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Abstract— We investigate transparent replication of
components on top of the distributed data space archi-
tecture Splice. In Splice each component has its own local
data space which can be kept small using keys, time stamps
and selective overwriting. Since Splice applications are of-
ten safety-critical, we use two complementary formal tools
to ensure correctness: the yCRL tool set is used for a rapid
investigation of alternatives by a limited verification with
state space exploration techniques; next the most promis-
ing solutions are verified in general by means of the interac-
tive theorem prover of PVS. With these formal techniques
we showed that replication of transformation components
can be achieved using sequence numbers. We also prove
the correctness of a nicer, more transparent solution which
requires a slight extension of the write primitive of Splice.

I. INTRODUCTION

In this paper we study replication and formal ver-
ification of components on top of the real-time dis-
tributed data space architecture Splice [4]. This archi-
tecture has been devised at the company Thales (pre-
viously known as Thomson-CSF Signaal). It provides
a coordination mechanism for loosely-coupled compo-
nents, similar to Linda [7] and JavaSpaces [13]. The
main difference is that these last two languages have
one central data space, to which all processes may
write and from which they can all read or take items.
Such a central data space is absent in Splice, where
the data space is distributed; each application has its
own local data storage that is updated according to
a publish-subscribe mechanism. Whereas JavaSpaces
uses a leasing mechanism to express the temporal va-
lidity of data items (and allow garbage collection), the
local storages of Splice are kept small using keys and
time-stamps: recent data just overwrites old data with
the same key. More details about Splice are given in
section II-A.

The Splice architecture is being used to build large

Partially supported by PROGRESS, the embedded systems
research program of the Dutch organisation for Scientific Re-
search NWO, the Dutch Ministry of Economic Affairs and the
Technology Foundation STW, grants EIF.3959 and CES.5009.

and complex systems, such as command and control
systems. Typically there are sensors, a number of in-
ternal processes that perform calculations on the sen-
sor data, and components that decide on appropriate
actions such as commands to actuators. Thanks to
the efficient implementation of Splice, large streams
of sensor data can be processed at real time. Another
aim of Splice is to provide a platform that makes it
easy to replicate components in a transparent way,
i.e. achieving fault-tolerance for certain components
without affecting other components. In this paper we
investigate to which extent transparent replication on
top of Splice is possible. A question is, for instance,
whether the implicit time-stamp mechanism of Splice
can be exploited and whether we need any conditions
on the context of a replicated component.

In general, replication might affect the real-time
and the functional behavior of the system. Since most
Splice-applications are highly safety-critical, it is im-
portant to ensure the correctness of these applications.
A possible way to increase the confidence in the cor-
rectness of systems is the use of formal methods, i.e.
methods and techniques that have a precise, mathe-
matically defined meaning. In our study we use formal
methods to capture the precise meaning of Splice, to
experiment with versions of replication in a case study,
and for the formal verification of correctness.

Several formalizations of (fragments of) Splice [4]
already exist. We mention work on the process al-
gebra SPA [8], the algebraic uCRL tool set [10], [20]
and a formalization in the higher-order logic of the
theorem prover PVS [3]. The idea of achieving trans-
parent replication by requiring from the architecture
that, for any process P, we have P || P = P was put
forward in [9]. Related work on the operational se-
mantics of Linda and JavaSpaces has been presented
in [6]. Here the possibility for verification is left as
future work. A comparison between various shared
data space versions was given in [5].

Our semantic models of Splice are based on the
models described in [3], [20]. It is less detailed



than [10] in order to facilitate verification. Moreover,
the semantics presented here is based on more recent
information about the use of keys and time-stamps to
keep the local storages small.

We study replication on top of Splice using two com-
plementary formal approaches:

o The uCRL-approach builds an operational algebraic
model that is suitable for quickly prototyping and de-
bugging applications. Small finite instances of the ap-
plication can be verified automatically.

o The PVS-approach allows the verification of gen-
eral applications using the interactive theorem prover
PVS. A denotational semantics of Splice programs
and a compositional proof method based on property-
oriented specifications have been defined in the higher-
order logic of PVS.

Clearly, each approach has its strengths and weak-
nesses. For instance, the PVS-approach provides more
general results than the pCRL-approach, but it is
much more labor-intensive, especially when there are
still many errors in the application. Hence we apply
this approach after a good intuition has been obtained
using uCRL.

Hence, the aim of our work is not only to obtain
results on how to achieve correct, transparent replica-
tion on top of a distributed data space architecture,
but also to identify whether and how the two formal
approaches could be used in combination, such that
the advantages can be exploited in a methodology for
the verification of data space applications.

This paper is structured as follows. In section I we
give an informal description of Splice, a case study,
our approach and an overview of the results. The
#CRL-approach and the PVS-approach are presented
in Sections IIT and IV, respectively. Concluding re-
marks can be found in Section V.

II. INFORMAL OVERVIEW

In section II-A we briefly introduce the main con-
cepts of Splice and some details of the underlying im-
plementation. Section II-B describes a small appli-
cation that is used as a case study. Our formal ap-
proaches are briefly introduced in section II-C. The

general results of our study are presented in section II-
D.

A. Splice

The Splice architecture provides a coordination
mechanism based on a publish-subscribe paradigm.
Producers and consumers of data are decoupled; they
need not know each other, but communicate indirectly

via the Splice primitives, basically read- and write-
operations on a distributed data space. This makes
it possible to add and remove components at run-
time. The data space is distributed in the sense that
each component maintains its local version of the data
space. Read requests from an application process are
served from this local storage.

