp, P_Out]
)
)
|[CIk, Inp]|
DFF[P_In, CIk, Inp]
)
[[P-In, Clk, P_Out]|
Env [P-In, CIk, P_Out]

The Env process serves as the environment constraint on the Single Pulser. It stipulates that the
environment should offer input-output events such that P _In can come before each positive-going clock
transition, and that the next clock cycleis ready only after P _Out has occurred. Without this constraint, all
the properties discussed in the following section evaluate to false. The constraint between P _In and Clk
ensures that P_In is synchronised with Clk. The constraint between inputs and output respects the slow-
clock requirement: P_Out must happen before the next positive-going clock transition. These assumptions
are not automatically guaranteed by the circuit specification, but they are required by the DiLL synchronous
circuit model.



process Env [P_In, Clk, P_Out] : noexit :=

(
P_In?dtPin: Bit;

Clk! 1 of Bit;

(
Clk ! 0 of Bit; exit

|l
P_Out ? dtPOULt : Bit; exit
)

)

>>
Env [P_In, Clk, P_Out]
endproc (* Env *)

6.3 Propertiesin XTL

The formulation of propertiesin CADP was explained in Section 5.2. Verification of the Single Pulser
was undertaken using only XTL model checking, although it is not difficult to give a higher level specifi-
cation and then check the equivalence between the two levels. In the following temporal logic formulae,
EVAL_A (P_Inl1) returns the action set including the action P_Inl1. A variant on this, EVAL A (P 1n...),
ignores the event offers and returns a set including all the possible events relating to event P 1n such as
P_In!1, P_In!0, and so on. Because LoTos eventsare modelled as signal level sinstead of signal transitions,
representing arising edge should relate to two clock cycles. In thefirst cyclethe signal should be at level O,
in the second cycleit should be at level 1. As stated in Section 2, each signa happens once and only once
in aclock cycle, so the second appearance of the same signal indicates the second clock cycle.

Property 1. If thereisarising edge on input P_In, eventually the output P Out becomes true.

AG_A (
EVAL_A (P_In! 0), (* inthefirst cycle P_Inis 0%)
WBOX (EVAL_A (P_Out...)), (* P_Out does not care *)
WBOX (EVAL_A (P_In! 1), (* inthe second cycle P_Inrising *)
ACTL_INEV (EVAL_A (P_Qut! 1)))) (* then P_Out!1isinevitable*)

Property 2: Whenever P_Out is 1 it becomes O in the next state; and it remains O at least until the next
rising edge on P_In. This property cannot be expressed in one formula because ACTL is unfair,
hence two formulae are used to capture this property. The first saysthat if P Out is 1 in some clock
cycle, then it must be 0 in the next cycleat least until the third clock cycle. Thisisthefirst part of the
property. The second formulasaysthat if the P_Outis 1, itisimpossiblefor it to remain 1 (so it must
be 0) in the following cycles unless P_In changesto 1. Note that the second formula cannot include
thefirst one because if P_In changesto 1 in the second cycle, the second formula cannot exclude the
situation that P_Out also becomes 1 in this cycle.

AG_A (
EVAL_A (P-Out! 1), (* infirst cycle: P_Out!1*)
WBOX (
EVAL_A(P_In..), (* P_In does not care *)
AU_A_B (
true, EVAL_A (P-Out! 0), (* second cycle: P_Out!0 *)
EVAL_A (P-Out...), true))) (* until thethird cycle*)
AG (
ACTL_NOT_TO_UNLESS(
EVAL_A (P.Out! 1), (* P_Out ! 1 cannot result in *)



EVAL_A (P-Out! 1), (* another P_Out ! 1*)
EVAL_A(P.IN! 1)) (* except P_In! 1*)

Property 3: Whenever thereis arising edge, and assuming that the output pulse does not happen imme-
diately, there are no more rising edges until that pulse happens. In other words, there cannot be two
rising edges on P_In without arising edge on P_Out between them.

