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Abstract

This paper presents a novel linear process-algebraic format for probabilistic automata. The key ingredient
is a symbolic transformation of probabilistic process algebra terms that incorporate data into this linear
format while preserving strong probabilistic bisimulation. This generalises similar techniques for traditional
process algebras with data, and — more importantly — treats data and data-dependent probabilistic choice
in a fully symbolic manner, leading to the symbolic analysis of parameterised probabilistic systems. We
discuss several reduction techniques that can easily be applied to our models. A validation of our approach
on two benchmark leader election protocols shows reductions of more than an order of magnitude.

Keywords: probabilistic process algebra, linearisation, data-dependent probabilistic choice, symbolic
transformations, state space reduction

1. Introduction

Efficient model checking algorithms exist, supported by powerful software tools, for verifying qualitative
and quantitative properties for a wide range of probabilistic models. While these techniques are important for
areas like security, randomised distributed algorithms, systems biology, and dependability and performance
analysis, two major deficiencies exist: the state space explosion and the restricted treatment of data.

Unlike process calculi like µCRL [1] and LOTOS NT [2], which support rich data types, modelling
formalisms for probabilistic systems mostly treat data as a second-class citizen. Instead, the focus has been
on understanding random phenomena and the interplay between randomness and nondeterminism. Data is
treated in a restricted manner: probabilistic process algebras typically only allow a random choice over a
fixed distribution, and input languages for probabilistic model checkers such as the reactive module language
of PRISM [3] or the probabilistic variant of Promela [4] only support basic data types, but neither support
more advanced data structures. To model realistic systems, however, convenient means for data modelling
are indispensable.

Additionally, although parameterised probabilistic choice is semantically well-defined [5], the incorpora-
tion of data yields a significant increase of, or even an infinite, state space. However, current probabilistic
minimisation techniques are not well-suited to be applied in the presence of data: aggressive abstraction
techniques for probabilistic models (e.g., [6, 7, 8, 9, 10, 11]) reduce at the model level, but the successful anal-
ysis of data requires symbolic reduction techniques. Such methods reduce stochastic models using syntactic
transformations at the language level, minimising state spaces prior to their generation while preserving
functional and quantitative properties. Other approaches that partially deal with data are probabilistic
CEGAR [12, 13] and the probabilistic GCL [14].

Our aim is to develop symbolic minimisation techniques — operating at the syntax level — for data-
dependent probabilistic systems. We therefore define a probabilistic variant of the process-algebraic µCRL
language [1], named prCRL, which treats data as a first-class citizen. The language prCRL contains a
carefully chosen minimal set of basic operators, on top of which syntactic sugar can be defined easily, and
allows data-dependent probabilistic branching. Because of its process-algebraic nature, message passing can
be used to define systems in a more modular manner than with for instance the PRISM language.
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To enable symbolic reductions, we provide a two-phase algorithm to transform prCRL terms into LPPEs:
a probabilistic variant of linear process equations (LPEs) [15], which is a restricted form of process equations
akin to the Greibach normal form for string grammars. We prove that our transformation is correct, in the
sense that it preserves strong probabilistic bisimulation [16]. Similar linearisations have been provided for
plain µCRL [17], as well as a real-time variant [18] and a hybrid variant [19] therefore.

To motivate the advantage of the LPPE format, we draw an analogy with the purely functional case.
There, LPEs have provided a uniform and simple format for a process algebra with data. As a consequence
of this simplicity, the LPE format was essential for theory development and tool construction. It led to
elegant proof methods, like the use of invariants for process algebra [15], and the cones and foci method for
proof checking process equivalence [20, 21]. It also enabled the application of model checking techniques
to process algebra, such as optimisations from static analysis [22] (including dead variable reduction [23]),
data abstraction [24], distributed model checking [25], symbolic model checking (either with BDDs [26] or
by constructing the product of an LPE and a parameterised µ-calculus formula [27, 28]), and confluence
reduction [29] (a variant of partial-order reduction). In all these cases, the LPE format enabled a smooth
theoretical development with rigorous correctness proofs (often checked in PVS), and a unifying tool imple-
mentation. It also allowed the cross-fertilisation of the various techniques by composing them as LPE to
LPE transformations.

We generalise several reduction techniques from LPEs to LPPEs: constant elimination, summation elim-
ination, expression simplification, dead variable reduction, and confluence reduction. The generalisation of
these techniques turned out to be very elegant. Also, we implemented a tool that can linearise prCRL mod-
els to LPPE, automatically apply all these reduction techniques, and generate state spaces. Experimental
validation, using several variations of two benchmark protocols for probabilistic model checking, show that
state space reductions of up to 95% can be achieved.

Organisation of the paper. After recalling some preliminaries in Section 2, we introduce our probabilistic
process algebra prCRL in Section 3. The LPPE format is defined in Section 4, and a procedure to linearise
a prCRL specification to LPPE is presented in Section 5. Section 6 then introduces parallel composition
on LPPEs. Section 7 discusses the reduction techniques we implemented thus far for LPPEs, and an
implementation and case studies are presented in Section 8. We conclude the paper in Section 9. An
appendix is provided, containing a detailed proof for our main theorem.

This paper extends an earlier conference paper [30] by (1) formal proofs for all results, (2) a comprehensive
exposition of reduction techniques for LPPEs, (3) a tool implementation of all these techniques, and (4) more
extensive experimental results, showing impressive reductions.

2. Preliminaries

Let S be a finite set, then P(S) denotes its powerset, i.e., the set of all its subsets, and Distr(S) denotes
the set of all probability distributions over S, i.e., all functions µ : S → [0, 1] such that

∑
s∈S µ(s) = 1. If

S′ ⊆ S, let µ(S′) denote
∑
s∈S′ µ(s). For the injective function f : S → T , let µf ∈ Distr(T ) such that

µf (f(s)) = µ(s) for all s ∈ S. We use {∗} to denote a singleton set with a dummy element, and denote
vectors, sets of vectors and Cartesian products in bold.

Probabilistic automata. Probabilistic automata (PAs) are similar to labelled transition systems (LTSs),
except that the transition function relates a state to a set of pairs of actions and distribution functions over
successor states [31].

Definition 1. A probabilistic automaton (PA) is a tuple A = 〈S, s0, A,∆〉, where

• S is a countable set of states;

• s0 ∈ S is the initial state;

• A is a countable set of actions;
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• ∆: S →P(A×Distr(S)) is the transition function.

When (a, µ) ∈ ∆(s), we write s −a→ µ. This means that from state s the action a can be executed, after which
the probability to go to s′ ∈ S equals µ(s′).

Example 2. Figure 1 shows an example PA.
Observe the nondeterministic choice between actions, after which s0

s4s3 s5s1 s2 s6 s7

a
a b

.0.3
0.6 0.10.2 0.8 0.5 0.5

Figure 1: A probabilistic automaton.

the next state is determined probabilistically. Note that the same action
can occur multiple times, each time with a different distribution to de-
termine the next state. For this PA we have s0 −a→ µ, where µ(s1) = 0.2
and µ(s2) = 0.8, and µ(si) = 0 for all other states si. Also, s0 −a→ µ′

and s0 −b→ µ′′, where µ′ and µ′′ can be obtained similarly.

Strong probabilistic bisimulation. Strong probabilistic bisimulation1 [16] is a probabilistic extension of the
traditional notion of bisimulation [32], equating any two processes that cannot be distinguished by an
observer. It is well-known that strongly probabilistically bisimilar processes satisfy the same properties, as
for instance expressed in the probabilistic temporal logic PCTL [33]. Two states s, t of a PA A = 〈S, s0, A,∆〉
are strongly probabilistically bisimilar (denoted by s ≈ t) if there exists an equivalence relation R ⊆ S × S
such that (s, t) ∈ R, and for all (p, q) ∈ R and p −a→ µ there is a transition q −a→ µ′ such that µ ∼R µ′. Here,
µ ∼R µ′ is defined as ∀C . µ(C) = µ′(C), with C ranging over the equivalence classes of states modulo R.
Two PAs A1,A2 are strongly probabilistically bisimilar (denoted by A1 ≈ A2) if their initial states are
strongly probabilistically bisimilar in the disjoint union of A1 and A2.

Isomorphism. Two states s and t of a PA A = 〈S, s0, A,∆〉 are isomorphic (denoted by s ≡ t) if there exists
a bijection f : S → S such that f(s) = t and ∀s′ ∈ S, µ ∈ Distr(S), a ∈ A . s′ −a→ µ ⇔ f(s′) −a→ µf . Two
PAs A1,A2 are isomorphic (denoted by A1 ≡ A2) if their initial states are isomorphic in the disjoint union
of A1 and A2. Obviously, isomorphism implies strong probabilistic bisimulation.

3. A process algebra with probabilistic choice and data

3.1. The language prCRL

We add a probabilistic choice operator to a restriction of full µCRL [1], obtaining a language called
prCRL. We assume an external mechanism for the evaluation of expressions (e.g., equational logic, or a
fixed data language), able to handle at least boolean expressions and real-valued expressions. Also, we
assume that any expression that does not contain variables can be evaluated. Note that this restricts the
expressiveness of the data language. In the examples we will use an intuitive data language, containing basic
arithmetics and boolean operators. The meaning of all the functions we use will be clear.

We mostly refer to data types with upper-case letters D,E, . . . , and to variables over them with lower-
case letters u, v, . . . . We assume the existence of a countable set of actions Act.

Definition 3. A process term in prCRL is any term that can be generated by the following grammar:

p ::= Y (t) | c⇒ p | p+ p |
∑
x:D

p | a(t)
∑
•

x:D

f : p

Here, Y is a process name, t a vector of expressions, c a boolean expression, x a vector of variables ranging
over countable type D (so D is a Cartesian product if |x| > 1), a ∈ Act a (parameterised) atomic action,
and f a real-valued expression yielding values in [0, 1]. We write p = p′ for syntactically identical terms.

We say that a process term Y (t) can go unguarded to Y . Moreover, c ⇒ p can go unguarded to Y if p
can, p+ q if either p or q can, and

∑
x:D p if p can, whereas a(t)

∑
•

x:D f : p cannot go anywhere unguarded.

1Note that Segala used the term probabilistic bisimulation when also allowing convex combinations of transitions [31]; we
do not need to allow these, as the variant of strong bisimulation without them is already preserved by our procedures.
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Given an expression t, a vector x = (x1, . . . , xn) and a vector d = (d1, . . . , dn), we use t[x := d] to
denote the expression obtained by substituting every occurrence of xi in t by di. Given a process term p we
use p[x := d] to denote the process term p′ obtained by substituting every expression t in p by t[x := d].

In a process term, Y (t) denotes process instantiation, where t instantiates Y ’s process variables (allowing
recursion). The term c ⇒ p behaves as p if the condition c holds, and cannot do anything otherwise.
The + operator denotes nondeterministic choice, and

∑
x:D p a (possibly infinite) nondeterministic choice

over data type D. Finally, a(t)
∑
•

x:D f : p performs the action a(t) and then does a probabilistic choice
over D. It uses the value f [x := d] as the probability of choosing each d ∈D. We do not consider sequential
composition of process terms (i.e., something of the form p ·p), because already in the non-probabilistic case
this significantly increases the difficulty of linearisation as it requires a stack [18]. Therefore, it would distract
from our main purpose: combining probabilities with data. Moreover, most specifications used in practice
can be written without this form.