Looking at the implementation of Splice, each ap-
plication component has an agent that takes care of
the communication between components. When an
application process writes a data item of a particular
sort, the corresponding agent forwards this item asyn-
chronously via some underlying network to all agents
of processes that subscribed to this sort. There are no
assumptions on message delay and items may arrive
at the agents in different order. Each agent uses re-
ceived items to update its local storage, as described
below, where it might be read by its application.

To explain the update mechanism of local storages,
we first describe the entries in the data storage. Each
entry consists of three parts: a key, a value and a time
stamp. In each local data space, there will be at most
one item with a given key. When an application writes
a (key,value) pair, its local agent adds the current local
clock value to obtain a (key,value,time stamp) triple.
This triple is sent asynchronously to all subscribed
agents.

Next assume that a (key,value,time stamp) triple
arrives at some other agent. If no item with the same
key exists, the triple is simply added to the local data
space. Otherwise, the item with the same key is over-
written by the new item, provided the new item is
strictly newer than the current item in the local data
space, as indicated by their respective time stamps.
This prevents data items to be overwritten by older
items that suffered from a large network delay. Note
that these old items are simply ignored.

An application can read items satisfying certain
queries. It is, for instance, possible to read a value
with a given key. Reads can be either blocking or non-
blocking (possibly with some time-out). Also, Splice
admits both destructive and non-destructive read. In
the former case, an application process can read each
data item only once. As opposed to the global “take”
operation of JavaSpaces, this destructive read only
operates on the local data space. Note that an item
cannot simply be removed, because it is still needed
by the agent to check whether arriving data items are
newer than this item.

In our formal study, we only modeled the basic fea-
tures of the Splice architecture, especially concentrat-



ing on read and write operations on the data stor-
ages. We did not model, for instance, time-outs on
read operations, synchronization of local clocks, the
(dynamic) publish/subscribe mechanism, dynamic re-
configuration, data sorts, and different kinds of data
such as persistent and context data.

B. The Case Study

As a case study, we consider a simple system with
three types of components:
e Producer: provides data (with key input) to the
rest of the system. It can be seen as an abstraction
of sensors such as radar, thermometer, altitude mea-
surement device, etc., that provide the system with
an approximation of the physical reality.
e Transformer: performs internal data computa-
tions; here data with key input is simply transformed
into data with key output. In reality, such a process
performs some computation on data, such as comput-
ing tracks out of plots, making an hypothesis about
future movement of objects, etc.
o Consumer: consumes data with key output and for-
wards it to the external environment. In a real system,
this component might include some decision making,
leading to commands to external devices such as mo-
tors, pumps, screens, etc.
Although the example is very simple, by abstract-
ing from internal computations, it represents a typ-
ical Splice-application in which replication is rele-
vant. The aim is to obtain a higher degree of fault-
tolerance by replicating the transformer; the system
becomes more robust against crashes of transform-
ers and against network errors. General question is
whether the transformer can be replicated in a trans-
parent way, i.e. without modifying producer and con-
sumer. Does this, e.g., depend on certain conditions
for the components, are the implicit time-stamps use-
ful to support replication, or are other constructs
needed for replication?

C. Formal Methods

In this section we give the main ideas of our for-
mal approaches. Details can be found in subsequent
sections.

C.1 uCRL

In the pCRL approach, Splice is modeled opera-
tionally, by expressing the agents and the network in
a form of process algebra. This leads to a Splice
component. Next also producer, transformer and con-
sumer are modeled as a term in process algebra. Then
the aim is to show that

Splice || Producer || Transformer || Consumer
is equivalent (in some well-defined way) to

Splice || Producer || Transformer
|| Transformer || Consumer

We also consider a version with three transformers.

In this approach, it is difficult to split up the veri-
fication task; the whole system, with all components,
has to be considered. Since the uCRL tool is espe-
cially suitable for checking finite systems, we investi-
gated a number of instances of the system. Due to
the state-explosion problem, the tool could check a
system with at most 5 data items. Still this turned
out to be very useful to find errors. We also inves-
tigated several types of equivalences, and found sur-
prising differences, depending on the number of data
items considered.

To obtain a finite, checkable system that allows
rapid prototyping of our ideas, we made some fur-
ther simplifications in this approach. For instance,
we modeled blocking destructive reads, which return
only a single value.

C.2 PVS

The PVS-approach aims at general verification of
Splice-applications. First a denotational semantics is
defined for a programming language with Splice prim-
itives. Here we are not aiming at finite models, but
instead formulate a general semantics in terms of the
powerful higher-order logic of PVS. Specifications are
written in an assertional way, describing properties of
the system or its components, by means of pre- and
postconditions. Using the compositional character of
the semantics, verification can also be done composi-
tionally, allowing reasoning with the specifications of
components without knowing their implementation.

In this approach we first define a top-level spec-
ification for the whole system specTL. Given spec-
ifications specProd and specCons of producer con-
sumer, resp., we determine a specification specTrans
for the transformer and prove that these three speci-
fications lead to specTL. Next we investigate whether
specTrans can be replicated, i.e. the parallel composi-
tion of two transformers implies specTrans. Indepen-
dently, we design programs that are shown to satisfy
the specifications of the components. Standard proof
rules then easily lead to the fact that Producer ||

Transformer || Consumer conforms to specTL, and
if specTrans || specTrans conforms to specTrans,
we obtain that Producer || Transformer ||



|| Transformer || Consumer conforms to specTL,
for any positive number of transformers.

Note that this compositional approach supports a
strong separation of concerns; one can separately ver-
ify the satisfaction of the top-level specification, the
replication of transformer specification, and the inde-
pendent implementation of the components.

