
Communicating Systems XII, pages 131-147, Kluwer Academic Publishers,
London, UK, September 1999.

1

PROTOCOL-INSPIRED HARDWARE TESTING

Ji He and Kenneth J. Turner
Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA

jih@cs.stir.ac.uk, kjt@cs.stir.ac.uk

Abstract
The relevance of protocol conformance testing techniques to hardware testing

is discussed. It is shown that the ioconf (input-output conformance) approach
used in protocol testing can be applied to generate tests for a synchronous hard-
ware design using its formal specification. The generated tests are automatically
applied to a circuit by a VHDL testbench, thus giving confidence that the hard-
ware design meets its high-level formal specification. Case studies illustrate how
the ideas can be applied to standard hardware verification benchmarks such as
the Single Pulser and Black-Jack Dealer.

Keywords:
Conformance Testing, Design Validation, Hardware Description

1. INTRODUCTION

1.1 BACKGROUND

Modern digital circuits are becoming extremely complex, requiring substan-
tial effort to ensure design correctness prior to manufacture. Dill (Digital
Logic in Lotos [14, 15, 16, 25]) is an approach and a language for specifying
digital circuits using Lotos (Language of Temporal Ordering Specification
[12]). The formal basis of Lotos supports rigorous specification and analysis,
both crucial for correct circuit design.

The inspiration for the work presented in this paper comes from confor-
mance testing of communications protocols. The paper thus concerns testing
of communicating systems, but in this case hardware devices rather than pro-
tocol entities. In formally based protocol testing, tests are derived from a
formal specification and then used to check a concrete implementation. This

1

2

is regarded as a black box whose operation has to be checked against its spec-
ification. Essentially this is the way that the functionality of a digital circuit
is tested. Moreover, as in a communications system each part of a circuit has
to communicate with the other parts. As a novel application of conformance
testing, it is therefore worthwhile investigating how protocol testing ideas can
be applied to validation of digital hardware.

In electronics, the equivalent term is design verification, design validation
or functional testing. The term testing in this area applies to checking manu-
facturing defects in products rather than design problems. In the field of formal
methods, the term testing has a more general meaning. The system under test
might be a physical product, a formal specification or an informal specification.
This paper interprets testing to mean evaluation of a requirements specification
against a purported implementation specification.

1.2 APPROACH

Conformance testing uses experimentation to check an implementation
against its formal specification. Tests are derived from the specification, then
applied to the IUT (Implementation Under Test). Based on observations made
during the execution of the tests, a verdict is given about the correct functioning
of the implementation.

Hardware circuits are specified in this paper using Lotos, whose semantics
is given by an LTS (Labelled Transition System). The implementation of the
same circuit is described by VHDL (VHSIC Hardware Description Language
[10]). The behaviour of a VHDL program is presumed to be modelled by
an IOLTS (Input-Output Labelled Transition System). This model is merely
assumed to exist – it need not be known explicitly. Making the assumption that
an implementation has a formal model is referred to as the test hypothesis. This
makes it possible to express conformance of an implementation with respect its
specification using a formal relation. One such relation, ioconf (input-output
conformance [24]), is used as the criterion for correct hardware design.

The test suite for a circuit is generated from a Lotos specification fol-
lowing an algorithm based on that proposed by Tretmans [24]. The authors
have extended CADP (Cæsar Aldébaran Development Package [6]) to generate
hardware test suites automatically. Each test case in the generated test suite is
a sequence of input and output signals. Designing test cases as input-output
sequences is close to engineering practice in hardware testing. Moreover, it
allows test execution and obtaining test verdicts to be completely automated.
This is achieved by a VHDL testbench that executes and evaluates the test
cases. If there is an inconsistency between the formal specification and its
VHDL implementation, the implementation is regarded as incorrect.

Protocol-Inspired Hardware Testing 3

Section 2. introduces the theory for testing an IOLTS. This is followed by
its application to testing digital circuits in Section 3. Section 4. examines the
techniques in two case studies.

1.3 RELATED WORK

Test theories for LTSs were first studied more than a decade ago. These
theories aim to define implementation relations by explicitly using external
tests and observations (e.g. [4, 19]). Apart from defining an implementation
relation, conformance testing involves finding a set of tests for a specification
to distinguish between correct and incorrect implementations. [2] elaborates
a theory for testing systems specified in Lotos. Several test generation algo-
rithms for an LTS and for Basic Lotos have been proposed, e.g. [17, 20]. In
[23, 24] the testing theory for an LTS is refined for communicating systems
that distinguish inputs and outputs. This is a more realistic view of systems.