Definition 4. A prCRL specification P = ({Xi(xi : Di) = pi}, Xj(t)) consists of a finite set of uniquely-
named processes Xi, each of which is defined by a process equation Xi(xi : Di) = pi, and an initial process
Xj(t). In a process equation, xi is a vector of process variables with countable type Di, and pi (the right-
hand side) is a process term specifying the behaviour of Xi.

A variable v in an expression in a right-hand side pi is bound if it is an element of xi or it occurs within
a construct

∑
x:D or

∑
•

x:D such that v is an element of x. Variables that are not bound are said to be free.

We mostly refer to process terms with lower-case letters p, q, r, and to processes with capitals X,Y, Z.
Also, we will often write X(x1 : D1, . . . , xn : Dn) for X((x1, . . . , xn) : (D1 × · · · ×Dn)).

Not all syntactically correct prCRL specifications can indeed be used to model a system in a meaningful
way. The following definition states what we additionally require for them to be well-formed. The first two
constraints make sure that a specification does not refer to undefined variables or processes, the third is
needed to obtain valid probability distributions, and the fourth makes sure that the specification only has
one unique solution (modulo strong probabilistic bisimulation).

Definition 5. A prCRL specification P = ({Xi(xi : Di) = pi}, Xj(t)) is well-formed if the following four
constraints are all satisfied:

• There are no free variables.

• There are no instantiations of undefined processes. That is, for every instantiation Y (t′) occurring
in some pi, there exists a process equation (Xk(xk : Dk) = pk) ∈ P such that Xk = Y and t′ is of
type Dk. Also, the vector t used in the initial process is of type Dj .

• The probabilistic choices are well-defined. That is, for every construct
∑
•

x:D f occurring in a right-
hand side pi it holds that

∑
d∈D f [x := d] = 1 for every possible valuation of the other variables that

are used in f (the summation now used in the mathematical sense).

• There is no unguarded recursion.2 That is, for every process Y , there is no sequence of processes
X1, X2, . . . , Xn (with n ≥ 2) such that Y = X1 = Xn and pj can go unguarded to Xj+1 for every
1 ≤ j < n.

We assume from now on that every prCRL specification is well-formed.

Example 6. The following process equation models a system that continuously writes data elements of the
finite type D randomly. After each write, it beeps with probability 0.1. Recall that {∗} denotes a singleton
set with an anonymous element. We use it here since the probabilistic choice is trivial and the value of j

2This constraint could be relaxed a bit, as contradictory conditions of the processes might make an unguarded cycle harmless.
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Table 1: SOS rules for prCRL.

Inst
p[x := d] −α−→ µ

Y (d) −α−→ µ
if Y (x : D) = p Implies

p −α−→ µ

c⇒ p −α−→ µ
if c equals true

NChoice-L
p −α−→ µ

p+ q −α−→ µ
NSum

p[x := d] −α−→ µ∑
x:D

p −α−→ µ
where d ∈D NChoice-R

q −α−→ µ

p+ q −α−→ µ

PSum
−

a(t)
∑
•

x:D

f : p −a(t)−−→ µ
where ∀d ∈D . µ(p[x := d]) =

∑
d′∈D

p[x:=d]=p[x:=d′]

f [x := d′]

is never used. For brevity, here and in later examples we abuse notation by interpreting a single process
equation as a specification (where in this case the initial process is implicit, as it can only be X()).

X() = throw()
∑
•
x:D

1
|D| : send(x)

∑
•

i:{1,2}

if i = 1 then 0.1 else 0.9 : (i = 1⇒ beep()
∑
•
j:{∗}

1 : X()) + (i = 2⇒ X())

In principle, the data types used in prCRL specifications can be countably infinite. Also, infinite prob-
abilistic choices (and therefore countably infinite branching) are allowed, as illustrated by the following
example.

Example 7. Consider a system that first writes the number 0, and then continuously writes natural numbers
(excluding zero) in such a way that the probability of writing n is each time given by 1

2n . This system can
be modelled by the prCRL specification P = ({X}, X(0)), where X is given by

X(n : N) = write(n)
∑
•
m:N

1
2m : X(m)

3.2. Operational semantics

The operational semantics of a prCRL specification is given in terms of a PA. The states are all process
terms without free variables, the initial state is the instantiation of the initial process, the action set is given
by {a(t) | a ∈ Act, t is a vector of expressions}, and the transition relation is the smallest relation satisfying
the SOS rules in Table 1. For brevity, we use α to denote an action name together with its parameters. A
mapping to PAs is only provided for processes without free variables; this is consistent with Definition 5.

Given a prCRL specification and its underlying PA A, two process terms are isomorphic (bisimilar) if
their corresponding states in A are isomorphic (bisimilar). Two specifications with underlying PAs A1,A2

are isomorphic (bisimilar) if A1 is isomorphic (bisimilar) to A2.

Proposition 8. The SOS-rule PSum defines a probability distribution µ over process terms.

Proof. For µ to be a probability distribution function over process terms, it should hold that µ : S → [0, 1]
such that

∑
s∈S µ(s) = 1, where the state space S consists of all process terms without free variables.

Note that µ is only defined to be nonzero for process terms p′ that can be found by evaluating p[x := d]
for some d ∈D. Let P = {p[x := d] | d ∈D} be the set of these process terms. Now, indeed,∑

p′∈P
µ(p′) =

∑
p′∈P

∑
d′∈D

p′=p[x:=d′]

f [x := d′] =
∑
d′∈D

∑
p′∈P

p′=p[x:=d′]

f [x := d′] =
∑
d′∈D

f [x := d′] = 1
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In the first step we apply the definition of µ from Table 1; in the second we interchange the summand indices
(which is allowed because f [x := d′] is always non-negative); in the third we omit the second summation as
for every d′ ∈ D there is exactly one p′ ∈ P satisfying p′ = p[x := d′]; in the fourth we use the fact that f
is a real-valued expression yielding values in [0, 1] such that

∑
d∈D f [x := d] = 1 (Definitions 3 and 5).

3.3. Syntactic sugar

Let X be a process name, a an action, p, q two process terms, c a condition, and t an expression vector.
Then, we write X as an abbreviation for X(), and a for a(). Moreover, we can define the syntactic sugar

p / c . q
def
= (c⇒ p) + (¬c⇒ q)

a(t) · p def
= a(t)

∑
•
x:{∗} 1 : p (where x is chosen such that it does not occur freely in p)

a(t)Ux:D c⇒ p
def
= a(t)

∑
•

x:D

(
if c then 1

|{d∈D|c[x:=d]}| else 0
)

: p

Note that Ux:D c⇒ p is the uniform choice among a set, choosing only from its elements that fulfil a certain
condition c. For finite probabilistic sums,

a(t)(u1 : p1 ⊕ u2 : p2 ⊕ · · · ⊕ un : pn)

is used to abbreviate a(t)
∑
•
x:{1,...,n} f : p, such that x does not occur freely in any pi, f [x := i] = ui for

every 1 ≤ i ≤ n, and p is given by (x = 1⇒ p1) + (x = 2⇒ p2) + · · ·+ (x = n⇒ pn).

Example 9. The process equation of Example 6 can now be represented as follows:

X = throw
∑
•
x:D

1
|D| : send(x)(0.1 : beep ·X ⊕ 0.9 : X)

Example 10. Let X continuously send an arbitrary element of some type D that is contained in a finite
set SetD, according to a uniform distribution. It can be represented by

X(s : SetD) = chooseU
x:D

contains(s, x)⇒ send(x) ·X(s),

where contains(s, x) holds if s contains x.

4. A linear format for prCRL

4.1. The LPE and LPPE formats

In the non-probabilistic setting, a restricted version of µCRL that is well-suited for formal manipulation
is captured by the LPE format [18]:

X(g : G) =
∑

d:D
c1 ⇒ a1(b) ·X(n)

+
∑

d:D
c2 ⇒ a2(b) ·X(n)

. . .

+
∑

dk:Dk
ck ⇒ ak(bk) ·X(nk)

Here, each of the k components is called a summand. Furthermore, G is a type for state vectors (containing
the process variables, in this setting also called global variables), and each Di is a type for the local variable
vector of summand i. The summations represent nondeterministic choices between different possibilities
for the local variables. Furthermore, each summand i has an action ai and three expressions that may
depend on the state g and the local variables di: the enabling condition ci, action-parameter vector bi, and
next-state vector ni. Note that the LPE corresponds to the well-known precondition-effect style.
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Example 11. Consider a system consisting of two buffers, B1 and B2. Buffer B1 reads a message of type D
from the environment, and sends it synchronously to B2. Then, B2 writes the message. The following LPE
has exactly this behaviour when initialised with a = 1 and b = 1 (x and y can be chosen arbitrarily).

X(a : {1, 2}, b : {1, 2}, x : D, y : D) =∑
d:D a = 1 ⇒ read(d) ·X(2, b, d, y) (1)

+ a = 2∧ b = 1 ⇒ comm(x) ·X(1, 2, x, x) (2)

+ b = 2 ⇒ write(y) ·X(a, 1, x, y) (3)

Note that the first summand models B1’s reading, the second the inter-buffer communication, and the third
B2’s writing. The global variables a and b are used as program counters for B1 and B2, and x and y for
their local memory.

As our linear format for prCRL should easily be mapped onto PAs, it should follow the concept of
nondeterministically choosing an action and probabilistically determining the next state. Therefore, a
natural adaptation is the format given by the following definition.

Definition 12. An LPPE (linear probabilistic process equation) is a prCRL specification consisting of
precisely one process, of the following format (where the outer summation is an abbreviation of the nonde-
terministic choice between the summands):

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni)

Compared to the LPE we added a probabilistic choice over an additional vector of local variables ei.
The corresponding probability expression fi, as well as the next-state vector ni, can now also depend on ei.

As an LPPE consists of only one process, an initial process X(v) can be represented by its initial vector v.
Often, we will use the same name for the specification of an LPPE and the single process it contains. Also,
we sometimes use X(v) to refer to the specification X = ({X(g : G) = . . . }, X(v)).

4.2. Operational semantics
Because of the immediate recursive call after each action, each state of an LPPE corresponds to a

valuation of its global variables. Therefore, every reachable state in the underlying PA can be identified
uniquely with one of the vectors g′ ∈ G (with the initial vector identifying the initial state). From the SOS
rules it follows that for all g′ ∈ G, there is a transition g′ −a(q)−−→ µ if and only if for at least one summand i
there is a choice of local variables d′i ∈Di such that

ci(g
′,d′i)∧ ai(bi(g′,d′i)) = a(q)∧∀e′i ∈ Ei . µ(ni(g

′,d′i, e
′
i)) =

∑
e′′
i ∈Ei

ni(g
′,d′

i,e
′
i)=ni(g

′,d′
i,e

′′
i )

fi(g
′,d′i, e

′′
i ),

where for ci and bi the notation (g′,d′i) is used to abbreviate [(g,di) := (g′,d′i)], and for ni and fi we
use (g′,d′i, e

′
i) to abbreviate [(g,di, ei) := (g′,d′i, e

′
i)].