D. Results

Experiments in 4CRL with the case study, and sev-

eral other examples, show that in general replication
is not transparent; duplication of the transformer typ-
ically leads to a different (external) behavior. We in-
vestigated two possibilities for obtaining transparent
replication:
o The producer adds sequence numbers to data items,
which are copied by the transformer(s), and the con-
sumer only accepts items with increasing sequence
numbers. This solution has been validated in yCRL.
e The write primitive of Splice has been extended
with an additional time-stamp parameter which re-
places the implicitly added time-stamp. In this way,
time-stamps more accurately reflect the temporal va-
lidity of data and the update mechanism in Splice
ensures that items are only overwritten by more re-
cent data. With this extended write statement, trans-
parent replication is obtained rather easily, without
changing producer or consumer. This solution has
been validated in yCRL and its correctness has been
proved in general using PVS.

III. THE pCRL-APPROACH

The pCRL [15] specification language is a combina-
tion of (ACP-style) process algebra (see e.g. [1], [12])
and algebraic datatypes. A system is modeled as a
“process”, often specified as the parallel composition
() of a number of other processes, the components.
Components are often described by recursive equa-
tions, using sequential (.) and alternative (4) com-
position. Consider, e.g., Buf = in.out.Buf. Here
in and out are so-called atomic actions, which can
be externally visible actions, or which synchronize
with corresponding actions in different components.
Atomic actions can be labeled by data parameters in
#CRL. Also recursive specifications can have data pa-
rameters, which serve as state variables. Input can be
modeled by non-determinism, e.g. in(0)+in(1) models
the input of some bit. A generalized choice operator is
written with the ) -operator. Another construct is a
guard: [b] — z, which can execute z provided boolean
b is true. Data, like bits and booleans, but also natural

numbers, sets etc., are described by means of algebraic
data types. A buffer-with-delay can be modeled as:

Buf(z : Bit) = Z in(y).out(z).Buf(y)
y:Bit

The pCRL tool set [2] supports verification as fol-
lows. The operational semantics of a yCRL process is
a labeled transition system (LTS). This is a rooted di-
rected graph, some of whose edges are labeled with ex-
ternally visible atomic actions. The remaining edges
are labeled with 7, denoting an invisible action. The
#CRL tool set allows automatic generation of the LTS
from a uCRL specification; this is only possible for fi-
nite instances of a system. The resulting LTS can be
inspected by means of visualization, model checking,
or equivalence checking. For these activities we used
the CADP tool set [11].

The sketched verification route has a clear bottle-
neck: the LTS suffers from a combinatorial state ex-
plosion, due to the many possible interleavings. To
overcome this, one can hide (i.e. rename to 7) as many
actions as possible, given a requirement to verify, and
subsequently minimize the LTS modulo some equiva-
lence relation. Usually, the equivalence relation used
in pCRL is branching bisimulation [14].

In order to avoid the generation of the large LTS
entirely, the pCRL tool set will first compile the spec-
ification to a linear process equation, to be viewed as
an internal symbolic representation of the state space.
Several reduction tools are implemented, which trans-
form a linear process to an equivalent process. Even-
tually, a much smaller, but branching bisimilar state
space will be generated. We mention a few of these
techniques:

o Temporarily unused state variables are given a de-
fault value, reducing the number of states of the cor-
responding component.

o The number of interleavings of invisible actions with
other actions can be reduced, provided the invisible
actions enjoy the confluence property. This prop-
erty is established by means of an automated theorem
prover.

o Invariants are generated and used to evaluate the
guards symbolically in order to remove dead (i.e. un-
reachable) code. This is often a fruitful preparation
for the other steps. This technique also uses the au-
tomated theorem prover.

The novelty is that these reductions are performed at
a symbolic level, which makes the tool set quite flexi-
ble: the user can apply the reductions in any desired
order.



This verification method has the limitation that it
can only be applied on finite state systems. As ad-
vantages, we mention that it is completely automatic,
and that it also gives useful feedback in case some
requirement doesn’t hold. For instance, the model
checker will return an execution path which violates
the requirement. This is very useful for debugging the
specification.

A. Components and their interconnection

We model a Splice system as the parallel composi-
tion of m application processes and a separate Splice-
process. Subsequently, the Splice-process itself can
be defined as the parallel composition of a number
of agents and a separate Network-process. The ap-
plications synchronize with Splice(-agents) via atomic
read- and write-primitives. Similarly, the agents syn-
chronize with the network via tell- and ask-primitives.
See Figure 1 for an overview of the system.
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Fig. 1. The architecture of a Splice system.

Next, we model the interfaces (API) of Splice and
the Network in yCRL.
¢ Synchronization between applications and Splice:

sort Key, Value, Address
act read,r : Key#Value#Address
write,w: Key#Value#Address
comm write | write = w
read | read = r

To avoid confusion between agents, we will give them
a unique address. Now the read and write actions
carry three data parameters: the key, the value and
the agent’s address. The comm section specifies the
possibility to synchronize on write actions and on read
actions. Here r and w can be seen as the combined

action of the application and the agent of performing
a read or write action.
o Synchronization between agents and the network:

sort Entry, AddressList

act tell,t: Address#Entry#AddressList
ask,a : Address#Entry

comm tell | tell = t
ask | ask = a

A tell action corresponds to broadcasting an entry to
a number of addresses asynchronously. An ask action
corresponds to receiving an entry from the network at
some address. We omit the standard algebraic speci-
fication of lists of addresses.

Having fixed the interfaces, we can be more explicit
on the composition (P; are application processes):

System = T{r,w}a{read,write}(Splice || P || e H Pn)
Splice = T{a,t}a{ask,tell}
(Network || Agent || --- || Agent) .

Here parallel composition (||) is ACP-style paral-
lelism, corresponding to an interleaving semantics,
with the possibility of synchronization between atomic
actions, as defined in the preceding comm-sections.
The encapsulation 0 is needed to enforce synchro-
nization. The hiding 7 is used to hide externally in-
visible actions: only the actions in P; different from
read/write are externally visible. In the subsequent
sections we define the components Network, Agent,
and some application processes.