For validating hardware designs, simulation has been and is still the predom-
inant method in industry. In the main, test cases for simulation are manually
defined or are randomly generated. Recent developments for improving this ad
hoc approach lie in combining formal methods with traditional simulation tech-
niques. In [26] design verification tests are generated from behavioural VHDL
programs using traditional software testing methods. In [8, 18] test generation
is based on an FSM (Finite State Machine) or ECFM (Extracted Control Flow
Machine) that represents the control logic of a circuit. The generated test cases
are then applied to both higher level and lower level specifications in Verilog
[11] or VHDL. Verdicts are obtained by comparing outputs from the two lev-
els. These approaches extract a formal model from a circuit design and use
techniques based on FSM testing theory. But in this paper, tests are derived
from higher level specifications using conformance testing theory for LTSs.

In [21] test generation is based on a higher level FSM specification using
a commercial tool. Tests are then applied using a VHDL simulator. Unfortu-
nately this method cannot handle non-determinism in specifications. Its aim
is to fill the gap between abstract tests and concrete test signals. Of direct
relevance to the current work, the CADP toolset has a test generation tool TGV
[7] under development. The implementation relation exploited by TGV is very
similar to ioconf used in this paper. TGV was still to be released at the time of
writing, and so was not available to the authors for evaluation.

2. TESTING IO TRANSITION SYSTEMS

2.1 IOLTS AND IOCONF

Conformance testing involves checking the correctness of an implementation
against its specification by external tests and observations. To formally define

4

an implementation relation, a test hypothesis is needed that implementations
can be expressed by a formal model. In traditional conformance testing theories
for LTSs, both the specification and the IUT are modelled as LTSs. An IUT
communicates with its environment through symmetric interactions, hence its
environment as expressed by tests is also modelled as an LTS.

An LTS is a quadruple 〈S,L, T, s0〉 where S is a set of states, L is a set of
observable actions, T ⊆ S×(L∪{τ})×S is the transition relation, and s0 ∈ S
is the initial state. The class of transition systems with actions in L is denoted
by LT S(L). A transition in T is also denoted as s

µ
→ s′ if (s, µ, s′) ∈ T .

The special action τ �∈ L represents an unobservable (or internal) action. The
following notations are commonly used for LTSs.

Let p = 〈S,L, T, s0〉 be an LTS with s, s′ ∈ S, and let µi ∈ L∪{τ}, ai ∈ L,
L� denotes the set of all finite action sequences of L and σ ∈ L�. The following
definitions then apply:
s
µ1·...·µn−→ s′ =def ∃s0, . . . , sn : s = s0

µ1−→ s1
µ2−→ . . .

µn−→ sn = s
′

s
µ1·...·µn−→ =def ∃s

′ : s
µ1·...·µn−→ s′

s
µ1·...·µn
�−→ =def � ∃s

′ : s
µ1·...·µn−→ s′

s
ε
⇒ s′ =def s = s

′ or s τ ·...·τ−→ s′

s
a
⇒ s′ =def ∃s1, s2 : s

ε
⇒ s1

a
→ s2

ε
⇒ s′

s
a1·...·an=⇒ s′ =def ∃s0 . . . sn : s = s0

a1⇒ s1
a2⇒ . . .

an⇒ sn = s
′

s
σ
⇒ =def ∃s

′ : s
σ
⇒ s′

s �
σ
⇒ =def � ∃s

′ : s
σ
⇒

init(p) =def {µ ∈ L ∪ {τ} | p
µ
→}

traces(p) =def {σ ∈ L
� | p

σ
⇒}

p after σ =def {p
′ | p

σ
⇒ p′}

Many real world systems communicate with their environment in a different
way from an LTS. There is a clear distinction between the inputs and outputs
of a system. The inputs of a system are always enabled and cannot refuse
the actions offered by the environment. After the system consumes an input
and produces its outputs, the environment has to accept the outputs. In other
words, such a system will never reject inputs and its environment will never
block outputs. Communication is thus no longer symmetric. In [24] this kind
of behaviour is modelled as an IOLTS, which is a special kind of LTS.

An IOLTS (Input-Output Labelled Transition System) p is an LTS in which
the set of actions L is partitioned into input actions LI and output actions LU
such that LI ∪ LU = L and LI ∩ LU = ∅. (The suffix U derives from the
Dutch/German word for out.)

Whenever p
σ
=⇒ p′ then ∀a ∈ LI : p′

a
=⇒

Protocol-Inspired Hardware Testing 5

Intuitively this means that input actions are always enabled in any state. The
class of input-output transition systems with input actions in LI and output
actions in LU is denoted by IOLT S(LI , LU) ⊆ LT S(LI ∪ LU).

Several implementation relations have been defined to express conformance
of an implementation to its specification. In these relations, specifications
are modelled as LTSs and implementations are modelled as IOLTSs. This is
because an LTS can give a more abstract view of a system, while an IOLTS is
closer to reality. The specification LTS can be regarded as a partially specified
IOLTS in the sense that there are some states in the specification that can refuse
input actions. There are two reasons to write such kinds of specifications. One
is that it does not matter how implementations respond to unspecified inputs.
The other is that the environment is assumed not to offer such inputs, so there
is no need to specify them.