Example 13. Consider the following system, continuously sending a random element of a finite type D:

X = choose
∑
•
x:D

1
|D| : send(x) ·X

Now consider the following LPPE, where d′ ∈ D was chosen arbitrarily. It is easy to see that X is isomorphic
to Y (1, d′). (Note that d′ could be chosen arbitrarily as it is overwritten before used.)

Y (pc : {1, 2}, x : D) = pc = 1⇒ choose
∑
•
d:D

1
|D| : Y (2, d)

+ pc = 2⇒ send(x)
∑
•
y:{∗} 1 : Y (1, d′)

Obviously, the earlier defined syntactic sugar could also be used on LPPEs, writing send(x) · Y (1, d′) in
the second summand. However, as linearisation will be defined only on the basic operators, we will often
keep writing the full form.
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5. Linearisation

The process of transforming a prCRL specification to the LPPE format is called linearisation. As all our
reductions will be defined for LPPEs, linearisation makes them applicable to every prCRL model. Moreover,
state space generation is implemented more easily for the LPPE format, and parallel composition can be
defined elegantly (as we will see in Section 6).

Linearisation of a prCRL specification P is performed in two steps. In the first step, a specification P ′

is created, such that P ′ ≈ P and P ′ is in so-called intermediate regular form (IRF). Basically, this form
requires every right-hand side to be a summation of process terms, each of which contains exactly one action.
This step is performed by Algorithm 1 (page 9), which uses Algorithms 2 and 3 (page 10 and page 11). In
the second step, an LPPE X is created, such that X ≡ P ′. This step is performed by Algorithm 4 (page 13).

We first illustrate both steps by two examples.

Example 14. Consider the specification P = ({X = a · b · c · X}, X). The behaviour of P does not
change if we introduce a new process Y = b · c · X and let X instantiate Y after its action a. Split-
ting the new process as well, we obtain the strongly bisimilar (in this case even isomorphic) specification
P ′ = ({X = a · Y, Y = b · Z,Z = c ·X}, X). Clearly, this specification is in IRF. Now, an isomorphic LPPE
is constructed by introducing a program counter pc that keeps track of the subprocess that is currently active,
as shown below. It is easy to see that P ′′(1) ≡ P .

P ′′(pc : {1, 2, 3}) = pc = 1⇒ a · P ′′(2)

+ pc = 2⇒ b · P ′′(3)

+ pc = 3⇒ c · P ′′(1)

Example 15. Now consider the following specification, consisting of two processes with parameters. Let X(d′)
be the initial process for some arbitrary d′ ∈ D. (The types D and E are assumed to be finite and to have
addition defined on them).

X(d : D) = choose
∑
•
e:E

1
|E| : send(d+ e)

∑
•
i:{1,2}(if i = 1 then 0.9 else 0.1) : ((i = 1⇒ Y (d+ 1)) +

(i = 2⇒ crash
∑
•
j:{∗} 1 : X(d)))

Y (f : D) = write(f)
∑
•
k:{∗} 1 :

∑
g:Dwrite(f + g)

∑
•
l:{∗} 1 : X(f + g)

Again, we introduce a new process for each subprocess. The new initial process is X1(d′, f ′, e′, i′), where f ′,
e′, and i′ can be chosen arbitrarily (and d′ should correspond to the original initial value d′).

X1(d : D, f : D, e : E, i : {1, 2}) = choose
∑
•
e:E

1
|E| : X2(d, f ′, e, i′)

X2(d : D, f : D, e : E, i : {1, 2}) = send(d+ e)
∑
•
i:{1,2}(if i = 1 then 0.9 else 0.1) : X3(d, f ′, e′, i)

X3(d : D, f : D, e : E, i : {1, 2}) = (i = 1⇒ write(d+ 1)
∑
•
k:{∗} 1 : X4(d′, d+ 1, e′, i′))

+ (i = 2⇒ crash
∑
•
j:{∗} 1 : X1(d, f ′, e′, i′))

X4(d : D, f : D, e : E, i : {1, 2}) =
∑
g:Dwrite(f + g)

∑
•
l:{∗} 1 : X1(f + g, f ′, e′, i′)

Note that we added process variables to store the values of local variables that were bound by a nondeter-
ministic or probabilistic summation. As the index variables j, k and l are never used, and g is only used
directly after the summation that binds it, they are not stored. We reset variables that are not syntactically
used in their scope to keep the state space small.

Again, the LPPE is obtained by introducing a program counter. Its initial vector is (1, d′, f ′, e′, i′).

X(pc : {1, 2, 3, 4}, d : D, f : D, e : E, i : {1, 2}) =

pc = 1 ⇒ choose
∑
•
e:E

1
|E| : X(2, d, f ′, e, i′)

+ pc = 2 ⇒ send(d+ e)
∑
•
i:{1,2}(if i = 1 then 0.9 else 0.1) : X(3, d, f ′, e′, i)

8



+ pc = 3∧ i = 1⇒ write(d+ 1)
∑
•
k:{∗} 1 : X(4, d′, d+ 1, e′, i′)

+ pc = 3∧ i = 2⇒ crash
∑
•
j:{∗} 1 : X(1, d, f ′, e′, i′)

+
∑
g:D pc = 4 ⇒ write(f + g)

∑
•
l:{∗} 1 : X(1, f + g, f ′, e′, i′)

5.1. Transforming a specification to intermediate regular form

We now formally define the intermediate regular form (IRF), and then discuss the transformation from
prCRL to IRF in more detail.

Definition 16. A process term is in IRF if it adheres to the following grammar:

p ::= c⇒ p | p+ p |
∑
x:D

p | a(t)
∑
•

x:D

f : Y (t)

A process equation is in IRF if its right-hand side is in IRF, and a specification is in IRF if all its process
equations are in IRF and all its processes have the same process variables.

Note that in IRF every probabilistic sum goes to a process instantiation, and that process instantiations
do not occur in any other way. Therefore, every process instantiation is preceded by exactly one action.

For every specification P there exists a specification P ′ in IRF such that P ≈ P ′ (since we provide an
algorithm to construct it). However, it is not hard to see that P ′ is not unique.

Remark 17. It is not necessarily true that P ≡ P ′, as we will show in Example 20. Still, every specifica-
tion P representing a finite PA can be transformed to an IRF describing an isomorphic PA: define a data

Algorithm 1: Transforming a specification to IRF

Input:

• A prCRL specification P = ({X1(x : D) = p1, . . . , Xn(xn : Dn) = pn}, X1(v)), in which all
variables (either declared as a process variable, or bound by a nondeterministic or probabilistic
sum) are named uniquely.

Output:

• A prCRL specification P ′ = ({X ′1(x : D,x
′ : D′) = p′1, . . . , X

′
k(x : D,x

′ : D′) = p′k}, X ′1(v′))
such that P ′ is in IRF and P ′ ≈ P .

Initialisation
1 [(y1, E1), . . . , (ym, Em)] = [(y,E) | ∃i . pi binds a variable y of type E by a nondeterministic or

probabilistic sum, and syntactically uses y within its scope]
2 pars := (x : D, (x,x, . . . ,xn, y1, . . . , ym) : (D ×D × · · · ×Dn × E1 × · · · × Em))
3 v′ := v ++ [any constant of type D | D ← [D,D, . . . ,Dn, E1, . . . , Em]]
4 done := ∅
5 toTransform := {X ′1(pars) = p1}
6 bindings := {X ′1(pars) = p1}

Construction
7 while toTransform 6= ∅ do
8 Choose an arbitrary equation (X ′i(pars) = pi) ∈ toTransform
9 (p′i,newProcs) := transform(pi,pars,bindings, P,v′)

10 done := done ∪ {X ′i(pars) = p′i}
11 bindings := bindings ∪ newProcs
12 toTransform := (toTransform ∪ newProcs) \ {X ′i(pars) = pi}
13 return (done, X ′1(v′))

9



Algorithm 2: Transforming process terms to IRF

Input:

• A process term p.

• A list pars of typed process variables.

• A set bindings of process terms in P that have already been mapped to a new process.

• A specification P .

• A new initial vector v′.

Output:

• The IRF for p.

• The process equations to add to toTransform.

transform(p, pars,bindings, P,v′) =
1 case p = a(t)

∑
•

x:D f : q
2 (q′, actualPars) := normalForm(q,pars, P,v′)
3 if ∃j . (X ′j(pars) = q′) ∈ bindings then
4 return (a(t)

∑
•

x:D f : X ′j(actualPars), ∅)
5 else
6 return (a(t)

∑
•

x:D f : X ′k(actualPars), {(X ′k(pars) = q′)}), where k = |bindings|+ 1

7 case p = c⇒ q
8 (newRHS,newProcs) := transform(q,pars,bindings, P,v′)
9 return (c⇒ newRHS,newProcs)

10 case p = q1 + q2
11 (newRHS1,newProcs1) := transform(q1,pars,bindings, P,v′)
12 (newRHS2,newProcs2) := transform(q2,pars,bindings ∪ newProcs1, P,v

′)
13 return (newRHS1 + newRHS2,newProcs1 ∪ newProcs2)

14 case p = Y (t)
15 (newRHS,newProcs) := transform(RHS(Y ),pars,bindings, P,v′)
16 newRHS’ = newRHS, with all free variables substituted by the value provided for them by t
17 return (newRHS’,newProcs)

18 case p =
∑

x:D q
19 (newRHS,newProcs) := transform(q,pars,bindings, P,v′)
20 return (

∑
x:D newRHS,newProcs)

type S with an element si for every reachable state of the PA underlying P , and create a process X(s : S)
consisting of a summation of terms of the form

s = si ⇒ a(t)(p1 : s1⊕ p2 : s2⊕ . . .⊕ pn : sn)

(one for each transition si −
a(t)−−→ µ, where µ(s1) = p1, µ(s2) = p2, . . . , µ(sn) = pn). However, this transforma-

tion completely defeats its purpose, as the whole idea behind the LPPE is to apply reductions before having
to compute all states of the original specification.

Overview of the transformation to IRF. Algorithm 1 transforms a specification P to a specification P ′, in
such a way that P ≈ P ′ and P ′ is in IRF. It requires that all process variables and local variables of P
have unique names (which is easily achieved by renaming variables having names that are used more than
once). Three important variables are used: (1) done is a set of process equations that are already in IRF;
(2) toTransform is a set of process equations that still have to be transformed to IRF; (3) bindings is a set
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Algorithm 3: Normalising process terms

Input:

• A process term p.

• A list pars of typed global variables.

• A prCRL specification P .

• A new initial vector v′ = (v′1, v
′
2, . . . , v

′
k).

Output:

• The normal form of p.

• The actual parameters needed to supply to a process which has right-hand side p′ to make its
behaviour strongly probabilistically bisimilar to p.

normalForm(p, pars, P,v′) =
1 case p = Y (t1, t2, . . . , tn)
2 return(RHS(Y ), [inst(v) | (v,D)← pars])

where inst(v) =

{
ti if v is the ith global variable of Y in P
v′i if v is not a global variable of Y in P , and v is the ith element of pars

3 case otherwise
4 return (p, [inst′(v) | (v,D)← pars])

where inst′(v) =

{
v if v occurs syntactically in p
v′i if v does not occur syntactically in p, and v is the ith element of pars

of process equations {X ′i(pars) = pi} such that X ′i(pars) is the process in done ∪ toTransform representing
the process term pi of the original specification.