AG_A (EVAL_A (P_In! 0), (* for al the reachable states *)
WBOX (not (EVAL_A (P_In...)),
BOX (

EVAL_A (P-In! 1), (* after input rising *)

not ( (* itis not the case that *)

EF_A ( (* exists apath such that*)

not (EVAL_A (P_Out! 1)), (* without P_Out!1*)

WDIA (EVAL_A (P_In! 0),

WDIA (

EVAL_A (P.Out ...,

WDIA (
EVAL_A (P_In! 1), (* existaninput rising *)
true))))))))

6.4 Verification Results

e Thesizeof the LTS produced by Caesar. ADT and Ceesar from the DiLL implementation has 295 states
and 538 transitions.

e Aldébaran minimises the LTS to a smaller one having 97 states and 174 transitions modulo strong
bisimulation. Subsequent verification was based on this smaller LTS.

e Aldébaran showsthat the DiLL implementation is deadlock free.
e XTL evauatesal the four formulaein Section 6.3 to be true.

e Becausetheresultant LTS issmall, all the generation and verification steps take negligible time.

7 Veifying the Bus Arbiter

The Bus Arbiter provided in the benchmark documentationis agood exampl e of a control-dominant circuit.
Itiswell known that verification techniques based on state space exploration, such as those used by CADP,
are not suitable for the data-path circuits (e.g. amultiplier or divider). Such techniquesmay resultin ahuge
state space when the data path is wide. The arbiter is also a good example of scalable machine, which is
a good medium for evaluating verification tools. the number of the cells can be chosen according to the
ability of the verification tools.

7.1 Informal Description

Theinformal description of the Bus Arbiter case study is documented in the standard benchmark document:

The purpose of the Bus Arbiter isto grant access on each clock cycleto asingle client among a
number of clients requesting use of abus. The inputsto the arbiter are a set of request signals,
each from a client. The outputs are a set of acknowledge signals, indicating which client is
granted access during a clock cycle. The interface of the arbiter is shown in Figure 6, again
omitting the clock signal.

The documentation a so defines informally some properties that the Bus Arbiter must respect:



Property 1. No two acknowledge outputs must be asserted in the same cycle.
Property 2. Every persistent request is eventually acknowledged.
Property 3: Acknowledgeis not asserted without request.

The corresponding CTL formulae are aso provided in the benchmark. Besides listing the properties
to be fulfilled, there is also an arbitration algorithm explained in plain English. Finally the gate level
implementation of the Bus Arbiter is provided in the form of acircuit diagram.

7.2 Higher-Level Specification

As a language oriented towards practical usage, LOTOS is very expressive and supports specifications at
various levels. Although the benchmark circuits have been studied by many researchers, as far as the
authors know there has not been aformal specification of the arbitration algorithm used in the design.

With LoTos, it is possible to provide such a higher-level specification. There are two clear benefits of
suchaformalisation. Firstly, better understanding of the al gorithm can be gained fromrigorous specification.
Secondly, correctness of the algorithm itself can be ensured before the circuit isbuilt and verified. Flawsin
the algorithm will be more time-consuming to correct if they are discovered only after implementation.

The arbitration algorithm embodied in the design is a round-robin token scheme with priority override.
Normally the arbiter grants access to the client which has the lowest index number among all the requesting
clients. In other words, the client with the lowest index number has the highest priority. However as
requests become more frequent, the arbiter is designed to fall back on a round-robin scheme, so that every
requester is eventually acknowledged. Thisis done by circulating atokenin aring of arbiter cells, with one
cell per client. The token moves once every clock cycle. If aclient’s request persists for the time it takes
for the token to make a compl ete circuit, that client is granted immediate access to the bus.

Trandating the algorithm to LoTos is quite straightforward. 1t is realised mainly by LoTos vaue
expressions. For example each cell has two variables associated with it: token that indicatesif thetokenis
inthe cell, and waiting that indicatesif the request of the corresponding client has persisted for acompleted
token cycle. Circulating the token, (re)setting the waiting variable and so on correspond to LOTOs value
expressions. For an arbiter with three cells, there are about 80 lines in total for the LoTos behaviour part
(see Appendix A).

7.3 Lower-Level Specification

The design of the arbiter consists of repeated cells. Each cell isin charge of accepting request signals from
aclient, and sending back acknowledgementsto the same client. Figure 7 showsthe arbiter with three cells.
Figure 8 shows theimplementation of each cell. Thefirst cell isdlightly different becauseit is assumed that
thetokenisinitially in thefirst cell.

