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Abstract

Distributed Model Checking (DMC) is based on several distributed algorithms,
which are often complex and error prone. In this paper, we consider one fundamen-
tal aspect of DMC design: message passing communication, the implementation of
which presents hidden tradeoffs often dismissed in DMC related literature. We show
that, due to such communication models, high level abstract Dmc algorithms might
face implicit pitfalls when implemented concretely. We illustrate our discussion with
a generic distributed state space generation algorithm.
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1 Introduction

Nowadays, large computational problems can be solved effectively by using
the aggregate power and memory of many computers. A current trend is to
use clusters of cheap PcCs or networks of workstations (NOws) as massively
parallel machines, since they are widespread architectures in laboratories and
companies compared to unaffordable supercomputers. A parallel program
aims at performing actions simultaneously on parallel hardware, whereas a
distributed program is a parallel program designed for execution on a network
of autonomous processors that do not share a main memory. It is natural to
try to apply massively parallel machines to computer aided verification, which
is very demanding in terms of computing and memory resources.

For the last few years, parallel and distributed model checking (Dmc) have
received a lot of interest. Numerous verification tools have been developed,
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ranging from distributed state space generation [TIT4/T3] to distributed on-
the-fly symbolic model checking []. Tools like SPIN [I8], MUr¢ [21], and
CaDP [I3] have been adapted to parallel and distributed machines. Different
approaches have been considered: distributed disk-based [16], multithread-
ing [2], state compaction [19], dynamic load balancing [I], and shared and
distributed memory [12].

As pointed out by Inggs [15], parallel and distributed model checking is
a difficult problem. It requires a double expertise both in formal verifica-
tion and in distributed /parallel computing. Model checking needs a number
of steps, among which creating an abstract model of the application under
study, checking this model for satisfaction of correctness requirements, and
generating a counter example, if the requirements are violated. In addition,
DMc must address four fundamental aspects related to distribution: resource
sharing, computation speedup, reliability, and communication.

There are basically two ways to express communication between processes
in a parallel or distributed system: message passing or shared memory. In
the case of shared memory models, synchronisation is the key point for per-
formance. In the case of message passing, communication has to be modeled.

We are interested in investigating the impact of realistic modelization of
message passing communications on abstract algorithms.

Most publications on parallel and distributed model checking, that pro-
vide explicit algorithms, make use of very abstract communication operations:
SEND and RECV. However, as we show in this paper, one cannot completely
disregard the concrete implementation of these abstract operations.

Implementors of DMC tools need to pay attention to the interactions be-
tween distributed processes. Choosing blocking or non-blocking communi-
cation may have diverse implementation consequences, in terms of program
correctness and/or performance, such as deadlocks.

The remainder of the paper is organized as follows. Section [ presents the
distributed state space generation context in which we place the discussion.
Based on this application, we introduce in Section B a taxonomy of asyn-
chronous communication models and present the resulting design tradeoffs.
Finally, Section Bl concludes the paper.

2 Distributed state space generation

The problem of generating in a distributed manner a state space has been
studied for almost a decade. It was mainly first addressed by Caselli et al.
[910] and Ciardo [T2]. Since then, several implementations and improvements
have been made, namely state representation [I4], state distribution [3], and
load balancing policies [20].

As we are more interested in the structure of distributed generation algo-
rithms rather than specific optimizations, we will use as a basis for discussion
the generic distributed state space generation algorithm presented on Figure [l
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while (U, V; # 0) v (U, channels; # 0)
if dr € V; then
Vi:=Vi\{z}; E;:=E;,U{z}
Y(z % y) € suce(x)
if h(y) #i then
SEND (7 5 y, h(y))
endif
(]
if h(y) =i then
Uepate (V;, E;, Ti, v % y)

endif
endif
(]
REcV (v = y); Uepate (V;, E;, Ti,z = y)
endwhile

procedure UppaTte (V,E, T,z % 3)
if y ¢ EUVthen

Vi=VuU{x}
endif
T:=TU{x 4 v}

end

Fig. 1. Generic distributed state space generation algorithm

This algorithm illustrates the combination of three main operations needed
to build a state space distributed on several machines: sending a transition
(SEND), computing a transition locally (UPDATE), and receiving a transition
(RECV). The operator [] points to places where we can introduce either non-
deterministic choice or parallel composition. We will show in the next section
how a proper interleaving of operations can be crucial to both the functional
behavior of the distributed system and its performance.