Initially, pars is assigned the vector of all variables declared in P , either globally or in a summation (and
syntactically used after being bound), together with the corresponding type. The new initial vector v′ is
constructed by appending dummy values to the original initial vector for all added variables (denoted by
Haskell-like list comprehension). Also, done is empty, the right-hand side of the initial process is bound
to X ′1(pars), and this equation is added to toTransform. Then, we repeatedly take an equation X ′i(pars) = pi
from toTransform, transform pi to a strongly probabilistically bisimilar IRF p′i using Algorithm 2, add the
equation X ′i(pars) = p′i to done, and remove X ′i(pars) = pi from toTransform. The transformation may
introduce new processes, which are added to toTransform, and bindings is updated accordingly.

Transforming single process terms to IRF. Algorithm 2 transforms individual process terms to IRF recur-
sively by means of a case distinction over the structure of the terms (using Algorithm 3).

For a summation q1 + q2, the IRF is q′1 + q′2 (with q′i an IRF of qi). For the condition c⇒ q1 it is c⇒ q′1,
and for

∑
x:D q1 it is

∑
x:D q′1. Finally, the IRF for Y (t) is the IRF for the right-hand side of Y , where the

global variables of Y occurring in this term have been substituted by the expressions given by t.
The base case is a probabilistic choice a(t)

∑
•

x:D f : q. The corresponding process term in IRF depends
on whether or not there already is a process name X ′j mapped to q (as stored in bindings). If this is the
case, apparently q has been linearised before and the result simply is a(t)

∑
•

x:D f : X ′j(actualPars), with
actualPars as explained below. If q was not linearised before, a new process name X ′k is chosen, the result is
a(t)

∑
•

x:D f : X ′k(actualPars) and X ′k is mapped to q by adding this information to bindings. Since a newly
created process X ′k is added to toTransform, in a next iteration of Algorithm 1 it will be linearised.

More precisely, instead of q we use its normal form, computed by Algorithm 3. The reason behind this
is that, when linearising a process in which for instance both the process instantiations X(n) and X(n+ 1)
occur, we do not want to have a distinct term for both of them. We therefore define the normal form of a
process instantiation Y (t) to be the right-hand side of Y , and of any other process term q to just be q. This
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Table 2: Transforming P1 = ({X1 = a · b · c ·X1 + c ·X2, X2 = a · b · c ·X1}, X1) to IRF.

done1 toTransform1 bindings1

0 ∅ X′
1 = a · b · c ·X1 + c ·X2 X′

1 = a · b · c ·X1 + c ·X2

1 X′
1 = a ·X′

2 + c ·X′
3 X′

2 = b · c ·X1, X′
3 = a · b · c ·X1 X′

2 = b · c ·X1, X′
3 = a · b · c ·X1

2 X′
2 = b ·X′

4 X′
3 = a · b · c ·X1, X′

4 = c ·X1 X′
4 = c ·X1

3 X′
3 = a ·X′

2 X′
4 = c ·X1

4 X′
4 = c ·X′

1 ∅

Table 3: Transforming P2 = ({X3(d : D) =
∑
e:D a(d+ e) · c(e) ·X3(5)}, X3(d′)) to IRF.

done2 toTransform2 bindings2

0 ∅ X′′
1 =

∑
e:D a(d+ e) · c(e) ·X3(5) X′′

1 =
∑
e:D a(d+ e) · c(e) ·X3(5)

1 X′′
1 =

∑
e:D a(d+ e) ·X′′

2 (d′, e) X′′
2 = c(e) ·X3(5) X′′

2 = c(e) ·X3(5)

2 X′′
2 = c(e) ·X′′

1 (5, e′) ∅

way, different process instantiations of the same process and the right-hand side of that process all have the
same normal form, and no duplicate terms are generated.

Algorithm 3 is also used to determine the actual parameters that have to be provided to either X ′j (if q
was already linearised before) or to X ′k (if q was not linearised before). This depends on whether or not q
is a process instantiation. If it is not, the actual parameters for X ′j are just the global variables (possibly
resetting variables that are not used in q). If it is, for instance q = Y (t1, t2, . . . , tn), all global variables are
reset, except the ones corresponding to the original global variables of Y ; for them t1, t2, . . . , tn are used.

Note that in Algorithm 3 we use (v,D) ← pars to denote the list of all pairs (vi, Di), given pars =
(v1, . . . , vn) : (D1 × · · · ×Dn). We use RHS(Y ) for the right-hand side of the process equation defining Y .

Example 18. We linearise two example specifications:

P1 = ({X1 = a · b · c ·X1 + c ·X2, X2 = a · b · c ·X1}, X1)

P2 = ({X3(d : D) =
∑
e:D

a(d+ e) · c(e) ·X3(5)}, X3(d′))

Tables 2 and 3 show done, toTransform and bindings at line 7 of Algorithm 1 for every iteration. As
done and bindings only grow, we just list their additions. For layout purposes, we omit the parameters
(d : D, e : D) of every X ′′i in Table 3. The results in IRF are P ′1 = (done1, X

′
1) and P ′2 = (done2, X

′′
1 (d′, e′))

for an arbitrary e′ ∈ D.

The following theorem, proven in Appendix A, states the correctness of our transformation.

Theorem 19. Let P be a prCRL specification such that all variables are named uniquely. Given this input,
Algorithm 1 terminates, and the specification P ′ it returns is such that P ′ ≈ P . Also, P ′ is in IRF.

The following example shows that Algorithm 1 does not always compute an isomorphic specification.

Example 20. Let P = ({X =
∑
d:D a(d) ·b(f(d)) ·X}, X), with f(d) = 0 for all d ∈ D. Then, our procedure

will yield the specification

P ′ = ({X ′1(d : D) =
∑
d:D

a(d) ·X ′2(d), X ′2(d : D) = b(f(d)) ·X ′1(d′)}, X ′1(d′))

for some d′ ∈ D. Note that the reachable number of states of P ′ is |D| + 1 for any d′ ∈ D. However, the
reachable state space of P only consists of the two states X and b(0) ·X.
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Algorithm 4: Constructing an LPPE from an IRF

Input:

• A specification P ′ = ({X ′1(x : D) = p′1, . . . , X
′
k(x : D) = p′k}, X ′1(v)) in IRF (without variable pc).

Output:

• A semi-LPPE X = ({X(pc : {1, . . . , k},x : D) = p′′}, X(1,v)) such that P ′ ≡ X.

Construction
1 S = ∅
2 forall (X ′i(x : D) = p′i) ∈ P ′ do
3 S := S ∪ makeSummands(p′i, i)
4 return ({X(pc : {1, . . . , k},x : D) =

∑
s∈S s}, X(1,v))

where
makeSummands(p, i) =

5 case p = a(t)
∑
•

y:E f : X ′j(t
′
1, . . . , t

′
k)

6 return {pc = i⇒ a(t)
∑
•

y:E f : X(j, t′1, . . . , t
′
k)}

7 case p = c⇒ q
8 return {c⇒ q′ | q′ ∈ makeSummands(q, i)}
9 case p = q1 + q2

10 return makeSummands(q1, i) ∪ makeSummands(q2, i)
11 case p =

∑
x:D q

12 return {
∑

x:D q′ | q′ ∈ makeSummands(q, i)}

5.2. Transforming from IRF to LPPE

Given a specification P ′ in IRF, Algorithm 4 constructs an LPPE X. The global variables of X
are a program counter pc and all global variables of P ′. To construct the summands for X, we range
over the process equations in P ′. For each equation X ′i(x : D) = a(t)

∑
•

y:E f : X ′j(t
′
1, . . . , t

′
k), a summand

pc = i⇒ a(t)
∑
•

y:E f : X(j, t′1, . . . , t
′
k) is constructed. For an equation X ′i(x : D) = q1 + q2 the union of the

summands produced by X ′i(x : D) = q1 and X ′i(x : D) = q2 is taken. For X ′i(x : D) = c⇒ q the condition
c is prefixed to the summands produced by X ′i(x : D) = q; nondeterministic sums are handled similarly.

To be precise, the specification produced by the algorithm is not literally an LPPE yet, as there might be
several conditions and nondeterministic sums, and their order might still be wrong (we call such specifications
semi-LPPEs). An isomorphic LPPE is obtained by moving the nondeterministic sums to the front and
merging separate nondeterministic sums (using vectors) and separate conditions (using conjunctions). When
moving nondeterministic sums to the front, some variable renaming might need to be done to avoid clashes
with the conditions.

Example 21. Looking at the IRFs obtained in Example 18, it follows that P ′1 ≡ X and P ′2 ≡ Y , with

X = ({X(pc : {1, 2, 3, 4})
= pc = 1⇒ a ·X(2)

+ pc = 1⇒ c ·X(3)

+ pc = 2⇒ b ·X(4)

+ pc = 3⇒ a ·X(2)

+ pc = 4⇒ c ·X(1)},
X(1))

Y = ({Y (pc : {1, 2}, d : D, e : D)

=
∑
e:D

pc = 1⇒ a(d+ e) · Y (2, d′, e)

+ pc = 2⇒ c(e) · Y (1, 5, e′))},
Y (1, d′, e′))
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Theorem 22. Let P ′ be a specification in IRF without a variable pc, and let the output of Algorithm 4
applied to P ′ be the specification X. Then, P ′ ≡ X.

Let Y be like X, except that for each summand all nondeterministic sums have been moved to the begin-
ning while substituting their variables by fresh names, and all separate nondeterministic sums and separate
conditions have been merged (using vectors and conjunctions, respectively). Then, Y is an LPPE and Y ≡ X.

Proof. Algorithm 4 transforms a specification P ′ = ({X ′1(x : D) = p′1, . . . , X
′
k(x : D) = p′k}, X ′1(v)) to an

LPPE X = ({X(pc : {1, . . . , k},x : D)}, X(1,v)) by constructing one or more summands for X for every
process in P ′. Basically, the algorithm just introduces a program counter pc to keep track of the process
that is currently active. That is, instead of starting in X ′1(v), the system will start in X(1,v). Moreover,
instead of advancing to X ′j(v), the system will advance to X(j,v).

The isomorphism h to prove the theorem is given by h(X ′i(u)) = X(i,u) for every 1 ≤ i ≤ k and u ∈D.
(As (1) isomorphism is defined over the disjoint union of the two systems, and (2) each PA contains not
just the reachable states but all process terms, formally we should also define (1) h(X(i,u)) = X ′i(u), and
(2) h(p) = p for all process terms of a different form. However, this does not influence the proof, as (1) we
prove an equivalence, and (2) isomorphism is reflexive). Note that h indeed is a bijection.

By definition h(X ′1(v)) = X(1,v). To prove that X ′i(u) −α→ µ ⇔ X(i,u) −α→ µh for all 1 ≤ i ≤ k and
u ∈D, we assume an arbitrary X ′l(u) and use induction over its structure.

The base case is X ′l(u) = a(t)
∑
•

y:E f : X ′j(t
′
1, . . . , t

′
k). For this process, Algorithm 4 constructs the sum-

mand pc = l⇒ a(t)
∑
•

y:E f : X(j, t′1, . . . , t
′
k). As every summand constructed by the algorithm contains a

condition pc = i, and the summands produced for X ′l(u) are the only ones producing a summand with i = l,
it follows that X ′l(u) −α→ µ if and only if X(l,u) −α→ µh.