The principle of the circuit will not explained in detail here. Briefly, theti (token in) and to (token out)
signals are for circulation of the token. Theto output of the last cell is connected to the ti input of the first
cell toformatokenring. Thegi (grantin) and go (grant out) signals arerelated to priority. Thegrant of cell
i ispassed to cell i+1, and indicatesthat no client of index lessthan or equal to i isrequesting. Hence acell
may assert its acknowledge output if its grant input is asserted. The oi (override in) and oo (override out)
signals are used to override the priority. When the token isin a persistent requesting cell, its corresponding
client will get accessto the bus. The oo signal of thecell isset to 1. Thissignal propagatesdown to thefirst
cell and reset its grant signal through an inverter. As a consequence the gi signal of every cell isreset, in
other wordsthe priority has no effect during this clock cycle. Within each cell, register T stores 1 when the
token is present, and register W (waiting) is set to 1 when there is a persistent request. Initially thetoken is
assumed to bein thefirst cell.

Because the components of each cell areinthe DiLL library, it isvery easy to form aDiLL specification
of a cell. The specification of an arbiter with three cells is obtained by connecting three such cells. As
for the Single Pulser, there is aso an environment constraint in the structural specification of the arbiter to
meet the conditions of the synchronous circuit model discussed in Section 2. See Appendix B for the full
DiLL specification.
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Figure 6: The Bus Arbiter Interface
0
Reqg2 to oi go Ack2
ti 00 gi
Reql to oi go Ackl
ti 00 Qi
Req0 to oi go AckO
i 00 Qi

Figure 7: Bus Arbiter with Three Cells

to

And DFF
W)

And

Figure 8: Implementation of a Cell
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Sincethe propertiesthat the arbiter must fulfill are given in the benchmark documentation, it is obvious
that the verification should consist of model checking these properties. Equivalence checking is also
performed since two levels of specifications are identified.

7.4 Propertiesin XTL

The formulation of propertiesin CADP was explained in Section 5.2. The properties are again transated
into action-based temporal logic, namely ACTL and HML. The following three formulae refer to client O;
the formulae for other clients have asimilar form.

Property 1. No two acknowledge outputs are asserted in the same clock cycle (safety).

AG ( (* for al states... *)
not ( (* itisnot the casethat ... *)
EX_A ( (* there exists action *)
EVAL_A (Ack0! 1), (* Ack0!1leadingto ... *)

(WDIA (EVAL_A (Ackl! 1), true) or (* action Ackl1!1 or *)
WDIA (EVAL_A (Ack2! 1), true)))))(* action Ack2!1*)

Property 2. Every persistent request is eventually acknowledged (liveness).

AG ( (* for al states... *)

BOX ( (* after dl its outgoing action *)
EVAL_A (RegO! 1), (* whichisReqO!1 ... *)
AU_A_B (true, true,

(EVAL_A (AckO! 1) or (* eventually AckO!'1 ... *)
EVAL_A (Reg0! 0)), true))) (* unless Reg0!0 *)

Property 3: Acknowledgeis not asserted without request (safety).

AG ( (* for all states*)
ACTL_NOT_TO_UNLESS ( (* not Reg0!0,Ack0!1 unless ReqO!1 *)
EVAL_A (Reg0! 0), (* after Reg0!0*)
EVAL_A (Ack0! 1), (* AckO'lisimpossible... *)
EVAL_A (Reg0! 1)) (* unless after Req0!1 *)

7.5 Verification Resultsfor Higher-L evel Specification

To verify the higher-level specification against the temporal logic formulae, the LTS of the specification
was produced first. Caesar generates an LTS with 3649 states and 7918 transitions. Ald &baran reducesthis
to 379 states and 828 transitions with respect to strong bisimulation. Both generation and reduction take
seconds. The temporal logic formulae are then checked against the minimised LTS. Each is verified to be
true within 1 minute.

7.6 Verification Resultsfor Lower-L evel Specification

The real challenge comes when the lower-level DiLL specification is verified. The state space is so large
that direct generation of the LTS from the LoTos specification is impractical. As mentioned before, there
are severa advanced techniques implemented in CADP to tackle the problem of state space explosion.
Nevertheless, using on-the-fly verification of the arbiter also fails after considerable run-time. CADP aso
does not currently support the direct generation of BDDs from a L OTOs specification.