In this algorithm, distributed generation takes place on n processes running
in parallel. It begins by processing initial state zy. States are partitionned
with respect to a statically known hash function (h), which is assumed to
distribute the state space uniformly over the processes, i.e., state s is assigned
to process h(s). Three sets are used by each process i to store respectively
the visited states (V;), the explored states (F;), and the explored transitions
(T;). A general termination condition is sketched in the while statement. To
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terminate, each of the n processes should have no more state left to explore
and no more messages should be in transit inside the communication channels.
Hence, when termination is detected, U | E; represents the overall generated
state space, and U] ,T; represents the overall transition relation.

To make such a distributed algorithm work, we need a set of algorith-
mic components describing the distributed features of the algorithm: task
partitioning, load balancing, canonical state representation (visited and ex-
plored) and graph representation (transitions) over the processes, communi-
cation layer, and termination detection.

The first four components are commonly described in the literature, and
many optimizations have been proposed [T4)20] in the context of model check-
ing. The last two components are of interest, because they are often omitted
in algorithms, especially communication, whose description is often skipped
or reduced to a single sentence or a reference to a standard.

3 Message passing paradigms

During the execution of parallel or distributed programs, information has to
be distributed and shared by means of communication between processes. In
this section, we describe the message passing mechanism, and based on it,
three communication paradigms with their respective tradeoffs.

3.1 Message passing mechanism

Message passing is a suitable communication mechanism between distributed
processes running on architectures such as clusters of Pcs or Nows. Its pur-
pose is to model interactions between processes within a distributed system.
A message sent by a process is received by another process, which then must
accept and act upon the message contents. There are typically few restrictions
on how much information each message may contain. Thus, message passing
can yield high throughput, making it a very effective way to transmit large
blocks of data from one process to another. Yet, time overhead in handling
each message (latency) may be high. We refer the reader to appendix [Al which
discusses four message passing mechanisms, and their use in DMC literature.

Direct management of communications by the programmer is the best
way to achieve high throughputs and low latencies. But this explicit approach
tends to be difficult to implement and debug, as the programmer is responsible
for data distribution, synchronization, and message passing communications.
Another solution is the introduction of implicit concurrent information by
the compiler, like in High Performance Fortran. But this approach does not
allow a fine control of memory usage. Therefore, it is not suitable for DMmcC
computations, which have dramatic memory consumption.

Therefore, we need operations such that the program can manage commu-
4
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nication at a fine grain level.

3.2 Asynchronous communication paradigms for DMC

In this subsection, we explain why reliable asynchronous communication that
doesn’t make use of bounded buffering is error prone, and we then review the
communication choices appropriate to DMcC.

In DMc, we are primarily interested in correctness and efficiency. However,
in numerous articles, e.g. [AFAJI8ITT], communication aspects are reduced to
the minimum, although they might have a strong impact on distributed com-
putations.

The communication layer available on clusters of Pcs and Nows, usually
offers a mechanism to transfer messages from network to application and vice
versa. Two options are possible: synchronous operations, blocking the calling
process, and asynchronous operations.

* A sending call is said to be synchronous if the sender process is blocked until
a reception acknowledgement of its message (rendez-vous). This acknowl-
edgement means that the destination application has taken into account the
message, and

* A receiving call is said synchronous if the destination process explicitly calls
a primitive for receiving a message and possibly blocks until the message
arrives.

On the contrary,

* An asynchronous operation (sending or receiving call) implies that it con-
tinues to take place in parallel with other operations of the same process.

At this point, we should clearly distinguish non-blocking operations from
asynchronous operations, since they are often confused. A non-blocking op-
eration is simply one that does not block the calling process at system level.

Figure @ gives a clear picture of where communication aspects take part in
the overall distributed computing taxonomy.

Synchronous operations lead to applications that are simpler to verify and
thus operations are simpler to use by the programmer. Asynchronous opera-
tions lead to more flexible applications, in which the programmer can choose
himself the waiting points. Globally, it is better to prefer asynchronous com-
munication, because it is easy to emulate synchronous operations with asyn-
chronous ones, and because it is well adapted to distributed systems, which
are inherently asynchronous.