B. The network

As we are not studying details of the underlying
network, a high-level description will suffice. In order
to model a reliable network, with an unbounded de-
lay, we simply introduce a multi-set of (entry,address)-
pairs, which will be delivered in any order. We now
first introduce the algebraic definition of multi-sets.
Consider the following pCRL-fragment:

sort Multiset
func empty_ms: ->Multiset
add: Entry#Address#Multiset -> Multiset
map union: Multiset#Multiset -> Multiset
remove: Entry#Address#Multiset -> Multiset
send_to_all: AddressList#Entry->Multiset
in: Entry#Address#Multiset -> Bool
var Xx,y: Multiset
m: Entry
p: Address
rew union(empty_ms,x) = x
union(add(m,p,x),y) = add(m,p,union(x,y))




First the sort Multiset is introduced (keyword
sort), and defined by its constructors empty_ms
and add (keyword func). Next, some other func-
tions are declared (keyword map) and defined al-
gebraically (keyword rew for “rewrite rules”). The
var-section declares the variables used in the fol-
lowing rew-section.  Above, union, remove and
in (membership test) are standard multiset func-
tions. The auxiliary function send to_all is
defined such that e.g. send to_all([a,b,c],e) =
{(a,e),(b,e),(c,e)}, where a, b, and c¢ are ad-
dresses and e is an entry.

Next, a process Network is defined, having the cur-
rent multiset as state variable (initially empty). It
is always willing to either receive a tell-request, in
which case it adds the messages to be delivered to its
multiset, or to non-deterministically deliver one of its
messages. We first present this process in yCRL and
then explain the notation.

proc Network = Network(empty_set)

Network(B:Multiset) =
sum(a:Address,sum(e:Entry,sum(AL: AddressList,
tell(a,e,AL).
Network(union(B,send_to_all(AL,e))))))
+ sum(a:Address,sum(e:Entry,
[in(e,a,B)] —>
ask(a,e).
Network(remove(e,a,B))))

The above definition is a recursive specification of
Network, parameterized by its state parameter B (the
multi-set), having two possible behaviors. At any mo-
ment a tell-action can happen from any address a of
entry e to recipients in address list AL. Similarly for
all a, e an ask-action can happen, provided (e,a) is
an element of B. The recursive calls specify the new
value of the multi-set in both branches.

C. The Agents

The agents maintain a local data base of current
entries. Entries are defined as triples (key,value,time
stamp), where we choose the natural numbers as time
stamps. To model destructive reads, agents also store
whether an entry has been read already or not. Hence,
the data base is modeled as a set of (Entry,Bool)-
pairs, where the boolean indicates whether the entry
has been used. The signature for the data base is as
follows:

func entry : Key#Value#Nat->Entry
sort Database
func empty : -> Database
add : Entry#Bool#Database —-> Database
map value: Key#Database -> Value

time: Key#Database -> Nat
unused_elt: Key#Database ->Bool
update: Entry#Database —-> Database
mark_used: Key#Database ->Database

Here empty and add are the (list-like) constructors
for Database. Furthermore, value, time are func-
tions to retrieve the value and time stamp of an item
with a certain key in the database; unused elt (k,S)
holds if and only if key k refers to an entry in S which
is not yet used. Finally, update and mark used are
modifiers, in order to update the database with a
new entry, or to mark the entry with a certain key as
used. The definitions of these operations are straight-
forward, except for update, which forms the core of
the data base mechanism.

var k,1: Key
e,f: Value
pP,q: Nat
m: Entry
x: Database
b: Bool
rew update(m,empty) = add(m,F,empty)
update(entry(k,e,p) ,add(entry(1,f,q),b,x))=
if (eq(k,1),
if(leq(p,q),
add(entry(1,f,q),b,x),
add (entry(k,e,p),F,x)),
add(entry(1,f,q),b,
update (entry(k,e,p),x)))

In order to update the database with an entry
(k,e,p), a matching entry (I,f,q), i.e. one with
eq(k,l), is searched. If a matching (I, f,q) cannot be
found, then (k,e,p) is added to the database. If a
matching (I, f,q) is found, then the time stamps p
and g are compared. If p < ¢, then the entry (k, e, p)
is simply ignored. Otherwise, if ¢ > p, then (I, f,q)
is overwritten by (k,e,p), and this item is marked as
not yet used.

Next, we define the behavior of the agents. Be-
sides the database (initially empty), an agent has a
local clock (t:Nat, initially 0), and it is parameter-
ized with its address. The Agent process is defined
recursively, and consists of three branches. First, an
unused entry from the database can be read, which
is then marked as already read. Second, a new el-



ement can be added, which is then time stamped
with the current clock value and broadcasted over
the network to all subscribers. We assume that some
(application-dependent) function is given to compute
the subscribers for some key. In this case the clock is
increased by one. Finally, some new entry may arrive
from the network, after which the database is updated
accordingly. So we get:

map subscribers: Key->AddressList
proc Agent(i:Address) = Agent(empty,i,0)

Agent (X:Database,i:Address,t:Nat) =

sum(k:Key,

[unused_elt(k,X)]->
read(k,value(k,X),1i).
Agent (mark_used (k,X),1,t))

+ sum(k:Key,sum(e:Value,
write(k,e,i).
tell(i,entry(k,e,t),subscribers(k)).
Agent (X,1,5(t))))

+ sum(e:Entry,
ask(i,e).