Now assume that X ′l(u) = c ⇒ q. By induction, X ′′l (u) = q would result in the construction of one or
more summands such that X ′′l (u) ≡ X(l,u). For X ′l(u) the algorithm takes those summands, and adds the
condition c to all of them. Therefore, X ′l(u) −α→ µ if and only if X(l,u) −α→ µh. Similar arguments show that
X ′l(u) −α→ µ if and only if X(l,u) −α→ µh when X ′l(u) = q1 + q2 or X ′l(u) =

∑
x:D q. Hence, P ′ ≡ X.

Now, let Y be equal to X, except that within each summand all nondeterministic sums have been moved
to the beginning while substituting their variables by fresh names, and all separate nondeterministic sums
and separate conditions have been merged (using vectors and conjunctions, respectively).

To see that Y is an LPPE, first observe that X already was a single process equation consisting of a
set of summands. Each of these contains a number of nondeterministic sums and conditions, followed by a
probabilistic sum. Furthermore, each probabilistic sum is indeed followed by a process instantiation, as can
be seen from line 6 of Algorithm 4.

The only discrepancy for X to be an LPPE is that the nondeterministic sums and the conditions are
not yet necessarily in the right order, and there might be several of them (e.g., d > 0 ⇒

∑
d:D1

e > 0 ⇒∑
f :D2

act(d).X(d, f)). However, since they are swapped in Y such that all nondeterministic sums precede
all conditions, and conditions are merged using conjunctions and summations are merged using vectors, Y is
an LPPE. In case of the example before:

∑
(d′,f):D1×D2

d > 0∧ e > 0⇒ act(d′).X(d′, f). Note that, indeed,
some renaming had to be done such that Y ≡ X. After all, by renaming the summation variables, we can
rely on the obvious equality of c ⇒

∑
d:D p and

∑
d:D c ⇒ p given that d is not a free variable in c. Thus,

swapping the conditions and nondeterministic sums this way does not modify the process’ semantics in any
way. Also, it is easy to see from the SOS rules in Table 1 that merging nondeterministic sums and conditions
does not change anything about the enabled transitions. Therefore, Y is indeed isomorphic to X.

To discuss the complexity of linearisation, we first define the size of prCRL specifications.

Definition 23. The size of a process term is defined as follows:

size(c⇒ p) = 1 + size(c) + size(p) size(Y (t)) = 1 + size(t);

size(
∑

x:D p) = 1 + |x|+ size(p) size
(
a(t)

∑
•

x:D f : p
)

= 1 + size(t) + |x|+ size(f) + size(p)

size(p+ q) = 1 + size(p) + size(q); size((t1, t2, . . . , tn)) = size(t1) + size(t2) + · · ·+ size(tn)

The size of the expressions f , c and ti are given by their number of function symbols and constants. Also,
size(Xi(xi : Di) = pi) = |xi|+ size(pi). Given a specification P = (E, I), size(P ) =

∑
p∈E size(p) + size(I).
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Proposition 24. Let P be a prCRL specification such that size(P ) = n. Then, the worst-case time com-
plexity of linearising P is in O(n3). The size of the resulting LPPE is worst-case in O(n2).

Proof. Let P = (E, I) be a specification such that size(P ) = n. First of all, note that∣∣pars
∣∣ ≤ ∑

(Xi(xi:Di)=pi)∈E

|xi|+
∣∣subterms′(P )

∣∣ ≤ n (1)

after the initialisation of Algorithm 1, where |pars| denotes the numbers of new global variables and
subterms′(P ) denotes the multiset containing all subterms of P (counting a process term that occurs twice
as two subterms, and including nondeterministic and probabilistic choices over a vector of k variables k
times). When mentioning the subterms of P in this proof, we will be referring to this multiset (for a formal
definition of subterms, see Definition 35 in the appendix).

The first inequality follows from the fact that pars is defined to be the sequence of all xi appended by all
local variables of P (that are syntactically used), and the observation that there are at most as many local
variables as there are subterms. The second inequality follows from the definition of size and the observation
that size(pi) counts the number of subterms of p plus the size of their expressions.

Time complexity. We first determine the worst-case time complexity of Algorithm 1. As the function
transform is called at most once for every subterm of P , it follows from Equation (1) that the number of
times this happens is in O(n). The time complexity of every such call is governed by the call to normalForm.

The function normalForm checks for each global variable in pars whether or not it can be reset; from
Equation (1) we know that the number of such variables is in O(n). To check whether a global variable can
be reset given a process term p, we have to examine every expression in p; as the size of the expressions is
accounted for by n, this is also in O(n). So, the worst-case time complexity of normalForm is in O(n2).
Therefore, the worst-case time complexity of Algorithm 1 is in O(n3).

As the transformation from IRF to LPPE by Algorithm 4 is easily seen to be in O(n), we find that, in
total, linearisation has a worst-case time complexity in O(n3).

LPPE size complexity. Every summand of the LPPE X that is constructed has a size in O(n). After all,
each contains a process instantiation with an expression for every global variable in pars, and we already
saw that the number of them is in O(n). Furthermore, the number of summands is bound from above by
the number of subterms of P , so this is in O(n). Therefore, the size of X is in O(n2).

To get a more precise time complexity, we can define m = |subterms′(P )| and

k = |subterms′(P )|+
∑

(Xi(xi:Di)=pi)∈E

|xi|.

Then, it follows from the reasoning above that the worst-case time complexity of linearisation is in O(m·k·n).
Although the transformation to LPPE increases the size of the specification, it facilitates optimisations

to reduce the state space (which is worst-case exponential), as we will see in Section 7.

6. Parallel composition

Using prCRL processes as basic building blocks, we support the modular construction of large systems
via top-level parallelism, encapsulation, hiding, and renaming.

Definition 25. A process term in parallel prCRL is any term that can be generated by the following
grammar:

q ::= p | q || q | ∂E(q) | τH(q) | ρR(q)

Here, p is a prCRL process term, E,H ⊆ Act are sets of actions, and R : Act→ Act maps actions to actions.
A parallel prCRL specification P = ({Xi(xi : Di) = qi}, Xj(t)) is a set of parallel prCRL process equations
(which are like prCRL process equations, but with parallel prCRL process terms as right-hand sides) together
with an initial process. The wellformedness criteria of Definition 5 are lifted in the obvious way.
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Table 4: SOS rules for parallel prCRL.

Par-L
p −α−→ µ

p || q −α−→ µ′
where ∀p′ . µ′(p′ || q) = µ(p′) Par-R

q −α−→ µ

p || q −α−→ µ′
where ∀q′ . µ′(p || q′) = µ(q′)

Par-Com
p −a(t)−−→ µ q −b(t)−−→ µ′

p || q −c(t)−−→ µ′′
if γ(a, b) = c, where ∀p′, q′ . µ′′(p′ || q′) = µ(p′) · µ′(q′)

Hide-T
p −a(t)−−→ µ

τH(p) −τ−→ τH(µ)
if a ∈ H Hide-F

p −a(t)−−→ µ

τH(p) −a(t)−−→ τH(µ)
if a 6∈ H

Rename
p −a(t)−−→ µ

ρR(p) −R(a)(t)−−−−−→ ρR(µ)
Encap-F

p −a(t)−−→ µ

∂E(p) −a(t)−−→ ∂E(µ)
if a 6∈ E

In a parallel prCRL process term, q1 || q2 is parallel composition. Furthermore, ∂E(q) encapsulates
the actions in E, τH(q) hides the actions in H (renaming them to τ and removing their parameters),
and ρR(q) renames actions using R. Parallel processes by default interleave all their actions. However, we
assume a partial function γ : Act×Act→ Act that specifies which actions can communicate; more precisely,
γ(a, b) = c denotes that a and b can communicate if their parameters are equal, resulting in the action c
with these parameters (as in ACP [34]). The SOS rules for parallel prCRL are shown in Table 4 (relying on
the SOS rules for prCRL from Table 1), where for any probability distribution µ, we denote by τH(µ) the
probability distribution µ′ such that ∀p . µ′(τH(p)) = µ(p). Similarly, we use ρR(µ) and ∂E(µ). Note that
there is no Encap-T rule, to remove transitions labelled by an encapsulated action.

6.1. Linearisation of parallel processes

The LPPE format allows processes to be put in parallel very easily. Although the LPPE size is worst-
case exponential in the number of parallel processes (when all summands have different actions and all these
actions can communicate), in practice we see only linear growth (since often only a few actions communicate).
Assume the following two LPPEs (omitting the initial states, since they are not needed in the process of
parallelisation).

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni),

Y (g′ : G′) =
∑
i∈I′

∑
d′
i:D

′
i

c′i ⇒ a′i(b
′
i)
∑
•

e′
i:E

′
i

f ′i : Y (n′i),

Also assuming (without loss of generality) that all global and local variables are named uniquely, the product
Z(g : G, g′ : G′) = X(g) ||Y (g′) is constructed as follows, based on the construction introduced by Usenko
for traditional LPEs [18]. Note that the first set of summands represents X doing a transition independent
from Y , and that the second set of summands represents Y doing a transition independent from X. The
third set corresponds to their communications.

Z(g : G, g′ : G′) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : Z(ni, g
′)

+
∑
i∈I′

∑
d′
i:D

′
i

c′i ⇒ a′i(b
′
i)
∑
•

e′
i:E

′
i

f ′i : Z(g,n′i)

+
∑

(k,l)∈IγI′

∑
(dk,d′

l):Dk×D′
l

ck ∧ c′l ∧ bk = b′l ⇒ γ(ak, a
′
l)(bk)

∑
•

(ek,e′
l):Ek×E′

l

fk · f ′l : Z(nk,n
′
l)
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Here, IγI ′ is the set of all combinations of summands (k, l) ∈ I × I ′ such that the action ak of summand k
and the action a′l of summand l can communicate. Formally, IγI ′ = {(k, l) ∈ I × I ′ | (ak, a′l) ∈ domain(γ)}.

Proposition 26. For all v ∈ G,v′ ∈ G′, it holds that Z(v,v′) ≡ X(v) ||Y (v′).

Proof. The only processes an LPPE Z(v,v′) can become, are of the form Z(v̂, v̂′), and the only processes a
parallel composition X(v) ||Y (v′) can become, are of the form X(v̂) ||Y (v̂′). Therefore, the isomorphism h
needed to prove the proposition is as follows: h(X(v) ||Y (v′)) = Z(v,v′) and h(Z(v,v′)) = X(v) ||Y (v′)
for all v ∈ G,v′ ∈ G′, and h(p) = p for every process term p of a different form. Clearly, h is bijective. We
will now show that indeed X(v) ||Y (v′) −a(q)−−→ µ if and only if Z(v,v′) −a(q)−−→ µh.

Let v ∈ G and v′ ∈ G′ be arbitrary global variable vectors for X and Y . Then, by the operational
semantics X(v) ||Y (v′) −a(q)−−→ µ is enabled if and only if at least one of the following three conditions holds.