In the following paragraphs, we attempt to define the conditions under
which sending calls can be used safely, depending on the type of asynchronous
communication operations available in the system. The discussion is intended
to be independent from the choice of asynchronous message passing system,
and is relevant for receiving calls as well.

b}
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Fig. 2. Distributed computing taxonomy and communication choices

Blocking communication

Accomplishing the same efficient use of the network resources than with
non-blocking communication is possible with blocking operations, but requires
very careful ordering of computations, and hence much more difficult program-
ming than in the non-blocking case. This is caused by synchronization delays
when sender and receiver must cooperate (rendez-vous). If the partner doesn’t
react quickly, a delay results. Hence, there is a performance tradeoff caused
by reacting quickly, since it requires devoting CPU and memory resources to
check for communication operations to do.

Based on the following small distributed system example with only two
processes, we highlight which problems can arise with blocking communication
and what are the possible solutions.

Process 1 Process 2
SEND(data A, process 2) SEND(data B, process 1)
RECV(data B, process 2) RECV(data A, process 1)

This program is not guaranteed to always terminate. It depends on the
size of the messages (data), the particular platforms (clusters, Nows), and
even the environment (e.g., free swap space). For short messages, the pro-
gram will almost always work, particularly if the sender and receiver OS can
handle the message in kernel buffer. For larger messages, it will fail, since
the messages must be buffered somewhere outside the program itself. Thus,
the two processes will enter a deadlock, each process waiting for the other to
execute the RECV call. This may seem unusual, but programs that process
large amounts of data can easily exceed the amount of available kernel or user
buffering.
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A static ordering of blocking communications can be a solution to this
problem, but for DM algorithms (Fig. [), it is a hard task to find an ordering
that ensures an efficient overlapping of computation (UPDATE) and communi-
cations (SEND and RECV). Another solution could be to defer the ordering at
run time by interleaving sending and receiving operations on each process.
This corresponds to the use of multithreading. There exists a recent work [6]
using multithreaded DMC approach on distributed memory parallel architec-
tures. However, the complexity of static ordering operations disappears, but
is replaced by the complexity of synchronization operations.

Non-blocking communication with unbounded buffer

In this section, we consider non-blocking communication, which can
achieve maximal overlapping between communication and computation.

Many publications on DMC assume constant successful transmission of
messages and they do no test possible message buffer overflow [2T/17]. In [6]
for instance, an explicit use of unbounded asynchronous channels is made.
However, they don’t justify if it is a reasonable assumption or not. Even by
using synchronization barriers between processes, there might be computa-
tional steps where the amount of messages to be sent by a process cannot
fit in system communication resources. The work done by [I§] refers to this
problem when using PvM (the same applies to MPpI) library, which buffers
messages in memory without limitations.

With this mechanism, a sending call adds a new message to the buffer and
returns control immediately. The approach gives maximum flexibility with
unbounded buffer capacity, since executing a sending call will take no delay,
and will always succeed.

In this paradigm, we assume that the buffer is unbounded. But, to imple-
ment an unbounded buffer, we have to consider system resource limitations.
It is possible that a process may send more messages than can be actually
stored in memory. If nothing is planned, it may cause the system to crash,
and hence to abort the distributed computation.

In model checking, memory is a major bottleneck. Having no bound on the
amount of memory used by buffers, overlaps states storage. Such approach
cannot be acceptable for DMC systems, which require controlled memory con-
sumption by careful allocation.

Non-blocking communication with bounded buffer

With bounded buffers, whatever the memory size allocated for message
buffering, an overflow is always possible unless a suitable flow control mecha-
nism is used. Flow control consists in testing return values of communication
operations, in knowing if buffers are full or not, and in managing computations
so that communication eventually succeeds.