Agent (update(e,X) ,i,t))

D. Application Processes

We will model a producer and a consumer, which
are intermediated by a (number of identical) trans-
former(s). The system interacts with the external
world through in- and out-actions parameterized by
Data. These actions model sensor measurements and
actuator commands, respectively. Furthermore, we
have a conversion val:Data->Value.

sort Data

func wval: Data->Value
func input,output: Key
act in,out: Data

When the producer gets some input, it writes it to
the database with key input. The consumer tries to
read elements with key output and outputs them to
the external world. The transformer should compute
the output values from the input values. See Figure 2.

In order to tie the system together, we also have
to define some concrete addresses, and to define the
subscription information. The agents and the applica-
tions are then instantiated to obtain the system. See
Figure 3.

proc Producer(i:Address) =
sum(e:Data,
in(e).
write(input,val(e),i).
Producer(i))
Consumer (i:Address) =
sum(e:Data,
read (output,val(e),i).
out (e) .
Consumer (1))
Transformer (i:Address) =
sum(e:Value,
read(input,e,i).
write(output,e,i).
Transformer(i))

Fig. 2. Producer, Consumer and Transformer

func al,a2,a3,a4 :-> Address
rew subscribers(input) =
cons (a3,cons(a4,nil))
subscribers (output) = cons(a2,nil)
proc
Splice =

hide({a,t}, encap({ask,tell},
Network || Agent(al) || Agent(a2)
|| Agent(a3) || Agent(ad)))

System =
hide({w,r}, encap({write,read},
Splice || Producer(al) || Consumer(a2)
|| Transformer(a3) || Transformer(a4)))

Fig. 3. Composing the complete system

E. Verification

In order to verify replication, we will compare two
systems. Both are obtained by replacing P; (sec-
tion IIT-A) by some application processes. The first
system has a producer, consumer and one trans-
former. The second system has a producer, consumer
and two transformers. Because the resulting state
space is infinite, we have to make a finite instance.
This is done by modeling an environment, perform-
ing in(1).in(2)...in(n), where n is a parameter of the
system. For fixed n, the system is finite state.

To compare the systems, we first generate both
state spaces, performing reduction modulo branching
bisimulation symbolically and on the fly. The result-
ing LTS is then minimized further modulo branching
bisimulation. These activities are performed with the
pCRL tool set [2]. The resulting LTS is then mini-



mized modulo trace equivalence and can be visualized
or be subjected to model checking. These activities
are carried out with the CADP tool set [11]. The goal
is to check whether the minimized systems are trace
equivalent. So our notion of correctness is trace equiv-
alence between systems with and without replication.
This is deliberately weaker (coarser) than branching
bisimulation equivalence, for reasons described later.

Fig. 4. On the left the system without replication, on the
right the system with a replicated transformer

We applied state space generation and minimiza-
tion modulo trace equivalence on the two systems
(for n = 2), and got the graphs in Figure 4. Un-
fortunately, the systems appear not to be the same.
The system with two transformers is able to dupli-
cate some output. Apparently, duplication is not com-
pletely avoided by the overwrite-mechanism of Splice.
To see which sequence of read/write actions leads to
this undesirable situation, we have to remove the hid-
ing operator (7). This will generate a larger state
space, which cannot be aesthetically visualized. How-
ever, we now know what we are looking for, so we let
the model checker find some path with two out(2)
actions:

‘<true*."out(2)".true*."out(?)">true

Now the following concrete trace is automatically
generated, in which the second item arrives at the
transformer at a4 first; it is forwarded and arrives with
time stamp 0 at the consumer, and is subsequently
output. Then the first item arrives at the transformer
at a3, and is forwarded to the consumer. This item is
ignored as it has time stamp 0 too. Finally, the second

item arrives at a3, is forwarded to the consumer with
time stamp 1, and subsequently output for the second
time.

in(1)
w(input,val(1),al)
in(2)
w(input,val(2),al)
r (input,val(2) ,a4)
w(output,val(2),ad)
r (input,val(1),a3)
r (output,val(2),a2)
out (2)
w(output,val(l),a3)
r (input,val(2),a3)
w(output,val(2),a3)
r (output,val(2),a2)
out (2)

We investigated two possible solutions to this prob-
lem. The first solution shifts the problem to the sur-
rounding producer/consumer-processes. The second
(preferred) solution slightly extends the Splice primi-
tives.

o The first solution adds logical sequence numbers.
This can be done by redefining the constructor for
values as: val: Data#Nat -> Value. The producer
gets an extra parameter p:Nat. It writes val(e,p)
to the database, and increases p. The transformer
doesn’t change: it just maintains the sequence num-
bers. The consumer however becomes more compli-
cated. At any moment, it waits for an item with logi-
cal sequence number at least p. This query is modeled
by a guard g > p. After outputting this data item, it
will wait on sequence number at least g + 1.

proc Consumer’ (i:Address,p:Nat)
= sum(e:Data,sum(q:Nat,
[geq(q,p)1->
read(k2,val(e,q),1i).
out (e).
Consumer’ (i,S(q))))

We used the 4 CRL tool set to verify this system. This
could be done for systems with up to 4 input items.

e The essence of the previous solution is that the
transformer doesn’t tamper with the logical sequence
numbers. This observation leads to the next, more
elegant solution. We allow that the transformer can
explicitly read the time stamp of an item, and can
choose to write its items with the same time stamp,
instead of automatically using its local clock as time
stamp. Indeed, the clock value of the transformer is
rather meaningless in terms of the “temporal valid-



ity” of data. This solution is modeled by adding two
new actions, slightly modifying the read and write-
primitives, and extending the agents accordingly. The
transformer now uses the new primitives, by copying
the time stamp. The original producer and consumer
are not changed.

act read,r : Key#Value#Nat#Address
write,w: Key#Value#Nat#Address
proc Agent(...) = ...