To define the implementation relation ioconf, several other definitions have
to be introduced. Let p ∈ LT S(LI ∪ LU), s be a state in the LTS and S be a
state set. Then:

A state s of p is quiescent, denoted by δ(s), if ∀µ ∈ LU ∪{τ} : s �
µ
−→

A quiescent trace of p is a trace σ which may lead to a quiescent state:
∃p′ ∈ (p after σ) : δ(p′)

out(s) =def {x ∈ LU | s
x
→} ∪ {δ | δ(s)}

out(S) =def
⋃
{out(s) | s ∈ S}

From the definition, a quiescent state is one that cannot perform any output
transitions or an internal transition. out(s) defines all the output actions that
a state can perform. This includes the quiescent ‘action’ δ that means the
state cannot perform any output actions. Let i ∈ IOLT S(LI , LU), s ∈
LT S(LI ∪ LU). Then:

i ioconf s =def ∀σ ∈ traces (s) : out(i after σ) ⊆ out(s after σ)

This means that an implementation is correct if, after all traces σ of the speci-
fication, the implementation outputs can also be produced by the specification.
An implementation cannot produce outputs which are not expected by the spec-
ification. Since this also holds for δ, the implementation may not output if the
specification cannot do so.

2.2 TEST GENERATION FOR IOCONF

To support the generation of test cases for ioconf, an intermediate LTS
termed the suspension automaton is built from the specification LTS. The

suspension automaton Γp of an LTS p is obtained by adding self-loops s δ→ s
for all quiescent states and then determinising the resulting automaton. The
important properties of a suspension automaton are that it is deterministic and
for σ ∈ L�, out(Γp after σ) = out(p after σ). As will be seen later, checking

6

ioconf can be easily reduced to checking trace inclusion on the suspension
automaton.

A test case t is an LTS< S,LI ∪ LU ∪ {δ}, T, s0 > such that:

t is deterministic and has finite behaviour
S contains the terminal states Pass and Fail, with init(Pass) = init(Fail)
= ∅
for any state s ∈ S of the test case, s �= Pass or Fail, either init(s) = {a}
for some a ∈ LI , or init(s) = LU ∪ {δ}.

The class of test cases over LU and LI is denoted as T EST (LU , LI). A test
suite T is a set of test cases: T ⊆ T EST (LU , LI). LI and LU refer to inputs
and outputs from the point of view of the IUT, so LI represents the outputs and
LU the inputs of test cases.

The following test generation algorithm is based on the suspension automa-
ton obtained from an LTS. It is a slightly modified version of the one in [24]
which generates tests according to various implementation relations. The fol-
lowing one is tailored for the ioconf relation.

Test Generation Algorithm: Let Γ be the suspension automaton of an LTS
s, and let F = traces(s). Then a test case t ∈ T EST (LU , LI) is obtained
by finite, recursive application of one of the following three non-deterministic
choices:

Choice 1: Terminate the test case: t := Pass.

Choice 2: Give a further input to the implementation: t := a; t′. Here,
a ∈ LI such that F′ = {σ ∈ L�I | a · σ ∈ F} �= ∅. To obtain t′ the
algorithm is applied recursively to F′ and Γ′, which is derived from
Γ

a
−→ Γ′.

Choice 3: Check the next outputs of the implementation:

t :=
∑
{x;Fail | x ∈ LU ∪ {δ}, x �∈ out(Γ)}

∑
{x; tx | x ∈ LU , x ∈ out(Γ)}

δ;Pass if δ ∈ out(Γ)

where tx is obtained by recursively applying the algorithm for {σ ∈
L�δ | x · σ ∈ F}, and Γ′ arises from Γ x→ Γ′.

The first choice terminates the test generation procedure. Since specifications
usually have infinite behaviour, test generation has to be stopped at some point.
The second choice gives the next input to the implementation. Since inputs are
always enabled, this step will never result in deadlock when an input is applied
to the IUT. It is therefore not possible to reach a terminal Pass or Fail state. To
avoid unnecessary non-determinism during testing, only one input is applied

Protocol-Inspired Hardware Testing 7

each time. The third step checks the next output of the implementation, i.e. for
each x ∈ LU ∪ {δ} it is checked if out (Γi after σ) ⊆ out(Γs after σ). Here,
σ is the trace which has been produced so far. Any implementation producing
an output x that does not belong to out(Γs) will result in a Fail terminal
state, indicating a non-conforming implementation. For all other outputs x, the
generation procedure may continue. However δ does not belong to trace(s) so
a Pass terminal state results and no further sequences need be checked. This
test generation algorithm guarantees sound test cases with respect to ioconf,
and the set of all possible test cases that can be obtained is exhaustive.

3. TESTING SYNCHRONOUS CIRCUITS

3.1 SYNCHRONOUS CIRCUIT MODEL

The idea of applying the above theory to validating hardware circuits comes
naturally. The Dill approach uses Lotos to specify digital circuits, so the
behaviour of circuits is expressed by an LTS. On the other hand, real hardware
communicates with its environment via input and output ports. An IOLTS is a
realistic model since inputs are always accepted by circuits.