With finite buffer capacity, programming non-blocking communication is
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tricky and difficult. This is one of the main reasons why it is not considered
in most DmcC algorithms. For each sending call (resp. receiving call), the
result or returned values must be checked in order to know if the call suc-
ceeded. If not, the program will postpone the call, resume other interleaved
computations and will attempt to make the same call later again. This is
similar to context switches, where a process has to save its environment when
interrupted. For DMC problems like state space generation in Figure [, non-
blocking communication with bounded buffers can be done in two different
ways:

* If the program is monothreaded, one needs a careful ordering between send-
ing, receiving and computing operations. Such an ordering may be to per-
form receiving calls before sending calls, or at least to give priority to re-
ceptions over other computations.

e If the program is multithreaded, one can use either blocking communica-
tions or non-blocking communications with synchronization barriers, so as
to block processes until some buffer space becomes available.

4 Conclusion

Parallel algorithms published for DMC are usually highly simplified and remain
at a very abstract level. In particular, the precise effect of communication
operations is often left unspecified. Designers should be aware that this lack
of definition makes implementations error prone. There are many different
possibilities to implement reliable SEND and RECV operations (blocking, non-
blocking, synchronous, asynchronous with respect to the taxonomy presented
in Section B). The message of this paper is that it is not sufficient to write Dmc
algorithms without being concerned about communication model pitfalls, like
possible failure of SEND calls and no means to recover from such a situation.
To be implemented in practice, an algorithm should be detailed enough so as
to check the results of communication calls, and should deal with issues such
as multithreading, non-determinism, as well as buffer management and flow
control.

The goal of DMC is to use hundreds or even thousands of computing pro-
cesses to solve problems of ever increasing complexity. Since the number of
exchanged messages is proportional to the problem size, a scalable solution
must focus on efficient communication means. Based on the above discussion,
we believe that non-blocking communication with bounded buffers is the most
efficient scheme provided that the user develops an appropriate flow control
mechanism.
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A DMessage passing systems

Traditional communication mechanisms for distributed memory architectures
fall in one of these four categories: Tcp/UDP sockets over Ip, RpPC, MPI or
PvM, and Active Message. A comparison of these message passing mech-
anisms should be useful to designers and users of parallel and distributed
systems. Designers need to know which approach offers the highest efficiency
with respect to their needs. This is possible by an accurate understanding of
message passing’s strengths and weaknesses. For each message passing system,
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we make a link with corresponding DMC research, and we justify the appro-
priateness of communication models to DMC tools according to experiments
and performance analyses present in DMC literature.

A.1 Sockets and Tcp/Upp Ip

In a distributed environment, channels are often implemented with support
from the kernel. The Unix socket interface [23] is by far the most common
low-level network interface. Most standard network hardware is designed to
support at least two types of socket protocols: datagram UDP and connected
Tcp. These socket types are the basic network software interface for most of
the portable, higher-level, parallel processing software, like PvM, which uses
a combination of UDP and TcP. Another good feature is that TCcP provides
reliable connection-oriented transport service, meaning that messages will not
get lost or corrupted and will be delivered in the correct order.

However layered protocols suffer from quite low level of abstraction,
memory to memory copy, poor code locality, and heavy functional overhead.
Starting from Tcp/IP protocols, a user will have to program a software
communication layer in order to have efficient cluster computing. Indeed,
network performances are exposed to costly buffer management, namely in
the case of asynchronous messages. But it is worth noting that Unix socket
interface provides a solution much like the MPI non-blocking operations,
though somewhat less convenient for the user. By checking return values, the
careful users are allowed to avoid deadlock in their applications.

Lerda and Sisto [I8] first tried to use PvM (see below) to parallelize the
SPIN model checker, because PvM was, at the time, a widely used package
namely in the context of heterogeneous architecture. To satisfy a need for flow
control over communication operations and due to high overhead introduced
by using this library, they finally decided to use the socket interface. Moreover,
in order to make the messages portable on different architectures, they set up
an XDR (eXternal Data Representation) layer on top of it. This case study
shows very well that unbounded buffered asynchronous communication can
lead to uncontrolled costly parallel programs. In [I3], they also chose Unix
sockets in order to use fine-tuned buffers and to set up efficient flow control
in the context of state space generation.

A.2 RpPC

Remote Procedure Call [B] is an enhanced general purpose network abstrac-
tion atop socket. It is a simple concept mainly considered as a standard for
distributed client-server applications. A client sends request by passing argu-
ments to remote procedure, and blocks itself until it gets a response (reply)
from the server. Besides high level of abstraction and sequential like program-
ming, thanks to calling procedures, it offers canonical format (marshalling)

12
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across different systems connected to the network in heterogeneous environ-
ment.