Compositional generation was tried out to verify the arbiter. Basicaly the ideais that of ‘divide and
conquer’. A Lotos specificationisdivided into several smaller specificationsto make surethat it ispossible
for Caesar to generate an LTSfor each of them. Then Aldébaranis used to reducethese LT Ss with respect to
asuitable equivalencerelation. The minimised LTSs are then combined using the LoTos parallel operator
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| Signal | Cyclel | Cycle2 | Cycle3 | Cycle4 |

Req0 [ 1 1 1 0
Regl | O 0 0 1
Regq2 | O 0 0 0
Ack0 |1 1 1
Ackl | O 0 0 0 (design)
1 (algorithm)
Ack2 |0 0 0

Figure 9: A Counter-Example generated by Aldébaran

(and also the hide operator if necessary) to form anetwork of communicating LTSs (the CADPterm). Atthis
stage, an LTS might be produced from this network, or on-the-fly verification might be performed against
the network. In order to get valid verification results, specia attention must be given to the equivalence
relation that isused. The relation must be acongruence at least with respect to the compositional operators,
here the Lotos parallel and hide operators. The relation must also preserve the properties to be verified.
This ensures that the resulting network of communicating LTSs will respect the same properties as the
original Lotos specification. Among the three properties proposed by the benchmark, the first and the third
are safety properties while the second is a liveness property. Safety equivalence [1] preserves al safety
properties, while branching bisimulation equivalence [16] preserves liveness properties when there are no
livelocksin specifications. Both of these equivalences are congruenceswith respect to the parallel and hide
operators. These two equivalences are thus appropriate to compositional generation.

The design of the arbiter was divided into three pieces, one per cell of the arbiter. After about seven
minutes in total, an LTS which is safety equivalent to the LoTos specification of the design is generated.
The two safety properties were verified to be true against this LTS, implying that the design also satisfies
these safety properties. Verification of theformulaetakesjust seconds. Unfortunately the liveness property
has not yet been verified. The CADP agorithm for minimisation with respect to branching bisimulation is
not very efficient, so asingle cell cannot be reduced by this equival ence within a reasonabl e time period.

7.7 Verification Resultsfor Equivalence of the Two Levels

Before verifying equivalence between two specifications, a suitable equivalence must be chosen. For
most systems, observational equivalenceis an obvious choice. Informally it means that two systems have
exactly same behaviour in terms of the observable actions. For hardware systems, testing equivalence (two
specifications pass or fail exactly the same external tests) is also used as acriterion in some approaches such
as CIRcAL (Circuit Calculus[12]). The algorithm for testing equivalenceis not implemented in CADP, so
the stronger one of observational equivalence was checked for the Bus Arbiter.

As before, compositional generation was exploited to generate the LTS for the design. Thistime each
cell was reduced with respect to observational equivalence sinceit is a congruencefor the parallel and hide
operators. After about eight minutesin total, the LTS was generated. It was expected that this LTS would
be observationally equivalent to the one representing the higher-level specification. However Ald ébaran
discovered that they are not! Figure 9 is one of the sequences given as a counter-example. (The Ald ébaran
output has been rendered more readable here.) This sequence indicates that in the first three clock cycles
only client O requests the bus; both the high-level specification and the low-level design grant accessto this
client. In the fourth cycle, client O cancels its request but client 1 begins to request access. At this point
the two levels of specifications are different: the lower-level specification offers O for Ackl, whereas the
higher-level specification offers 1 for Ackl.

After step-by-step simulation of the counter-example, it was soon discovered that the circuit of Figure 8
provided in the benchmark does not properly reset the oo (override out) signal when the following situation
happens. Inthe previous clock cycle, the W (waiting) register of acell isset. But inthe current clock cycle,
its client cancels the request and the token happens to move into the cell. In this situation, because the
client has already cancelled its request it should be possible for another client to get the bus. However, the
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design till setsthe oo signal to override the priority asif this client were still requesting. This means that
no other client has the opportunity to access the busin this clock cycle.

Fixing the problem was much easier than finding it. The correction was to connect the Req signal to
the And gate that follows the W register. The output of the And gate guarantees that the oo signal is always
correctly set or reset according to the request signal in the current clock cycle. This modified design was
verified to be observationally equivalent to the higher-level algorithmic specification.

to
i DFF
Clk (M And || DFF T
T w || 4
gi
Req

ol or |-

Figure 10: Modified Implementation of a Cell

In summary, verification of the Bus Arbiter yielded the following observations:

o the arbitration algorithm was shown to be correct with respect to the properties proposed

a shortcoming of the design was identified

themodified circuit design was shown to be observationally equival ent to the higher-level specification

the design was shown to satisfy the safety properties proposed

satisfaction of the liveness property (Property 2) has not yet been verified due to limitations of the
tool/machine performance.