In this paper, only synchronous circuits are considered. Synchronous
circuits are also referred to as clocked since their operation is controlled by one
or more clocks. The classical synchronous circuit model is shown in Figure 1.
In this model, the combinational logic provides the primary outputs and internal
outputs according to the primary inputs and internal inputs. Internal outputs
are then fed into state hold components to produce the internal inputs. Changes
of the internal inputs are synchronised with the clock, in other words they are
changed only at a particular moment of the clock cycle (usually its transition).
The internal inputs affect the state of the whole circuit.

combinational
logic

state
hold

component
Clk

inputs outputs
.
.
.

.

.

.

...
...

primary primary

internal
outputsinputs

internal

Figure 1 Synchronous Circuit Model

8

Because only circuit behaviour (not design) is specified inLotos for testing
purposes, this paper addresses only behavioural modelling of synchronous
circuits. Other issues such as structural modelling are discussed elsewhere [16].
A clock signal can be specified explicitly or implicitly according to convenience.
Lotos events represent signal levels during a clock cycle. Circuit behaviour is
specified with reference to a clock signal. After an active clock transition, the
primary outputs and internal outputs are updated according to the primary inputs
and internal inputs. The rest of this section gives two illustrative examples.

A JK flip-flop is a single-bit memory element with control inputs J and K.
If they are both set to 0, the flip-flop stays in the same state. If they are both
set to 1, the flip-flop inverts its current value. If J and K are set to different
values, the value of J is stored. The output is conventionally called Q, while
its complement is NQ (not Q). The JK flip-flop specification below fixes the
order in which inputs and outputs occur. This might not be a restriction of
real hardware. However the order does not influence the functionality of the
flip-flop, so there is no need to distinguish which input or output happens first.
By restricting the event order, the state space can be substantially reduced when
a component has multiple inputs and/or outputs.

behaviour JK [J, K, Q, NQ] (0) (* initial state is 0 *)
where

process JK [J, K, Q, NQ] (dtQ : Bit) : noexit :
J ?newJ : Bit; K ?newK : Bit; (* get new J and K *)
([(newJ eq 0) and (newK eq 0)] > (* both 0 - same state *)

Q !dtQ; NQ !not(dtQ); (* output current values *)
JK [J, K, Q, NQ] (dtQ)

[(newJ eq 1) and (newK eq 1)] > (* both 1 - flip state *)
Q !not (dtQ); NQ !dtQ; (* invert outputs *)
JK [J, K, Q, NQ] (not (dtQ))

[newJ ne newK] > (* both differ - take J *)
Q !newJ; NQ !not (newJ); (* use J as input *)
JK [J, K, Q, NQ] (newJ))

endproc (* JK *)

The Single Pulser [22] is a standard hardware verification benchmark. It is a
clocked sequential device with a one-bit input and a one-bit output. It outputs
a one-cycle pulse when there is a pulse on its input. The Single Pulser can
thus be used to debounce a switch, for example. Two kinds of implementations
are allowed. The output pulse may be asserted on the positive-going
� or
negative-going �� input transition, so the specification is non-deterministic. Test
generation for the Single Pulser will be covered in Section 4.1. This example
is introduced now to illustrate the issues in modelling synchronous circuits.

process SP [Ip, Op] : noexit : (* Single Pulser *)
i; SP P [Ip, Op] (0) (* +ve triggered implementation *)

Protocol-Inspired Hardware Testing 9

i; SP N [Ip, Op] (0) (*-ve triggered implementation *)
where

process SP P [Ip, Op] (dtI: Bit) : noexit :
Ip ?newI : Bit; (* get new input *)
(Op !1 [(dtI eq 0) and (newI eq 1)]; (* output 1 on 0 >1 input *)

SP P [Ip, Op] (newI)

Op !0 [not ((dtI eq 0) and (newI eq 1))]; (* else output 0 *)
SP P [Ip, Op] (newI))

endproc (* SP P *)
process SP N [Ip, Op] (dtI: Bit) : noexit :

Ip ?newI : Bit; (* get new input *)
(Op !1 [(dtI eq 1) and (newI eq 0)]; (* output 1 on 1 >0 input *)

SP N [Ip, Op] (newI)

Op !0 [not ((dtI eq 1) and (newI eq 0))]; (* else output 0 *)
SP N [Ip, Op] (newI))

endproc (* SP N *)
endproc (* SP *)

The LTSs that are observationally equivalent to the above Lotos spec-
ifications appear in figure 2. Observational equivalence is used here since
conformance testing relates only to external behaviour of circuits. The equiv-
alence is preserves all external behaviour and has much smaller state space
compared to the original specifications. Figure 3 shows suspension automata
built from the LTSs. Self-loops in this figure denote δ (quiescent state) actions.
Figure 4 presents several tests generated from the automata using the algorithm
explained in the preceding section.