(1) X(v) −a(q)−−→ µ′ ∧∀v̂ ∈ G . µ(X(v̂) ||Y (v′)) = µ′(v̂)

(2) Y (v′) −a(q)−−→ µ′ ∧∀v̂′ ∈ G′ . µ(X(v) ||Y (v̂′)) = µ′(v̂′)

(3) X(v) −a
′(q)−−−→ µ′ ∧Y (v′) −a

′′(q)−−−→ µ′′ ∧ γ(a′, a′′) = a∧∀v̂ ∈ G, v̂′ ∈ G′ . µ(X(v̂) ||Y (v̂′)) = µ′(v̂) · µ′′(v̂′)

It immediately follows from the construction of Z that Z(v̂, v̂′) −a(q)−−→ µh is enabled under exactly the same
conditions, as condition (1) is covered by the first set of summands of Z, condition (2) is covered by the
second set of summands of Z, and condition (3) is covered by the third set of summands of Z.

6.2. Linearisation of hiding, encapsulation and renaming

For hiding, renaming, and encapsulation, linearisation is quite straightforward. For the LPPE

X(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : X(ni),

let the LPPEs U(g), V (g), and W (g), for τH(X(g)), ρR(X(g)), and ∂E(X(g)), respectively, be given by

U(g : G) =
∑
i∈I

∑
di:Di

ci ⇒ a′i(b
′
i)
∑
•

ei:Ei

fi : U(ni),

V (g : G) =
∑
i∈I

∑
di:Di

ci ⇒ a′′i (bi)
∑
•

ei:Ei

fi : V (ni),

W (g : G) =
∑
i∈I′

∑
di:Di

ci ⇒ ai(bi)
∑
•

ei:Ei

fi : W (ni),

where

a′i =

{
τ if ai ∈ H
ai otherwise

b′i =

{
( ) if ai ∈ H
bi otherwise

a′′i = R(ai) I ′ = {i ∈ I | ai 6∈ E}

Proposition 27. For all v ∈ G, U(v) ≡ τH(X(v)), V (v) ≡ ρR(X(v)), and W (v) ≡ ∂E(X(v)).

Proof. We will prove that U(v) ≡ τH(X(v)) for all v ∈ G; the other two statements are proven similarly.
The only processes an LPPE X(v) can become, are processes of the form X(v′). Moreover, as hiding

does not change the process structure, the only processes that τH(X(v)) can become, are processes of the
form τH(X(v′)). Therefore, the isomorphism h needed to prove the proposition is easy: for all v ∈ G, we
define h(τH(X(v))) = U(v) and h(U(v)) = τH(X(v)), and h(p) = p for every p of a different form. Clearly,
h is bijective.

We will now show that h indeed is an isomorphism. First, observe that X(v) −a(q)−−→ µ is enabled if and
only if there is a summand i ∈ I such that

∃d′i ∈Di . ci(v,d
′
i)∧ ai(bi(v,d′i)) = a(q)∧∀e′i ∈ Ei . µ(ni(v,d

′
i, e
′
i)) =

∑
e′′
i ∈Ei

ni(v,d
′
i,e

′
i)=ni(v,d

′
i,e

′′
i )

fi(v,d
′
i, e
′′
i ).
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We show that h is an isomorphism, by showing that there exists a transition τH(X(v)) −a(q)−−→ µ if and only
if h(τH(X(v))) −a(q)−−→ µh, i.e., if and only if U(v) −a(q)−−→ µh.

First assume a 6= τ . By the operational semantics, τH(X(v)) −a(q)−−→ µ is enabled if and only if X(v) −a(q)−−→ µ
is enabled and a 6∈ H. Moreover, U(v) −a(q)−−→ µh is enabled if and only if there is a summand i ∈ I such that

∃d′i ∈Di . ci(v,d
′
i)∧ a′i(b′i(v,d′i)) = a(q)∧∀e′i ∈ Ei . µ(ni(v,d

′
i, e
′
i)) =

∑
e′′
i ∈Ei

ni(v,d
′
i,e

′
i)=ni(v,d

′
i,e

′′
i )

fi(v,d
′
i, e
′′
i ),

which indeed corresponds to X(v) −a(q)−−→ µ∧ a 6∈ H by definition of a′i and b′i and the assumption that a 6= τ .
Now assume that a = τ and q = ( ). By the operational semantics, τH(X(v)) −τ→ µ is enabled if and only

if X(v) −τ→ µ is enabled or there exists some a ∈ H with parameters q′ such that X(v) −a(q
′)−−−→ µ is enabled. It

immediately follows by definition of a′i and b′i that U(v) −τ→ µh is enabled under exactly these conditions.

7. The LPPE-based verification approach: linearisation, reduction, instantiation

The LPPE format allows us to verify systems efficiently. The main idea, as in the µCRL approach [1],
is to start with a prCRL specification, linearise to an LPPE, and then generate (instantiate) the state space.

Using the LPPE, several existing reduction

Probabilistic specification (prCRL)

Intermediate format (LPPE)

State space (PA)

Linearisation

Instantiation
(confluence reduction (2))

LPPE → LPPE

- Constant elimination (1)
- Summation elimination (1)
- Expression simplification (1)
- Dead variable reduction (2)

Figure 2: The LPPE-based verification approach.

techniques can now also be applied to probabilis-
tic specifications. We distinguish between two
kinds of reductions: (1) LPPE simplification tech-
niques, which do not change the actual state space,
but improve readability and speed up state space
generation, and (2) state space reduction tech-
niques that do change the LPPE or instantia-
tion in such a way that the resulting state space
will be smaller (while preserving some notion of
equivalence, often strong or branching probabilis-
tic bisimulation). Figure 2 illustrates this approach. We list all the reductions techniques that we generalised
(and indicate their category within parentheses). All these techniques work on the syntactic level, i.e., they
do not unfold the data types at all, or only locally to avoid a data explosion. Hence, a smaller state space
is obtained without first having to generate the original one. Here, we discuss the reduction techniques.

7.1. LPPE simplification techniques

The simplification techniques that already existed for the LPE format [22, 18] can be generalised in a
straight-forward way. Here, we discuss constant and summation elimination, and expression simplification.

Constant elimination. In case a parameter of an LPPE never changes its value, we can clearly just omit it
and replace every reference to it by its initial value. Basically, we detect a parameter p to be constant if in
every summand it is either unchanged, or ‘changed’ to its initial value.

More precisely, we do a greatest fixed-point computation to find all non-constants, initially assuming
all parameters to be constant. If no new non-constants are found (which happens after a finite number of
iterations as there are finitely many parameters), the procedure terminates and the remaining parameters
are constant. In every iteration, we check for each parameter x that is still assumed constant whether there
exists a summand s (with an enabling condition that cannot be shown to be always unsatisfied) that might
change it. This is the case if either x is bound by a probabilistic or nondeterministic summation in s, or if
its next state is determined by an expression that is syntactically different from x, different from the initial
value of x, and different from the name of another parameter that is still assumed constant and has the
same initial value as x.

Example 28. Consider the specification P = ({X(id : {one, two}) = say(id) ·X(id)}, X(one)). Clearly, the
process variable id never changes value, so the specification can be simplified to P ′ = ({X = say(one)·X}, X).
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Proposition 29. The underlying PAs of an LPPE before and after constant elimination are isomorphic.

Proof (sketch). We first show that every parameter that is marked constant by the procedure, indeed has
the same value in every reachable state of the state space. Let x be a parameter with initial value x0 that
is not constant, so there exists a state v where x is not equal to x0. Then there must be a summand that
semantically changes x to a value different from x0. If the next state of x in this summand is syntactically
given by the expression x, and x is changed because it is bound to a value x′ 6= x0 by a nondeterministic
or probabilistic sum, this is detected by the procedure in the first iteration. If the next state is given by an
expression e not equal to x, then e must also be different from x0 (otherwise the value of x would still not
change). In the general case, this will also be detected in the first iteration, except when e is the name of
another parameter y that is initially, but not constantly, equal to x0. Either the first iteration detects y to
be non-constant and the second iteration will then see that x is also non-constant, or y is also non-constant
because of a valuation based on another parameter. In the latter case, it might take some more iterations,
but as y is non-constant this recursion clearly ends at some point (as a cyclicity would imply that x is
constant, violating our assumption).

Now, as the procedure correctly computes the parameters of an LPPE that are constant, it is trivial
that changing all their occurrences to their initial values is a valid transformation; it does not change the
semantics of the LPPE and therefore leaves the reachable state space (including its transitions) untouched.
Moreover, as the constant parameters are not used anymore after this step, they have no influence on the
semantics of the LPPE, and removing them also does also not change anything (except for state names,
which is allowed by isomorphism).

Summation elimination. When composing parallel components that communicate based on message passing
actions, often this results in summations that can be eliminated. For instance, summands with a nonde-
terministic choice of the form

∑
d:D and a condition d = e can arise, which can obviously be simplified by

omitting the summation and substituting e for every occurrence of d.
More precisely, to eliminate a sum

∑
d:D in a summand that has the enabling condition c, we compute

the set S of possible values that c allows for d (and use the empty set if we cannot establish specific values).
When c is given by d = e or e = d, where e is an expression in which d does not occur freely, we take S = {e}.
When c is a conjunction e1 ∧ e2, we take S = S1 ∩S2, where Si is the set of possible values for c given by ei.
For a disjunction, we take a union (unless S1 = ∅ or S2 = ∅; in that case also S = ∅). If it turns out that S
is a singleton set {d′}, then we omit the summation and substitute every free occurrence of d by d′.

Example 30. Consider the specification X =
∑
d:{1,2,3} d = 2 ⇒ send(d) · X. As the summand is only

enabled for d = 2, the specification can be simplified to X = 2 = 2⇒ send(2) ·X.

Proposition 31. The underlying PAs of an LPPE before and after summation elimination are isomorphic.

Proof (sketch). Assume a summand with a summation
∑
d:D and a condition c. Clearly, when c is given by

d = e and e does not contain d, the condition can indeed only be satisfied when d is equal to e, so, for any
other value the summand would not be enabled. Given a condition e1 ∧ e2, the summand is only enabled
when both e1 and e2 hold, so clearly indeed only when d has a value in the intersection of the sets containing
the values for those two conditions to hold. For a disjunction e1 ∨ e2, knowing that for ei to hold d should
have a value in Si, clearly it should have a value in S1 ∪ S2 for the disjunction to hold. However, when
either S1 or S2 is empty, this implies that we don’t know the values that satisfy this disjunct, so then we
also don’t know anything about the complete disjunction.

If in the end there is precisely one value d′ that enables the condition c, this means that the summand
can only be taken for this value. Therefore, clearly we can just as well omit the nondeterministic choice and
substitute d′ for every free occurrence of d in the resulting summand. This obviously changes nothing about
the underlying PA, so the transformation preserves isomorphism.

Expression simplification. Expressions occurring as enabling conditions, action parameters or next state
parameters can often be simplified. We apply two kinds of simplifications (recursively): (1) functions for
which all parameters are constants are evaluated, and (2) basic laws from logic are applied.
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Additionally, summands for which the enabling condition simplified to false are removed, as they cannot
contribute to the behaviour of an LPPE anyway. More thoroughly, we also check for each summand whether
every local and global parameter with a finite type has at least one possible value for which the enabling
condition does not simplify to false. If there exists a parameter without at least one such a value, the
summand can never be taken and is consequently removed.