8 Conclusion

This report has investigated away of specifying synchronouscircuitsin DiLL. With the new model, it was
possible to verify the Single Pulser and Bus Arbiter hardware benchmark circuits with the CADP tool set.

In comparison to other systems investigating the same case studies, such as Cospan [5] and CIRCAL,
DiLL wasfound to be much more convenient for giving ahigher-level specification. Thisisnot so surprising
since LOTOS is avery expressive language oriented towards practical usage. CIRCAL, for example, givesan
abstract view of a synchronous circuit by directly specifying its corresponding finite state machine, which
is not always a natural representation of circuit behaviour.

Based on process algebra, DiLL specifications can be verified by equivalence and preorder checking.
Thisis distinctive in that most state-of-the-art hardware verification systems are either based on theorem
proving or on temporal logic model checking. The former does not support automatic verification since it
needs human assistance to complete a proof. The latter needs specialised expertise since temporal logic
specifications are not easy to write. In contrast, equivalence or preorder checking makesit possibleto write
the specificationin the sameformalism astheimplementation, hereDiLL (or really, LOTOS). Thecorrectness
of aDiLL specification can be easily checked by simulation tools. Another benefit of equivalence checking
can be seen from the case study of the arbiter. As a classical verification benchmark, the Bus Arbiter
has been investigated using many approaches. But as far as the authors know, no one has pointed out the
problem reported in Section 7.7.

On the other hand, the size of the circuits that can be effectively verified is very small compared to the
size verified by other mature hardware verification tools. CospaN can verify an arbiter with four cells quite
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easily with the consumption of about 1 MB memory, due to the symbolic representation using BDDs and
CosraN’sefficient reduction techniques[4]. CIRCAL isreported to generatethe state space of an arbiter with
up to 40 cells using reasonable computing resources (although the actual memory used was not reported)
[13]. Again thisis due to the BDD representation of CIRCAL specification. Note that CIRCAL was not in
fact used to verify the arbiter formally. [13] just gives atest pattern to show that even if al clients request
the bus, only one can get the access to the busin each clock cycle. CIRcAL does not have the functionality
of temporal logic model checking, and because of its limited power in specifying higher-level behaviour,
testing equivalence checking was not used for this case study. CADP on the other hand consumes more
than 100 MB to produce the state space of the 3 cell arbiter. Although the resulting state space isrelatively
small, the intermediate stages of generation need considerable memory.

There are two main reasons for this performance limitation. One comes from the modelling language
LoTos and the other comes from CADP itself. Firstly, for synchronous circuits the order in which signals
occur duringaclock cycleisnot soimportant. For example, in Figure4therelative order of Ipland |p2 does
not matter: the final value on D is aways the same. So it is reasonable to imagine that the inputs happen
together and then output occurs. But when modelling such circuits in DILL, it is necessary to distinguish
these so the state space is unnecessarily large. For synchronous circuit modelling, true concurrency may
be more suitable, and this is the model adopted by CIRcAL. Secondly, the main features of CADP are
till based on explicit state exploration. Because CADP cannot produce the minimised state space in the
first place, large amounts of memory have to be consumed before a smaller LTS can be produced by
minimisation. On-the-fly algorithms are of some help, but they apply only in particular situations. For
example, observational equivalence checking cannot be performed on-the-fly. As discussed before, aBDD
representation of LoTos specifications is not supported by CADP. Actually BDDs are only aintermediate
data type of some of algorithms implemented in CADP, and experience shows that these algorithms are
very slow when the state space is large even if they save alot of memory. The language problem might
be solved by extending DiLL to use E-LoTos [8]. Thetool problem is currently being investigated by the
CADP developers.
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A Behavioural Specification of The Bus Arbiter

Thefollowing is the LoTos behaviour part of the Bus Arbiter higher level behavioura specification:

(* T2, T1, TOindicateif thetoken isin the corresponding cell *)
(* W2, W1, WO indicateif the corresponding cell has been waiting *)

process Arbiter [Reg2, Regl, Reg0, Ack2, Ackl, Ack(]
(T2, T1, TO, W2, W1, WO : Bit) : noexit :=
(
Reg2 ? dtReq2 : Bit; exit (dtReg2, any Bit, any Bit)
1l
Reql ? dtRegl : Bit; exit (any Bit, dtReql, any Bit)