SP

i i

Ip!1 Ip!0
Op!0

Op!1 Ip!0

Ip!1 Op!0
Ip!0

Op!0 Ip!1
Ip!0

Op!0

Op!1

Ip!1

JK

J!1 J!0

K!1K!0

Q!1

NQ!0
J!1

J!0

K!0 K!1

K!1K!0

Q!0

NQ!1

Figure 2 LTSs for the JK Flip-Flop and Single Pulser

The modelling approach discussed above has some implications for testing.
Firstly, Lotos events represents stable signal values in a specific clock cycle.
When testing a circuit, applying inputs and observing outputs should also be
conducted when the circuit is stable. This is not a problem for clocked circuits

10

J!1 J!0

K!1K!0

Q!1

NQ!0
J!1

J!0

K!0 K!1

K!1K!0

Q!0

JK_Sus

NQ!1

SP_Sus

Ip!1 Ip!0

Ip!0dOp!0Ip!1Op!1

Ip!1

Op!0

Op!1 Op!0

Op!1

Ip!1

Op!0

Op!0

Ip!0

Ip!1

Ip!0

Ip!1

Ip!0

Op!0

Ip!0

Figure 3 Suspension Automata for the JK Flip-Flop and Single Pulser

Fail Fail Fail Fail

FailPass Fail Fail Fail

δ

Pass

Op!1
δ

Pass

Ip!1

Op!0

Ip!1

Pass

Op!0

Fail

Sp_t1JK_t1 JK_t2

J!1J!1

K!0

Q!1
Q!0 NQ!1

NQ!0

NQ!0

δ Q!1 Q!0 NQ!1 NQ!0

Figure 4 Several Tests of the JK Flip-Flop and Single Pulser

since the clock cycle is always chosen such that the circuit has enough time
to settle down. Secondly, as stable values of inputs and outputs should appear
once in every clock cycle, there is no need to worry about the δ action which
indicates the absence of outputs. It is therefore less interesting to generate tests
cases like JK t2 that check absence of outputs. They are therefore excluded
from the outputs of the test generator. Finally, as discussed earlier the order
of inputs and outputs is fixed to restrict the state space. In test case JK t1,
the test gives a Fail verdict when the first NQ !0 is observed. This would not
have happened if the full state space had been generated. The way to solve this
problem is discussed in Section 3.2.

These two examples also indicate why the ioconf relation is a suitable im-
plementation relation for validating synchronous circuits. If a specification is
deterministic then ioconf requires that, for all possible input sequences, all the

Protocol-Inspired Hardware Testing 11

outputs of an implementation should agree with those given by the specifi-
cation. This is strong enough to distinguish erroneous implementations from
correct ones. On the other hand, it also permits non-deterministic specifications
to be tested. For the example of the Single Pulser, a correct implementation
may produce the output pulse after a
� or �� input. This can be properly captured
by the ioconf relation. For example if input is initially presumed to be 0 and
then it changes to 1, the output of a
� implementation should be 1 (or 0 for a ��
implementation). As seen in test case Sp t1 of Figure 4, both design decisions
can pass the test so implementation freedom is respected.

3.2 TEST GENERATION AND EXECUTION

The test cases generated from the algorithm in Section 2.2 have the form of
a tree. This might have a straightforward mapping to TTCN (Tree and Tabular
Combined Notation [13]). However, the work presented here focuses on inves-
tigating the idea of applying protocol testing theory to hardware validation. In
this context it is preferable to have test cases of a simpler form that eases test
execution and analysis.

A natural way to think about test cases for synchronous circuits is: for the
given inputs, what should the outputs be? This indicates that test cases can be in
the form of trace with alternation of inputs and outputs. For example, test case
JK t1 can be stored in a file of the form: J!1; K!0; Q!1; NQ!0; Pass. In other
words, transitions leading to the Fail verdict are not explicitly recorded. When
implementations have outputs different from the one defined in the test case, a
Fail verdict should be generated automatically. Moreover, the side-effect of not
recording sequences leading to Fail easily solves the problem resulting from
fixing the order of outputs in specifications.

This method works well with deterministic specifications. However when
the specification has non-deterministic behaviour, simply generating traces
from a tree raises problems. For example, the test tree of Sp t1 cannot be
rewritten as Ip!1; Op!1; Ip!1; Op!0; Pass and Ip!1; Op!0; Pass. If a
�
implementation were tested by the first case, it would be given a Fail verdict.
Conversely, a �� implementation would fail the second test. Actually, both of
them might be correct implementations. The problem is that an implementation
has to pass all the test cases in a test suite before it is regarded as correct. But
for this example, passing only one of the test cases is necessary. This is solved
by marking outputs at a contradictory branch to indicate that the corresponding
test is inconclusive when the marked outputs are not matched by the IUT.