+ sum(k:Key,

[unused_elt(k,X)]1—>
read(k,value(k,X) ,time(k,X),1).
Agent (mark_used(k,X),i,t))

+ sum(k:Key,sum(e:Value,sum(t0:Nat,
write(k,e,t0,1).
tell(i,entry(k,e,t0),subscribers(k)) .
Agent (X,i,t))))

Transformer’ (i:Address) =
sum(e:Value,sum(t:Nat,
read(input,e,t,i).
write(output,e,t,i).
Transformer’ (i)))

Again, the version with and without replication were
generated and compared using the pCRL tool set.
This time we could compare them up to 5 input items.

F. Concluding remarks on the y CRL approach

o uCRL is quite expressive. Especially the combina-
tion of choice operators and guards allows the model-
ing of restricted non-deterministic input and output,
in contrast to e.g. value passing CCS [18].

o The problem sizes that can be dealt with are lim-
ited, but some interesting instances can be generated.
In Figure 5 we show the size of the state space for
m transformers and n input items, denoted SYSmn. It
appears that we can easily generate situations with up
to 3 transformers, or 5 input items (slightly larger in-
stances can be generated, but this is time and memory
consuming).

o The symbolic reduction tools are indispensable, and
allow to generate systems of considerable size. With-
out applying these tools, the limit lies around two
transformers and four input items.

o The used equivalence relation matters. It appears
that the systems with and without replication are not
equal modulo branching equivalence with more than
two input items. Apparently, this equivalence rela-
tion is too fine. The red entries in Figure 6 show that
by increasing the length of the input, also the coarser
equivalence relations weak (=observational) bisimula-

generated reduced
states transitions | states transitions

SYS12 35 56 6 7
SYS22 419 1278 6 7
SYS32 4547 20465 6 7
SYS13 152 350 10 16
SYS23 5052 22305 10 16
SYS33 || 142472 925429 10 16
SYS14 611 1825 15 30
SYS24 55041 315712 15 30
SYS15 2339 8565 21 50
SYS25 || 566640 3984157 21 50

Fig. 5. Size of the generated and reduced LTSs

tion [18] and 7*a-equivalence fail. Only trace equiva-
lence remains. This also indicates that a more general
tool, dealing with arbitrary many inputs is useful.

BRANCH. WEAK ™a TRACE
states states states states
SYS12 8 8 7 6
SYS22 8 8 7 6
SYS13 22 19 13 10
SYS23 23 19 13 10
SYS14 55 45 27 15
SYS24 69 48 27 15
SYS15 127 105 63 21
SYS25 198 128 67 21

Fig. 6. Fine and coarse equivalences

IV. THE PVS-APPROACH

The tool PVS (Prototype Verification System) [19]
is used to give general verifications of Splice-based sys-
tems, for instance with an unbounded number of data
items or any arbitrary number of transformers. The
logic of PVS is a typed higher-order logic in which we
express the semantics of Splice. In earlier work on a
denotational semantics for Splice [3] the equivalence
of a global data space view and an implementation
with local data spaces was proved for a carefully se-
lected set of Splice-primitives. This result, however,
does not hold for the full Splice architecture, which is
essentially based on distributed storages.

The semantics for local storages of [3] seems not
very convenient for verification; it is based on a partial
order of read and write events, with complex global
conditions at closure. It also uses process identifiers,



which we would like to avoid if possible (to stay close
to the high-level concepts of Splice). Here we aim at a
more intuitive denotational semantics, which enables
local reasoning as much as possible, and which also
incorporates more recent information about the char-
acteristics of Splice, especially concerning the time
stamps.

A new denotational semantics is presented in sec-
tion IV-A. The specifications and verification tech-
niques are based on earlier work on compositional
program verification in PVS [17] and are described
in section IV-B. Section IV-C contains the PV S-work
on the case study.

A. Denotational semantics

The PVS theories that describe the general Splice
semantics are parameterized by (non-empty) types
Data , KeyData, and a key function from data to key
data key : [Data -> KeyDatal. Moreover, there
are parameters for sets of variables, ranging over data
and sets of data. As usual, there is a type States
which assigns values to variables.

As time domain we use the real numbers, which are
predefined in PVS. By adding a time stamp to data we
obtain data items, represented in PVS as a record with
two fields, dat and ts. Extended data items contain
an additional boolean used. A (local) data base is a
set of these extended items, where used indicates if
the item has been read destructively, hence cannot be
read by subsequent reads.

Time : TYPE = real
Dataltems : TYPE = [# dat : Data,
ts : Time #]
ExtDataltems : TYPE = [# di : Dataltems,
used : bool #]
DataBases : TYPE = setof [ExtDataltems]

The basic idea of the semantics, see Figure 7, is that
for each sequential program we record the current con-
tents of the local data base, the set of data written by
the program itself, and the data items assumed to be
written by its yet unknown environment.

The written items are used to update the local data
base; this may happen non-deterministically, at any
point in time. In the sets of written items, the field
used indicates whether an item has already been used
for an update.

At any point during program execution it is possi-
ble to add items written by the environment. For a
process in isolation, all possibilities are included; these
assumptions are checked later at parallel composition

process

read

(d1 yt1, true)
(d3, t3, false)

(d1,11,false)
(d2,t2,true)

write

Fig. 7. Basic concepts of the semantics.

and closure.

This leads to the following semantic primitives
(type SemPrim), which are modeled as a record in PVS
with five fields: the current state, value of the local
clock, local data storage, own written items and items
written by the environment.