Il
Req0 ? dtReq0 : Bit; exit (any Bit, any Bit, dtReq0)

)
>
accept dtReq2, dtReql, dtReq0: Bitin (* current Req value*)
(
let temp: Bit=TOin (* circulate the token *)
(
let

newTO: Bit=T2,
newT2: Bit=T1,
newT1: Bit =temp,
(* current waiting values *)
newWO : Bit = dtReg0 and (TO or WO),
newW1 : Bit = dtRegl and (T1 or W1),
newW2 : Bit = dtReg2 and (T2 or W2) in
(* variable‘client’ indicatesif a client has a persistent request,
only one can be true *)
(
let
client2 : Bit = dtReg2 and T2 and W2,
clientl: Bit=dtReql and T1 and W1,
client0: Bit = dtReq0 and TOand WO in
(* variable ‘above’ indicateif there is persistent requests from
the above clients *)
(
let
above2 : Bit =0 of Bit,
abovel : Bit = client2,
above0 : Bit =client2 or clientl in
(* check if the grant should be given to a client; thisis decided by:
o this client has a persistent request or
othis client is requesting and the other clients above do not
have persistent requests *)
(
let grantO: Bit = clientO or (dtReq0 and not (above0)) in
(
let grantl: Bit =
clientl or (dtRegl and not (grant0) and not (abovel)) in
(
let grant2: Bit =
client2 or
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(dtReg2 and not (grant0) and not (grant1) and not (above?)) in

(
(
AckO! 1 of Bit [grantO eq 1 of Bit]; exit

I
Ack0'! 0 of Bit [grantO eq O of Bit]; exit
)
Il

(
Ackl! 1 of Bit [grantl eq 1 of Bit]; exit

Ackl! Oof Bit [grantl eq O of Bit]; exit

)
1l

(
Ack2! 1 of Bit [grant2 eq 1 of Bit]; exit

Ack2! 0 of Bit [grant2 eq O of Bit]; exit

)

)
) (* end of let grant2 *)

) (* end of let grantl *)
) (* end of let above*)
) (* end of let client *)
) (* end of let new *)
>
Arbiter [Reg2, Reql, Req0, Ack2, Ackl, AckQ]
(newT2, newT1, newTO, newW2, newW1, newWO0)
) (* end of let temp *)
) (* end of accept *)
endproc (* Arbiter *)

B Structural Specification of The Bus Arbiter

The following is the DiLL Bus Arbiter structural specification. As will be seen, each cell has it own
environment process (Cell1_Env, Cell2_Env, Cell3_Env). These can be combined to one to make a more
concise specification. But the separate environment processes may help to produce smaller LT Ss when the
circuit is verified.

include(dill.m4)

divert

circuit(
‘Arbiter [Reg2, Reql, ReqO, Clk, Ack2, Ackl, AckO]’,!

hide Override_In2, Override_In1, Override_In0, Override _OutO,
Token_ OutO, Token_Out1, Token_InO,
Grant_Out0, Grant_Out1, Grant_Out2, Grant_In0, Clk in

(
Last [Reg2, Token_Outl, Grant_Outl, Override_In2, CIk,

Ack2, Token_In0, Grant_Out2, Override_In1]
|[Token_Outl, Override_Inl, Grant_Out1, CIK]|
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Middle [Regl, Token_Out0, Grant_Out0, Override_In1, CIk,
Ackl, Token_Outl, Grant_Outl, Override_In0]
)
|[Token_1n0, Override_In0, Token_OutO, Grant _Out0, CIK]|
First [Reg0, Token_In0O, Grant_In0O, Override_In0, CIk,
AckO, Token_Out0, Grant_Out0, Override_Out0]

where

process First [Reg0, Token_In0O, Grant_In0, Override_In0, Clk,
AckO, Token_Out0, Grant_Out0, Override_Out0] : noexit :=
(
Cell1 [ReqO, Token_1n0, Grant_In0, Override_In0, Clk,
Ack0, Token_Out0, Grant_Out0, Override_OutQ]
|[Override_Out0, Grant_In0j|
Inverter [Override_OutO, Grant_InQ]
)
|[ReqO, Clk, AckQ]|
Cell1_Env [ReqQ, Clk, AckQ]
endproc (* First *)