At some node of a suspension automaton, suppose the test generation pro-
gram finds that there are two possible output transitions with the same gate
offering different values. Both of the outputs should be marked when the cor-
responding sequences are generated, meaning they are not necessarily matched

12

by the implementation. Coming back to the example above, the tests then
become Ip!1; Op!1�; Ip!1; Op!0; Pass and Ip!1; Op!0�, Pass. When out-
put Op!1 from the implementation is compared to the second test case, the �
means this output does not have to be matched and other test outputs should be
checked. If this output is matched by another test branch, comparison contin-
ues to determine if the subsequent behaviour is satisfied. As digital signals are
strictly binary in the Dill model, if test generation produces both traces then
no erroneous behaviours of an implementation will be missed.

Test generation is mainly based on traversing suspension automata. If
Choice 1 is made, test case generation is complete and a new test case can be
begun. Appending an input action to a trace corresponds to selecting Choice 2
in the test generation algorithm. Appending an output event, possibly with a �
mark, equates to Choice 3.

As specifications usually have infinite behaviour, especially if they involve
iterations, a test case can hardly be a complete trace unless the circuit has a
deadlock state. Therefore a test suite can never cover all the behaviour of a
specification. How to generate a test suite with good coverage is an important
theme for testing theory based on LTSs, and is expected to be addressed at a
later stage of the work presented here. In this paper, when to terminate a test
case and test suite selection are mainly based on heuristics.

If covering all behaviour is not achievable, then covering all transitions
might be a second-best choice. A suspension automaton is a directed graph.
Generating a sequence that visits every edge in the graph at least once is the
Chinese postman problem [5] that generates a transition tour. A single
transition tour exists only for a strongly connected graph in which every node
in the graph has a path to every other node. Otherwise, more than one tour is
needed to cover all the transitions. As suspension automata may not be strongly
connected, it is not possible to make direct use of transition tour generation
algorithms (e.g. [9]) that guarantee the shortest tour for a strongly connected
graphs. In the work presented here, the approach of [8] is adopted because it is
suitable for all kinds of directed graph. In this method, depth-first search (DFS)
is used whenever possible as it naturally records the transitions traversed. When
an unvisited edge cannot by reached by by DFS, breadth-first search (BFS) is
exploited to find a state that has an unvisited edge; DFS then continues from
this state. The whole procedure repeats until this is no unvisited edge in the
graph.

The CADP toolset supports an application programming interface that al-
lows user-written programs to manipulate the state space of a given Lotos
specification. The programming interface is used to apply the test generation
algorithm to synchronous circuits. For example, Figure 5 shows a test case that
is generated for the JK Flip-Flop. Note that the test cases are influenced by the
order in which suspension automaton edges are stored. This order is adjustable

Protocol-Inspired Hardware Testing 13

by changing parameters passed to CADP. If more coverage is required, the test
generator can be re-run by using different parameters for more test cases.

Cycle J K Q NQ Cycle J K Q NQ
1 1 1 1 0 2 1 1 0 1
3 0 1 0 1 4 1 0 1 0
5 0 0 1 0 6 1 1 0 1
7 0 0 0 1

Figure 5 Part of the Test Suite Generated for the JK Flip-Flop

Each tour generated in this way is a test case and is saved in a test file.
The accumulated test cases are passed to a VHDL simulator that handles a
lower-level implementation of the circuit. A VHDL testbench is designed to
allows the test cases to be applied and executed against the VHDL description
of the circuit. The testbench mainly consists of two processes that are executed
concurrently. The first process generates clock signals for the circuit under
test. The second process reads the test suite file and generates signal stimuli
according to the inputs of each test case. It also compares the outputs generated
by the VHDL simulator with the output values specified by test case, giving a
Fail verdict and aborting the simulation if they are not the same. The testbench
also has to determine when to apply the input stimuli and to check the output
result. This needs some knowledge of the circuit realisation, such as the
propagation delays of components in the circuit. Special care should be given
to those outputs which are marked � as discussed earlier. Between two test
cases, a reset signal is generated by the testbench to re-initialise the circuit
under test. The assumption is made that a circuit can always be correctly reset.
The Lotos specifications discussed previously do not specify reset behaviour,
so a test need not be generated to ensure that reset is correctly achieved.

There is a peculiar situation for which the test generation program is not so
suitable, namely when a circuit implementation may have non-deterministic
behaviour. For such specifications, most test cases become inconclusive for
many correct and incorrect implementations. This makes the test suite less
meaningful. Fortunately, this is not so problematic since digital circuits are
rarely allowed to be non-deterministic. Although the Single Pulser specification
is non-deterministic, both of its implementations have deterministic behaviour.

4. CASE STUDIES

In this section, test generation and execution are applied to two standard
benchmark circuits. [22] gives informal descriptions of these, along with circuit
diagrams and timing diagrams. The Single Pulser has already been introduced.
The Black-Jack Dealer is a device that plays the dealer’s hand of the card game

14

also known as Pontoon or Vingt-et-Un. Although the Single Pulser circuit is
relatively small, the Black-Jack Dealer has significant complexity.