WriteSets : TYPE = setof[ExtDataltems]
SemPrim : TYPE =
[# st : States,
clock : Time,
db : DataBases,
ownw : WriteSets,
envw : WriteSets
#]
sp, sp0, spl, sp2 : VAR SemPrim

Then the denotational semantics of each statement
is a function from an initial semantic primitive (rep-
resenting the effect of preceding statements) to a set
of resulting primitives, that denote all possible non-
blocking executions. Based on earlier experience [17],
we identify a program and its semantics, since that
provides the most flexible framework. So here a Splice
program is simply defined as its semantics, a function
which assigns to each initial semantic primitive a set
of semantic primitives denoting the outcome of its ex-
ecutions.

SpliceProgs : TYPE = [SemPrim -> setof [SemPrim]]

prog, progl, prog2 : VAR SpliceProgs

For instance, a basic skip statement simply yields a
set containing only the initial state sp0. The full
skip statement is more complicated, because it also
includes a so called UPDATE statement which allows
arbitrary environment writes and non-deterministic



updates of the data base using the write sets. The
update of the data base formalizes the mechanism de-
scribed before, using keys and time stamps. To com-
bine update and basic statement, we first introduce
sequential composition.

SKIPB(sp0) : setof[SemPrim] = singleton(sp0)

UPDATE(sp0) : setof[SemPrim] = ...

Seq(progl,prog2) (sp0) : =

{ sp | EXISTS spl : member(spl,progl(sp0)) AND
member (sp,prog2(sp1)) }

Skip : [SemPrim -> setof[SemPrim]] =
Seq(UPDATE, SKIPB)

In this way, we define all basic statements, such as
assignment, read, and write; they all include UPDATE.
A read statement Read(svar,q,destr) has three
parameters: a variable svar, ranging over sets of
items, a query g, and a boolean destr which indicates
whether the read should be destructive. The query is
a predicate over the current state and database, spec-
ifying subsets of the data base that might be read. If
such a subset exists, it is assigned to svar, otherwise
the read statement blocks. Note that the query may
disallow the empty set, specifying a blocking read.

A write statement Write(e) adds a data item spec-
ified by expression e and extended with the current
value of the clock to the set of own writes. This state-
ment also increases the local clock. Since all other
statements do not decrease the clock, this ensures that
all writes of a sequential program have different time
stamps.

Besides sequential composition, we also define
a number of other compound constructs, such as
IfThenElse(b,progl,prog2) and an infinite loop
Loop(prog). At parallel composition progl //
prog2 we check whether the own writes of one pro-
gram are included in the environment writes of the
other, and whether the remaining external writes are
the same. The written items of both components
are removed from the environment write actions of
the composition. Finally, there is a closure operation
Close(prog) which requires that there are no envi-
ronment writes; hence all consumed items must have
been produced inside the program itself.

B. Specification and verification

To obtain a very flexible framework, suitable for
top-down program design, we freely mix specifica-

tions and program constructs. Starting from a speci-
fication, gradually more programming constructs can
be introduced, until finally all specifications are re-
moved. Hence we define a specification also as a
program. Here we use a pre- and postcondition
style specification, where an assertion is a predicate
over the semantic primitives, i.e. a function of type
[SemPrim->bool].

Assertions : TYPE = pred[SemPrim]
P> 9, T : VAR Assertions
spec(p,q) : SpliceProgs =
LAMBDA spO : { sp | p(sp0) IMPLIES q(sp) }

To express when one program refines another, we de-
fine =>, which is the subset relation here. Clearly, this
relation is reflexive and transitive.

: bool =
subset? (progl (sp0) ,prog2(sp0))

=>(progl,prog2)
FORALL spO :

Verification of this refinement relation is supported by
a number of proof rules. As an example, we show the
rule for sequential composition, formulated in PVS as
a theorem with label rule_seq. For parallel compo-
sition we present the monotonicity rule, which shows
that we can refine in a parallel context. These rules,
and many others, have been proved using the interac-
tive theorem prover of PVS.

rule_seq : THEOREM
Seq( spec( p, r ), spec( r, q ) )
=> spec( p, q )

mono_par : THEOREM
(prog3 => progl) AND (progéd => prog2)
IMPLIES

((prog3 // progd) => (progl // prog2))

C. Case study

To model the case study in PVS, we import the
general PVS theories described above with the follow-
ing parameters. Data consists of a name and a value,
where the name acts as key.

DataName : TYPE = {input,output,out}

DataVal : TYPE = nat

Data : TYPE = [# name : DataName,
val : DataVal #]

KeyData : TYPE = DataName

key(dvar: Data) : KeyData = name(dvar)

Moreover, we introduce program variables d and dset



ranging over data and sets of data items, respectively.

C.1 Top-level specification

The top-level specification of the case study, called
TopLevel, expresses that if there are no writes outside
the system then the out-values are increasing, i.e. for
two items edil and edi2 in ownw with name out we
have that val(edil) < val(edi2) IFF ts(edil) <
ts(edi2). Using suitable abbreviations, this can be
written as follows.

pre : Assertions = LAMBDA spO :

db(sp0) = emptyset AND

ownw(sp0) = emptyset AND

envw(sp0) = emptyset
postTopLevel : Assertions = LAMBDA sp :

empty? (envw(sp))
IMPLIES
Increasing(Out (ownw(sp)))

TopLevel : SpliceProgs = spec(pre, postTopLevel

C.2 Specifying components

The aim is to implement the above specification
by a producer, one or more transformers, and a con-
sumer. For the producer we specify that it produces
only input-values, and its writes should be increas-
ing. The consumer produces only out-items and it
just maintains the order of items, i.e. if the environ-
ment writes increasing output-items, then it will also
write increasing out-items. In PVS, omitting many
details:

postProd : Assertions = LAMBDA sp :

NameOwnw (input) (sp) AND Increasing(ownw(sp))
Prod : SpliceProgs = spec(pre, postProd)
postCons : Assertions = LAMBDA sp :

NameOwnw (out) (sp) AND

MaintainOrder (Output (envw(sp)),
Out (ownw (sp)))

Cons : SpliceProgs = spec(pre, postCons)

To satisfy the top-level specification, we introduce the
following specification for the transformer:

postTrans : Assertions = LAMBDA sp :
NameOwnw (output) (sp) AND
MaintainOrder (Input (envw(sp)),
Output (ownw (sp)))

Trans : SpliceProgs = spec(pre, postTrans)

C.3 Verifying the design

Using the specifications above, it is relatively easy
to verify that the three components in parallel lead to
the top-level specification.