Although this mechanism is well adapted to autonomous distributed sys-
tems, the overhead to perform RPC is very high compared to sockets. The
emphasis on hiding network communication from the calling process leads the
system to a loss of performance that is not favorable for DMC tools. To our
knowledge, no DMC research made use of RPC mechanism.

A.3 PvM and MPI

They are general purpose systems for message passing and parallel program
management on distributed platforms at the application level, based on avail-
able Ipc (Interprocess Communication) mechanisms.

PvM (Parallel Virtual Machine) [22] is a freely-available software package
from Oak Ridge National Laboratories that permits an heterogeneous collec-
tion of Unix and/or Windows computers linked together by a network to be
used as a single large parallel computer. It is a portable message passing li-
brary generally implemented on top of sockets and it is established as a main
standard for message passing cluster parallel computing. Most of the ideas
in PvM and other basic message passing systems are incorporated in a rela-
tively new official standard Message Passing Interface (MpI). This important
development tackles basic point to point, and collective communication.

Mp1 [25] is a standardized message passing library defined by a wide com-
munity of scientific and industrial experts. Its design provides access to ad-
vanced parallel hardware for end users as well as library writers and tool
developers. One of the goals of MPI is to provide a clearly defined set of
routines that can be implemented efficiently on many types of platforms and
particularly on heterogeneous networks of cluster.

Due to a set of automatically handled issues (coordination, polling,
interrupt, delivering messages), MP1 and PvM message passing calls generally
add significant overhead to standard socket operations, which already had
high latency. Adding to that, Mp1 and PvM do not address issues such
as distributed computing and wide-area networks, but focus on parallel
problems. Finally, heterogeneity of processors is also a drawback in writing
parallel programs with current versions of MpPI and PvM. Indeed, although
these libraries are portable, they need a specific executable on each machine
of the node group when running the parallel application. Another research
trend is to use JAVA to solve this disadvantage. A JAVA version of MPI has
already been developed [§.

The majority of DMC research has been using either MP1 or PvM. Caselli
et al. [I0] made the first attempt to use message passing to parallelize the
Tangible Reachability Graph generation problem. Like most of early DMmcC
projects [T2TITTATE], they were using PvM interface. Numerous DMC tools

13



YU LAVL

are now working with the standard Mp1 [T2[T920/T7T6] and with different
implementations of this standard, like MpicH [T4] or Lam/ Mp1 6.5.6 [6].
Problems encountered with MPI in DMC context are mainly starvation phe-
nomenon [I4] and memory management [6], where a proposed solution was to
build specific layers to deal with both message size and message content to be
sent.

A.4  Active Message

The active message approach [24] is a one-sided communication mechanism,
which avoids buffer management and stalled processors pitfalls by requiring
the address of a message handling routine to be embedded in the header of
each message. In this way, it is possible to overlap computation and communi-
cation because the receiving process does not have to perform a synchronous
receive, and buffering is eliminated because the message is handled immedi-
ately upon receipt via the handling routine. Compared to MPI and PvwMm,
active message is a fast message passing library in that the time to handle an
incoming message at a node is very small.

One of the main drawbacks is that it is a very unsafe approach. It is
possible but unreasonable to achieve safety in active message, since it would
require adding new layers to the communication operations and it would
increase the message passing overhead, which is already high. Nevertheless,
it was used by Stern and Dill [21] to parallelize the MUR¢ verifier, and it was
combined with aggregation methods to decrease the time consumed in send
and receive routines.

Much of message passing system overhead is usually caused by repeated
copying of messages to and from buffers located in the OS kernel address
space. Globally, higher level systems (PvMm, Mp1, Rpc, Active Message) focus
on the standardization for interoperation and portability than efficient use of
resources, like lower level systems (sockets).

Thus, it is not surprising to see recent works in Dmc [I8/T3] using Unix
socket interface, since it is a good candidate, thanks to its flexibility, for
asynchronous communication with bounded buffer, which appears to be the
most appropriate communication paradigm to DMC tools.
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