4.1 SINGLE PULSER

The formal specification of the Single Pulser was given in Section 3.1, along
with its automata forms in Figures 2 and 3. The deterministic design given in
the benchmark documentation issues an output after a positive transition of the
input. The test generation program produces test cases such as:

Test Case 1: Ip!0; Op!0; Ip!0, Op!0; Ip!1; Op!0�; Ip!0; Op!1; Ip!0; Op!0;
Ip!1; Op!0; Ip!1; Op!0; Pass

Test Case 2: Ip!1; Op!1�; Ip!0; Op!0; Ip!0; Op!0; Ip!1; Op!1; Ip!1; Op!0;
Pass

When the VHDL testbench is used to execute the first test case, simulation
is interrupted after the third clock cycle when an input of 1 has been supplied.
The circuit outputs 1 but the expected test output is 0. As this output is marked
with �, the simulator concludes that the test is inconclusive for this design. The
second test, however, successfully passes the simulation, indicating that the
implementation can be regarded as correct. Note that the single pulser does not
have a reset input, so simulation has to be restarted when the circuit is checked
against the second test case.

4.2 BLACK-JACK DEALER

The Black-Jack dealer inputs are Card Ready and Card Value (Ace..King,
Clubs..Spades). Its outputs have boolean values: Hit (card needed), Stand
(stay with current cards) and Broke (total exceeds 21). The Card Ready and
Hit signals are used for a handshake with a human operator. Aces have value
1 or 11 at the choice of the player. Numbered cards have values from 2 to
10. Jack, Queen and King count as 10. The Black-Jack dealer is repeatedly
presented with cards. It must assert Stand (when its score is 17 to 21) or Broke
(when its score exceeds 21). In either case the next card starts a new game.

In the Lotos specification of the Black Jack dealer, a new data type Value
is defined to represent the card value. Although the Lotos standard data type
NaturalNumber might appear suitable, CADP cannot generate the correspond-
ing LTS for an infinite data type like this. The key point in the specification
is how to handle the ambiguous value of an Ace. To solve the problem, the
specification uses the method given by [27]. Specification behaviour occupies
about 80 lines including comments. (The circuit diagram is also about a page.)

Using CADP and the test generator program written by the authors, a test
suite for the Black-Jack Dealer was derived. The test suite is able to test 181

Protocol-Inspired Hardware Testing 15

different hands of cards that a dealer may hold. The VHDL implementation
given in [27] was evaluated against this test suite.

Although the circuit was expected to pass the test suite, a Fail verdict was
recorded after the dealer was given the following cards: 5, 5, 3, 2, 1, 10. In this
case the dealer should be Broke because the sum of the cards is 26. However
the circuit outputs neither Stand nor Broke since it considers the total to be just
16. Other card combinations including an Ace and causing Broke exhibited the
same problem. This showed the problem was related to processing an Ace.

The circuit should initially take an Ace as 11. It should be re-valued as
1 (subtracting 10 from the sum) the first time the result would be Broke. If
the following cards would make the sum exceed 21, no re-valuation should be
done as no Ace is 11. But the given benchmark design still re-values the Ace
card, so the circuit is not Broke in this case. Carefully simulating the circuit
discovered a problem with one of the flag registers (Ace11Flag in [22]). This
indicates if there is an Ace to be 11. It is not reset to zero properly because the
effective duration of the signal used to reset it (ClearAce11Flag) is too short.
By slightly modifying the circuit to remove the cause of this short duration, the
circuit was able to successfully pass the test suite.

5. CONCLUSION AND FUTURE WORK

The framework of formal methods in protocol testing has been used for
testing digital circuits. The protocol testing implementation relation ioconf has
been justified as suitable for testing synchronous hardware circuits. A prototype
tool has been developed to generate and execute test cases automatically. The
approach has been validated on standard hardware verification benchmarks. It
is noteworthy that it could find an error in a published circuit design for the
Black-Jack Dealer.

Future work will include applying test selection techniques while generating
test cases. Test cases are guaranteed to cover all the transitions of the speci-
fication state space, but no further coverage information can be provided. To
progress further will involve defining a suitable coverage function or exploit-
ing some existing selection methodologies (e.g. [1, 3]). Applying the method
presented in this paper to higher-level specification of digital circuits will also
be interesting. In the examples of this paper, specification is relatively close to
real implementation. For example, signals are in one-to-one correspondence
between both levels. This makes the task of mapping the test cases to the actual
implementation very easy. But when specification is more abstract, greater
effort will be needed to make this correspondence.

References

[1] J. Alilovic-Curgus and S. T. Vuong. A metric based theory of test selection

16

and coverage. In A. A. S. Danthine, G. Leduc, and P. Wolper, editors,
Proc. Protocol Specification, Testing and Verification XIII, pages 289–
304. North-Holland, 1993.

[2] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal and K. K.
Sabnani, editors, Proc. Protocol Specification, Testing and Verification
VIII. North-Holland, Amsterdam, Netherlands, June 1988.