Example 32. Consider the expression 3 = 1 + 2 ∨ x > 5. As all parameters of the addition function are
given, the expression is first simplified to 3 = 3 ∨ x > 5. Then, the equality function can be evaluated,
obtaining true∨ x > 5. Finally, logic tells us that we can simplify once more, obtaining the expression true.

Proposition 33. The underlying PAs of an LPPE before and after expression simplification are isomorphic.

Proof. Trivial: replacing expressions by equivalent ones does not change anything.

7.2. State space reduction techniques

We generalised two state space reduction techniques: dead variable reduction and confluence reduction.

Dead variable reduction. A non-probabilistic version of dead variable reduction was introduced in [23],
reducing the state space of an LPE while preserving strong bisimulation. The technique takes into account
the control flow of an LPPE, and tries to detect states in which the value of a certain global variable is
irrelevant. Basically, this is the case if it will be overwritten before being used for all possible futures. Then,
it will be reset to its initial value. Dead variable reduction works best in the presence of large data types,
as in that case resets have the most effect.

The generalisation to LPPEs is straight-forward: just also take probabilistic sums and probability ex-
pressions into account when investigating when variables are used or overwritten. Trivially, the proofs for
the correctness of the technique also generalise to the probabilistic case.

Confluence reduction. The second state space reduction technique we generalised to LPPEs is confluence
reduction, introduced in [29] for LPEs to reduce state spaces while preserving branching bisimulation.
Basically, this technique detects which internal τ -transitions do not influence a system’s behaviour, and uses
this information when generating the state space (giving such transitions priority over other transitions).
Confluence reduction works best in the presence of a lot of parallelism and hiding, as in that case many
unobservable traces can occur in multiple orders.

As the generalisation of confluence reduction is far from straight-forward, the technical details are outside
the scope of this paper. We therefore refer to [35, 36] for an exposition of the technique, but will already
provide encouraging experimental results in the next section, as evidence for the strength of the LPPE
format.

8. Implementation and case study

8.1. Implementation

We developed a prototype tool3 in Haskell, based on a simple data language that allows the modelling of
several kinds of protocols and systems. A web-based interface makes the tool convenient to use. The tool is
capable of linearising prCRL specifications, as well as applying parallel composition, hiding, encapsulation
and renaming. As Haskell is a functional language, the algorithms in our implementation are almost identical
to their mathematical representations presented in this paper.

The tool also implements all the reduction techniques mentioned in Section 7. It automatically applies
the basic LPPE simplification techniques, and allows the user to choose whether or not to apply dead
variable reduction and/or confluence reduction.

3The implementation, including the web-based interface, can be found at http://fmt.cs.utwente.nl/~timmer/scoop.
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P (id : Id, val : Die, set : Bool) = !set⇒
∑
d:Die

receive(id, other(id), d) · P (id, d, true)

+ set⇒ getVal(val).P (id, val, false)

A(id : Id) = roll(id)
∑
•

d:Die

1
6 : send(other(id), id, d) ·

∑
e:Die

readVal(e).
(

d = e⇒ A(id)

+ d > e⇒ leader(id) ·A(id)

+ e > d⇒ follower(id) ·A(id)
)

S = ∂send,receive( ∂getVal,readVal(P (one, 1, false) ||A(one)) || ∂getVal,readVal(P (two, 1, false) ||A(two)) )

γ(receive, send) = comm

γ(getVal, readVal) = checkVal

Figure 3: A prCRL model of a leader election protocol.

After generating an LPPE, the tool can also generate its state space (a probabilistic automaton) and
display it in several ways. We can export to the AUT format for analysis with the CADP toolset [37], or to a
PRISM transition matrix for analysis using PRISM [3]. Interestingly, the tool can also translate a (possibly
reduced) LPPE directly to a PRISM specification, enabling the user to obtain the exact same state space
in PRISM and use this probabilistic model checker to symbolically compute quantitative properties of the
model. Note that, in general, not every prCRL specification can be transformed to PRISM due to the richer
data types that we allow. In principle, translating PRISM models to LPPE is always possible.

8.2. Case study

To illustrate the process of specifying in prCRL and the potentials of LPPEs, we modelled two leader
election protocols (such protocols are a benchmark problem in probabilistic model checking). We applied all
our reduction techniques, and found significant reductions in both the state space sizes and the time needed
to generate them (Table 5).

Modelling. We modelled a basic variant of the Itai-Rodeh protocol for synchronous leader election between
two parties [38], as well an adaption of the Itai-Rodeh protocol for asynchronous rings for any number of
parties (Algorithm B from [39]). As an example we discuss the first specification here; for the other, we
refer to the website of our tool.

The protocol we model elects a leader between two nodes by rolling two dice and comparing the results.
If both roll the same number, the experiment is repeated. Otherwise, the node that rolled highest wins. The
system can be modelled by the prCRL specification shown in Figure 3. Here, Die is a data type consisting
of the numbers from 1 to 6, and Id is a data type consisting of the identifiers one and two. The function
other provides the identifier different from its argument.

Each component has been given an identifier for reference during communication, and consists of a
passive thread P and an active thread A. The passive thread waits to receive what the other component
has rolled (after which it is set), and then provides the active thread an opportunity to obtain this result
(communicating via the checkVal action). The active thread first rolls a die, and sends the result to the other
component (communicating via the comm action). Then it tries to read the result of the other component
through the passive process, or blocks until this result has been received. Based on the results, either the
processes start over, or they declare their victory or loss.

After linearising the model with our implementation when disabling all reduction techniques, we obtain
an LPPE with 18 parameters and 14 summands (see [40] for a listing). Applying the LPPE simplification
techniques, 8 of these parameters are removed by constant elimination, all nondeterministic summations are
removed by summation elimination, and 2 summands are removed as their enabling condition simplifies to
false due to expression simplification. So, we end up with an LPPE with 10 parameters and 12 summands.
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Table 5: Applying state space reduction based on LPPEs to two leader election protocols.

Original Reduced Visited Running time
Specification States Trans. States Trans. States Trans. Before After
leaderBasic 3,763 6,158 541 638 1,249 1,370 0.45 sec 0.14 sec
leader-2-36 154,473 205,198 5,293 5,330 17,029 18,362 29.53 sec 6.88 sec
leader-3-12 468,139 763,149 35,485 41,829 130,905 137,679 136.33 sec 31.59 sec
leader-3-15 1,043,635 1,697,247 68,926 80,838 251,226 264,123 313.35 sec 65.96 sec
leader-3-18 2,028,181 3,293,493 118,675 138,720 428,940 450,867 1161.58 sec 124.74 sec
leader-3-21 out of memory 187,972 219,201 675,225 709,656 − 205.90 sec
leader-3-24 out of memory 280,057 326,007 1,001,259 1,052,235 − 328.25 sec
leader-3-27 out of memory 398,170 462,864 1,418,220 1,490,349 − 497.94 sec
leader-4-4 298,653 626,028 25,617 38,840 127,325 137,964 126.16 sec 31.59 sec
leader-4-5 759,952 1,577,516 61,920 92,304 300,569 324,547 322.62 sec 75.14 sec
leader-4-6 1,648,975 3,399,456 127,579 188,044 608,799 655,986 1073.16 sec 155.74 sec
leader-4-7 out of memory 235,310 344,040 1,108,391 1,192,695 − 291.25 sec
leader-4-8 out of memory 400,125 581,468 1,865,627 2,005,676 − 1069.56 sec
leader-5-2 260,994 693,960 14,978 29,420 97,006 110,118 155.37 sec 29.40 sec
leader-5-3 out of memory 112,559 208,170 694,182 774,459 − 213.10 sec

Experimental results. To investigate the effects of the state space reduction techniques, we generated the
state space of the basic synchronous leader election protocol introduced above, as well as of several variants
of the asynchronous leader election protocol from [39]. For the second protocol, we considered either 2, 3, 4
or 5 parties, who throw either a normal die or one with more or fewer sides. We use leader-i-j to denote
the variant with i parties throwing a j-sided die. The results were obtained on a 2.4 GHz, 2 GB Intel Core
2 Duo MacBook, and can be found in Table 5.

For each variant of the protocol we list the size of the state space before and after reduction, and the
number of states explored during the state space generation (as confluence reduction does need to visit
some of the states it omits from the state space). Finally, we present the running times of the state space
generation with and without the reduction techniques.

A combination of dead variable reduction and confluence reduction reduces the state spaces quite im-
pressively. The number of states decreases between 90% and 95%, and the number of transitions between
94% and 97%. Moreover, the running time needed to generate these reduced state spaces is only one fourth
of the time to generate the original state spaces (up until the point where swapping is needed; then, the
generation of the smaller state spaces is even faster, relatively).

9. Conclusions and Future Work

This paper introduced a linear process algebraic format, the LPPE, for systems incorporating both
nondeterministic and probabilistic choice. The key ingredients are: (1) the combined treatment of data and
data-dependent probabilistic choice in a fully symbolic manner; (2) a symbolic transformation of probabilistic
process algebra terms with data into this linear format, while preserving strong probabilistic bisimulation.
The linearisation is the first essential step towards the symbolic minimisation of probabilistic state spaces,
as well as the analysis of parameterised probabilistic protocols. The results show that the treatment of
probabilities is simple and elegant, and rather orthogonal to the traditional setting [18] (which is very
desirable, as it simplifies the generalisation of existing techniques to the probabilistic setting).

The LPPE format already led to the generalisation of dead variable reduction and confluence reduction
to the probabilistic setting, and we demonstrated by a case study remarkable results in reducing both a
system’s state space and the time needed to generate it.

Interesting directions for future work are the development of additional minimisation techniques, the
application of proof techniques such as the cones and foci method to LPPEs, and the investigation of
abstraction methods in the context of LPPEs. Also, more case studies could be conducted, to evaluate the
effects of our reduction techniques.
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Appendix A. Proof of Theorem 19

Before proving Theorem 19, we first provide three lemmas. We start with a general lemma, showing
that strong probabilistic bisimulation is a congruence for nondeterministic choice (both + and

∑
) and

implication. Here, a context C for a process term p is a valuation of all p’s free variables.

Lemma 34. Let p, p′, q, and q′ be (possibly open) prCRL process terms such that p ≈ p′ and q ≈ q′ in every
context C. Let c be a condition and D some data type, then in every context also

p+ q ≈ p′ + q′ (A.1)∑
x:D

p ≈
∑
x:D

p′ (A.2)

c⇒ p ≈ c⇒ p′ (A.3)

Proof. Let C be an arbitrary context, and let Rp and Rq be the bisimulation relations for p and p′, and q
and q′, respectively.

(A.1). Let R be the symmetric, reflexive, transitive closure of Rp ∪ Rq ∪ {(p + q, p′ + q′)}. We will now
prove that R is a bisimulation relation, thereby showing that indeed p + q ≈ p′ + q′. As we chose C to be
an arbitrary context, this then holds for all contexts.