process Middle [Reql, Token_OutO, Grant_OutO, Override_In1, CIk,
Ackl, Token_Outl, Grant_Outl, Override_InQ] : noexit : =
Cell2_Plus [Reql, Token_Out0, Grant_Out0, Override_In1, Clk,
Ackl, Token_Outl, Grant_Outl, Override_InQ]
|[Reql, Clk, Ackl]|
Cell2_Env [Reql, Clk, Ackl]
endproc (* Middle*)

process Last [Reg2, Token_Outl, Grant_Outl, Override_In2, CIK,
Ack2, Token_In0O, Grant_Out2, Override_In1] : noexit : =
(
Zero [Override_In2]
|[Override_1n2]|
Cell2_Plus[Reg2, Token_Outl, Grant_Outl, Override_In2, Clk,
Ack2, Token_In0, Grant_Out2, Override_In1]
)
|[Reg2, Clk, Ack2]|
Cell3_Env [Reg2, Clk, Ack2]
endproc (* Last *)

process Cell1 [Req_In, Token_In, Grant_In, Override_In, CIk,
Ack_Out, Token_Out, Grant_Out, Override_Out] : noexit :=
hide notToken, notT, W, TorW, WIin, TandW, GorCircle, notR in
(
Inverter [Token_In, notToken]
|[notToken]|
DFlipFlop_Pos [notToken, CIk, notT]
|[notT]|
Inverter [notT, Token_Out]

)
|[Token_Out, CIK]|

(
Or2 [Token_Out, W, TorW]
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|[Token_Out, W, Torw]|
And2 [TorW, Reg-In, WIn]

[[WIn,Reqg-In]|
DFlipFlop_Pos [WIn, Clk, W]
Wi
And3 [Token_Out, W, Reg_In, TandW]
|[TandW, Req-In||
Or2 [TandW, Grant_In, GorCircle]
|[GorCircle]|
And2 [GorCircle, Reg_In, Ack_Out]
)
|[TandW, Grant_In, Reg-In]|
(
Inverter [Reg_In, notR]
|[notR)
And2 [notR, Grant_In, Grant_Out]
)

[l
Or2 [TandW, Override_In, Override_Ouit]

endproc (* Celll*)

process Cell2_Plus[Req-In, Token_In, Grant_In, Override_In, CIk,
Ack_Out, Token_Out, Grant_Out, Override_Out] : noexit :=
hide W, TorW, WIn, TandW, GorCircle, notR in
DFlipFlop_Pos [Token_In, Clk, Token_Out]
|[Token_Out, CIK]|
(
Or2 [Token_Out, W, TorW]
|[Token_Out, W, TorW]|
And2 [TorW, Reg_In, WIn]

[[WIn,Reqg-In]|

DFlipFlop_Pos [WIn, Clk, W]
W]

And3 [Token_Out, W, Reqg-In, TandW]
|[TandW, Req-In]|

Or2 [TandW, Grant_In, GorCircle]
|[GorCircle]|

And2 [GorCircle, Reg-1n, Ack_Out]

)
|[TandW, Grant_In, Reg_In]|

(

Inverter [Reg_In, notR]
|[notR]|

And2 [notR, Grant_In, Grant_Oult]
)

|l
Or2 [TandW, Override_In, Override_Ouit]

endproc (* Cell2_Plus*)

process Cell1_Env [ReqQ, Clk, AckQ] : noexit :=
Req0 ? newdtReq : Bit;
CIk ! 1 of Bit;

(
AckO ? newdtAck : Bit; exit
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[l
Clk ! 0 of Bit; exit
)
>
Cell1_Env [ReqO, Clk, Ack0]
endproc (* Cell1_Env *)

process Cell2_Env [Reql, Clk, Ackl] : noexit :=
Reql ? newdtReq : Bit;
CIk ! 1 of Bit;

(
Ackl ? newdtAck : Bit; exit

[l
Clk ! O of Bit; exit
)
>
Cell2_Env [Reql, Clk, Ackl]
endproc (* Cell2_Env *)

process Cell3_Env [Reg2, Clk, Ack2] : noexit :=
Reg2 ? newdtReq : Bit;
Clk ! 1 of Bit;

(
Ack2 ? newdtAck : Bit; exit

|l
Clk ! 0 of Bit; exit
)
>
Cell3_Env [Reg2, Clk, Ack2]
endproc (* Cell3_Env *)

DFlipFlop_Pos_Decl
And2_Decl
And3_Decl
Or2_Decl

Inverter _Decl
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