[3] O. Charles and R. Groz. Basing test coverage on a formalization of
test hypotheses. In M. Kim, S. Kang, and K. Hong, editors, Interna-
tional Workshop on Testing Communicating Systems X, pages 109–124.
Chapman-Hall, London, UK, 1997.

[4] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.
Theory of Computer Science, pages 83–133, 1984.

[5] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese
postman. Mathematical Programming, 5:88–124, 1972.

[6] J.-C. Fernández, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP (Cæsar/AldébaranDevelopment Package): A
protocol validation and verification toolbox. In R. Alur and T. A. Hen-
zinger, editors, Proc. 8th. Conference on Computer-Aided Verification,
number 1102 in Lecture Notes in Computer Science, pages 437–440.
Springer-Verlag, Berlin, Germany, Aug. 1996.

[7] J. C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using on-the-fly verifi-
cation techniques for the generation of test suites. In R. Alur and T. A.
Henzinger, editors, Computer Aided Verification’96, volume 1102 of Lec-
ture Notes in Computer Science, pages 348–359. Springer-Verlag, Berlin,
Germany, 1996.

[8] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture
validation for processors. In Proc. 22nd. Annual International Synposium
on Computer Architecture, 1995.

[9] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, Englewood Cliffs, New Jersey, USA, 1991.

[10] IEEE. VHSIC Hardware Design Language. IEEE 1076. Institution of
Electrical and Electronic Engineers Press, New York, USA, 1993.

[11] IEEE. IEEE Standard Hardware Design Language based on the Verilog
Hardware Description Language. IEEE 1364. Institution of Electrical
and Electronic Engineers Press, New York, USA, 1995.

[12] ISO/IEC. Information Processing Systems – Open Systems Interconnec-
tion – LOTOS – A Formal Description Technique based on the Temporal
Ordering of Observational Behaviour. ISO/IEC 8807. International Or-
ganization for Standardization, Geneva, Switzerland, 1989.

Protocol-Inspired Hardware Testing 17

[13] ISO/IEC. Information Processing Systems – Open Systems Interconnec-
tion – Conformance Testing Methodology and Framework – Part 3: The
Tree and Tabular Combined Notation (TTCN). ISO/IEC 9646-3. Interna-
tional Organization for Standardization, Geneva, Switzerland, 1991.

[14] Ji He and K. J. Turner. Extended Dill: Digital logic with Lotos. Tech-
nical Report CSM-142, Department of Computing Science and Mathe-
matics, University of Stirling, UK, Nov. 1997.

[15] Ji He and K. J. Turner. Timed Dill: Digital logic with Lotos. Technical
Report CSM-145, Department of Computing Science and Mathematics,
University of Stirling, UK, Apr. 1998.

[16] Ji He and K. J. Turner. Modelling and verifying synchronous circuits in
Dill. Technical Report CSM-152, Department of Computing Science
and Mathematics, University of Stirling, UK, Feb. 1999.

[17] G. Leduc. A framework based on implementation relations for imple-
menting Lotos specifications. Computer Networks and ISDN Systems,
25(1):23–41, Aug. 1992.

[18] D. Moundanos, A. Abraham, and Y. V. Hoskote. Abstraction techniques
for validation coverage analysis and test generation. IEEE Transactions
on Computers, 47:2–14, 1998.

[19] R. D. Nicola. Extensional equivalences for transition systems. Acta
Informatica, 24:211–237, 1987.

[20] D. H. Pitt and D. Freestone. The derivation of conformance tests from
Lotos specifications. IEEE Transactions on Software Engineering,
16(12):1337–1343, Dec. 1990.

[21] J. M. T. Romijn, O. Sies, and J. R. Moonen. A two-level approach to auto-
mated conformance testing of VHDL designs. Testing of Communicating
Systems, 10:432–447, 1997.

[22] J. Staunstrup and T. Kropf. IFIP WG10.5 benchmark circuits. http://
goethe.ira.uka.de/hvg/benchmarks.html, July 1996.

[23] J. Tretmans. Conformance testing with labelled transition systems: Im-
plementation relations and test generation. Computer Networks and ISDN
Systems, 29:25–59, 1996.

[24] J. Tretmans. Test generation with inputs, outputs and repetitive quies-
cence. Software Concepts and Tools, 17:103–120, 1996.

[25] K. J. Turner and R. O. Sinnott. Dill: Specifying digital logic in Lotos.
In R. L. Tenney, P. D. Amer, and M. Ü. Uyar, editors, Proc. Formal
Description Techniques VI, pages 71–86. North-Holland, Amsterdam,
Netherlands, 1994.

[26] F. Vemuri and R. Kalyanaraman. Generation of design verification tests
from behavioral VHDL programs using path enumeration and constraint

18

programming. IEEE Transactions on Very Large Scale Integration Sys-
tems, 3:201–214, 1995.

[27] D. Winkel and F. Prosser. The Art of Digital Design. Prentice-Hall,
Englewood Cliffs, New Jersey, USA, 1980.