Let p + q −α→ µ. We then prove that indeed also p′ + q′ −α→ µ′ such that µ ∼R µ′. Note that by the
operational semantics, either p −α→ µ or q −α→ µ. We assume the first possibility without loss of generality.
Now, since p ≈ p′ (by the bisimulation relation Rp), we know that p′ −α→ µ′ such that µ ∼Rp

µ′, and thus

p′ + q′ −α→ µ′. Moreover, as bisimulation relations are equivalence relations and Rp ⊆ R, µ ∼Rp µ
′ implies

that µ ∼R µ′ (using Proposition 5.2.1 of [41]).
By symmetry p′ + q′ −α→ µ implies that p+ q −α→ µ′ such that µ ∼R µ′. Moreover, for all other elements

of R the required implications follow from the assumption that Rp and Rq are bisimulation relations.
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(A.2). Let R be the symmetric, reflexive, and transitive closure of Rp ∪ {(
∑

x:D p,
∑

x:D p′)}. We show
that R is a bisimulation relation. First, for all (s, t) ∈ Rp the required implications immediately follow from
the assumption that Rp is a bisimulation relation. Second, by the operational semantics,

∑
x:D p −α→ µ if

and only if there is a d ∈ D such that p[x := d] −α→ µ. From the assumption that p ≈ p′ in any context it
immediately follows that p[x := d] ≈ p′[x := d] for any d ∈ D, so if p[x := d] −α→ µ then p′[x := d] −α→ µ′

with µ ∼Rp µ
′. Now, using symmetry and Proposition 5.2.1 of [41] again, statement (A.2) follows.

(A.3). If c holds in C, then (c ⇒ p) = p and (c ⇒ p′) = p′. As we assumed that p ≈ p′, trivially
c⇒ p ≈ c⇒ p′. If c does not hold in C, then both c⇒ p and c⇒ p′ cannot do any transitions; therefore,
c⇒ p ≈ c⇒ p′, since they both have no behaviour.

The following two lemmas prove termination of Algorithm 1, and provide an invariant for its loop. For
the first lemma we need to introduce subterms of process terms and specifications.

Definition 35. Let p be a process term, then a subterm of p is a process term complying to the syntax
of prCRL and syntactically occurring in p. The set of all subterms of p is denoted by subterms(p). Let
P = (E, I) be a specification, then subterms(P ) = {p | ∃(Xi(xi : Di) = pi) ∈ E . p ∈ subterms(pi)}.

Lemma 36. Algorithm 1 terminates for every finite specification P .

Proof. The algorithm terminates when toTransform eventually becomes empty. First of all note that every
iteration removes exactly one element from toTransform. So, if the total number of additions to toTransform
is finite (and the call to Algorithm 2 never goes into an infinite recursion), the algorithm will terminate.

The elements that are added to toTransform are of the form X ′i(pars) = pi, where pi ∈ subterms(P ).
Since P has a finite set of equations with finite right-hand sides, there exists only a finite number of such pi.
Moreover, every process equation X ′i(pars) = pi that is added to toTransform is also added to bindings.
This makes sure that no process equation X ′k(pars) = pi is ever added to toTransform again, as can be
observed from line 3 of Algorithm 2. Hence, the total number of possible additions to toTransform is finite.

The fact that Algorithm 2 always terminates relies on not allowing specifications with unguarded re-
cursion. After all, the base case of Algorithm 2 is the action prefix. Therefore, when every recursion in a
specification is guarded at some point by an action prefix, this base case is always reached eventually.

Lemma 37. Let P = (E,X1(v)) be the input prCRL specification for Algorithm 1 (having unique variable
names), and let v′ be the computed new initial vector. Then, before and after an arbitrary iteration of the
algorithm’s while loop, (E ∪ done ∪ toTransform, X ′1(v′)) ≈ P .

Proof. For brevity, in this proof we abbreviate ‘strongly probabilistically bisimilar in any context’ by ‘bisim-
ilar’. Also, the notation p ≈ q will be used to denote that p and q are strongly probabilistically bisimilar in
any context.

We prove this lemma by induction on the number of iterations that have already been performed. Let
P = ({X1(x : D) = p1, . . . , Xn(xn : Dn) = pn}, X1(v)) be an arbitrary specification, provided as input
to Algorithm 1.

Before the first iteration, the parameters of the new processes are determined. Every process will have
the same parameters: x : D,x

′ : D′. This is the union of all process variables of the original processes,
extended with a parameter for every nondeterministic or probabilistic sum binding a variable that is used
later on. Also, the new initial state vector v′ is computed by taking the original initial vector v, and
appending dummy values for all added parameters. Furthermore, done is set to ∅ and toTransform to
{X ′1(x : D,x

′ : D′) = p1}.
Clearly, X ′1(v′) is identical to X1(v), except that it has more global variables (without overlap, as we

assumed specifications to have unique variable names). However, these additional global variables are not
used in p1, otherwise they would be free in X1(x : D) = p1 (which is not allowed by Definition 5).
Therefore, (P ∪ done ∪ toTransform, X ′1(v′)) and P are obviously bisimilar.

Now assume that k iterations have passed. Without loss of generality, assume that each time a process
(X ′i(pars) = pi) ∈ toTransform had to be chosen, it was the one with the smallest i. Then, after these
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k iterations, done = {X ′1(x : D,x
′ : D′) = p′1, . . . , X

′
k(x : D,x

′ : D′) = p′k}. Also, toTransform =
{X ′k+1(x : D,x

′ : D′) = p′k+1, . . . , X
′
l(x : D,x

′ : D′) = p′l} for some l ≥ k. The induction hypothesis
is that (P ∪ done ∪ toTransform, X ′1(v′)) ≈ P .

We prove that after k+ 1 iterations, still (P ∪ done ∪ toTransform, X ′1(v′)) ≈ P . During iteration k+ 1
three things happen: (1) the process equation X ′k+1(x : D,x

′ : D′) = p′k+1 is removed from toTransform;
(2) an equation X ′k+1(x : D,x

′ : D′) = p′′k+1 is added to done; (3) potentially, one or more equations
X ′l+1(x : D,x

′ : D′) = p′l+1, . . . , X
′
m(x : D,x

′ : D′) = p′m are added to toTransform.
As the other equations in P ∪ done ∪ toTransform do not change, (P ∪ done ∪ toTransform, X ′1(v′))

is still bisimilar to P if and only if p′k+1 ≈ p′′k+1. We show that these process terms are indeed bisimilar by
induction on the structure of p′k+1.

The base case is p′k+1 = a(t)
∑
•

x:D f : q. We now make a case distinction based on whether there already
is a process equation in either done or toTransform whose right-hand side is an IRF corresponding to the
normal form of q (which is just q when q is not a process instantiation, otherwise it is the right-hand side of
the process it instantiates), as indicated by the variable bindings.
Case 1a: There does not already exist a process equation X ′j(pars) = q′ in bindings such that q′ is the
normal form of q.

In this case, a new process equation X ′l+1(pars) = q′ is added to toTransform via line 6 of Algorithm 2,
and p′′k+1 = a(t)

∑
•

x:D f : X ′l+1(actualPars).

When q was not a process instantiation, the actual parameters for X ′l+1 are just the unchanged global
variables, with those that are not used in q reset (line 4 of Algorithm 3). As (by the definition of the
normal form) the right-hand side of X ′l+1 is identical to q, the behaviour of p′′k+1 is obviously identical
to the behaviour of p′k+1, hence, they are bisimilar.

When q = Y (t1, t2, . . . , tn), there should occur some substitutions to ascertain that X ′l+1(actualPars)
is bisimilar to q. Since X ′l+1(actualPars) = q′, with q′ the right-hand side of Y , the actual parameters
to be provided to X ′l+1 should include t1, t2, . . . , tn for the global variables of X ′l+1 that correspond to
the original global variables of Y . All other global variables can be reset, as they cannot be used by Y
anyway. This indeed happens in line 2 of Algorithm 3, so p′′k+1 ≈ p′k+1.

Case 1b: There exists a process equation X ′j(pars) = q′ in bindings such that q′ is the normal form of q.

In this case, we obtain p′′k+1 = a(t)
∑
•

x:D f : X ′j(actualPars) from line 4 of Algorithm 2. Note that the
fact that X ′j(pars) = q′ is in bindings implies that at some point X ′j(pars) = q′ was in toTransform.
In case it was already transformed in an earlier iteration there is now a process X ′j(pars) = q′′ in done
such that q′′ ≈ q′. Otherwise, X ′j(pars) = q′ is still in toTransform.

In both cases, done ∪ toTransform ∪ P contains a process X ′j(pars) = q′′ such that q′′ ≈ q′, and
therefore it is correct to take p′′k+1 = a(t)

∑
•

x:D f : X ′j(actualPars). The reasoning to see that indeed
p′′k+1 ≈ p′k+1 then only depends on the choice of actualPars, and is the same as for Case 1a.

Now, assume that q1 and q2 are process terms for which Algorithm 2 provided the bisimilar process terms
p′′′k+1 and p′′′′k+1. Then, we prove that p′′k+1 (as obtained from Algorithm 2) is bisimilar to p′k+1 for the
remaining possible structures of p′k+1. In Case 2, 3 and 5 we apply Lemma 34.
Case 2: p′k+1 = c⇒ q1.

In this case, Algorithm 2 yields p′′k+1 = c⇒ p′′′k+1, which is bisimilar to p′k+1 since q1 ≈ p′′′k+1.

Case 3: p′k+1 = q1 + q2.

In this case, Algorithm 2 yields p′′k+1 = p′′′k+1 + p′′′′k+1, which is bisimilar to p′k+1 since q1 ≈ p′′′k+1 and
q2 ≈ p′′′′k+1.

Case 4: p′k+1 = Y (t), where we assume that Y (x : D) = q1.

In this case, Algorithm 2 yields p′′k+1 = p′′′k+1, with x substituted by t, which is bisimilar to p′k+1 (as
it precisely follows the SOS rule Inst).
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Case 5: p′k+1 =
∑
x:D q1.

In this case, Algorithm 2 yields p′′k+1 =
∑
x:D p

′′′
k+1, which is bisimilar to p′k+1 since q1 ≈ p′′′k+1.

As in all cases the process term p′′k+1 obtained from Algorithm 2 is strongly probabilistically bisimilar to
p′k+1 in any context, the lemma holds.

Theorem 19. Let P be a prCRL specification such that all variables are named uniquely. Given this input,
Algorithm 1 terminates, and the specification P ′ it returns is such that P ′ ≈ P . Also, P ′ is in IRF.

Proof. Let P = (E,X1(v)) be a specification such that all variables are named uniquely. Lemma 36 already
provided termination, and Lemma 37 provided the invariant that (E ∪ done ∪ toTransform, X ′1(v′)) ≈ P .
As at the end of the algorithm only the equations in done are returned, it remains to prove that upon
termination X ′1(v′) in done does not depend on any of the process equations in E ∪ toTransform, and that
done is in IRF.

First of all, note that upon termination toTransform = ∅ by the condition of the while loop. Moreover,
note that the processes that are added to done all have a right-hand side determined by Algorithm 2, which
only produces process terms that refer to processes in done or toTransform (in line 4 and line 6). Therefore,
X ′1(v′) in done indeed can only depend on process equations in done.

Finally, to show that done is indeed in IRF, we need to prove that all probabilistic sums immediately go
to a process instantiation, and that process instantiations do not occur in any other way. This is immediately
clear from Algorithm 2, as process instantiations are only constructed in line 4 and line 6; there, they indeed
are always preceded by a probabilistic sum. Moreover, probabilistic sums are also only constructed by these
lines, and are, as required, always succeeded by a process instantiation. Finally, all processes clearly have
the same list of global variables (because they are created on line 10 on Algorithm 1 using pars, and pars
never changes).
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