DesignCorrect: THEOREM
(Prod // (Trans // Cons)) => TopLevel

Next, the components can be implemented indepen-
dently. By the monotonicity property (and transitiv-
ity of =>), conformance to the top-level specification is
still guaranteed. For instance, let s be a state variable,
where dvars (s) yields the values of the data variables
(such as d), then we have the following program for
the producer:

dinit : Exprs = LAMBDA s :
(# name := input, val := 0 #)
dval : Exprs = LAMBDA s : dvars(s)(d)
dnext : Exprs = LAMBDA s :
(# name := input,

val := val(dvars(s)(d)) + 1 #)

Producer : SpliceProgs =
Seq(Assign(d,dinit),

Loop(Seq(Write(dval), Assign(d,dnext))))

ProdCor : LEMMA Producer => Prod

For the transformer we have a program of the follow-
ing form (omitting details):

Transformer : SpliceProgs =
Loop(Seq(Read(dset,q(input) ,TRUE) ,
IfThenElse (NonEmpty,Write(mk(output)),
Skip)))

Similarly for the consumer.

C.4 Introducing replication

Note, that the previous transformer specification
cannot be replicated. This has been proved in PVS
by constructing a counter example manually.

NoRepl : LEMMA NOT ((Tramns // Tramns) => Trans)

To obtain a transformer that can be replicated, we
modify the specification such that it also maintains
the time stamp of the input item.



MaintainTs : Assertions = LAMBDA sp :
FORALL edi :member(edi,ownw(sp)) IMPLIES
EXISTS edil : member(edil,envw(sp)) AND
name (edil) = input AND
val(edi) = val(edil) AND
ts(edi) = ts(edil)

postTransNew : Assertions = LAMBDA sp :
NameOwnw (output) (sp) AND MaintainTs(sp)

TransNew : SpliceProgs = spec(pre, postTransNew

Note that the new transformer refines the old one, so
we still conform to the top-level specification.

NewImpliesOld : LEMMA TransNew => Trans

NewCorrect: THEOREM
(Prod // (TransNew // Comns)) => TopLevel

Now we can prove replication of the new transformer
and insert it into the system (as many times as we
want).

TransNewRepl : THEOREM
(TransNew // TransNew) => TransNew

NewReplCorrect: THEOREM
(Prod // ((TransNew // TransNew) // Cons))
=> TopLevel

With the current Splice primitives, however, the
new transformer specification cannot be implemented;
there is no possibility to specify the value of the time
stamp. Hence we propose to add a write primitive
Write(e,texp) which has as additional parameter a
time expression texp that is used in the time stamp
field of the data item written.

V. CONCLUSION

To achieve transparent replication of components
on top of the distributed data space architecture
Splice, we propose a slightly extended write command.
By adding a time expression that replaces the default
time stamp of data, the temporal validity of data can
be expressed more accurately. Together with the up-
date mechanism of Splice, where data with old time
stamps cannot overwrite newer values, this leads to a
more logical use of time stamps. It turned out this
makes replication much easier, avoiding for instance
the need for additional sequence numbers. Note that
the extended write command can also be used for pre-
dicted or interpolated data items. Also other exam-
ples with explicit time stamps, e.g. [16], could have

been simplified with this new write primitive.

The use of formal tools and techniques turned out
to be very useful during our study of replication on top
of Splice. Informal reasoning is difficult, because there
are many possible variations in the components and
the use of the underlying architecture. For instance,
for each read statement there are already a number
of choices concerning the precise query, and whether
it should be blocking and/or destructive. There are
also many variations concerning the structure of the
data and the choice of keys which influence the over-
writing of data. Moreover, the fact that Splice allows
arbitrary delays and reordering of messages leads to a
large number of possible executions.

Due to the combination of these aspects, it is al-
ready for very simple systems difficult to predict
whether they are correct of not. Using the uCRL tool
set we often found errors in our initial solutions. We
also discovered subtle points such as the fact that, for
transparent replication, overwriting data items should
only be done if the time-stamp is strictly greater, not
if it is equal. We also discovered differences between
small systems that in a subtle way depend on the
equivalence used and the number of data items con-
sidered.

The yCRL tool set and PVS turned out to be com-
plementary. Debugging initial ideas and building an
intuition about the correctness of applications is much
easier in yCRL than with PVS where it is usually dif-
ficult to see why a proof does not work. The pCRL
tool set automatically generates counter examples,
whereas they have to be constructed in PVS manually.
On the other hand, by the well-known state explosion
problem, the ;4 CRL tool set can only check small in-
stances of the system and our case study showed that
adding one more data item might already break an
equivalence. Hence the need for a tool like PVS that
makes it possible to perform general verifications. Our
PVS framework also supports compositional reason-
ing, allowing a separation of concerns and scalability
of the approach.

Also note that our two approaches use a different
specification paradigm; the uCRL approach provides
a more operational description, whereas the PVS ap-
proach is property-oriented. By comparing these ap-
proaches, we increase our confidence in the correctness
of the formalization. Note, however, that we do not
yet have a precise formal relation between the two ap-
proaches. Here the aim was to investigate whether it
could be useful to use these approaches in combina-
tion. Now that the answer is positive, a precise formal



connection becomes a topic of future research.
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