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Abstract

This paper deals with the refinement of software architectures. Using an example
transformation of an architectural pattern from a call-return style to a batch-sequential
one, it is shown that sometimes an advancement of a software architecture is not a correct
refinement relation in the formal sense. However formal analysis may and should be used
to argument about the changed and unchanged properties. The patterns are modeled
and analyzed using the specification language LOTOS, the temporal logic ACTL and the
CADP toolbox.

1 Introduction

Classical formal software development proceeds from an abstract specification through sev-
eral steps to a final implementation where each development step needs to fulfill a formal
refinement relation to its preceeding step. For example VDM [7], B [1], and Z [17], which are
mainly used for the specification of sequential systems, all define refinement on the notion of
a retrieve relation. Examples for concurrent specification languages are process algebras like
CSP [6] or LOTOS [16] which in general define refinement on the basis of observable actions.

This paper presents one result of our ongoing work in the field of refinement of soft-
ware architectures. A software architecture describes the gross structure of a system: its
components (and subsystems) and their connections [15]. Several architectural styles have
been identified [15] and several views may be taken when specifying an architecture [9]. Ar-
chitecture definition languages (ADL’s) have been developed for the precise specification of
software architectures, among of which are Wright [2], PADL [3] and Rapide [10]. They all
define architectures in the process view using process algebras or a comparable specification
formalism, concentrating on the components and their interactions and neglecting functional
behavior (i.e. the input-output behavior) as far as possible. We are also taking the process
view in our work, however not defining a new ADL.

Generally, architectural specifications are directly derived from the requirements specifi-
cation. In a first step only the major requirements may be used for a first architectural model.
This model will then have to be refined taking further requirements into consideration. This
may result in a completely restructured model, where even the global structure may have to
be changed and, worse, the restructured model is not a formal refinement of its predecessor.

These considerations are elaborated in the following sections using an example. A trans-
formation from an architectural pattern based on the call-return style to a pattern in the
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Figure 1: The structure of (a) the call-return pattern and (b) the batch-sequential pattern.

batch-sequential style is proposed. It is shown that the batch-sequential pattern behaves
differently and is not a refinement, what indeed is the intention of the transformation: an
increase in efficiency. Finally the results are discussed.

2 A Transformation of an architectural pattern

The architectural patterns are modeled in LOTOS [16] using the XTL tool [11] of the CADP
toolbox [5] for model-checking properties which are formalized as ACTL (Action based CTL)
formulas [13].

The abstract pattern (Fig. 1(a)) is a chain of three components using the call-return
style offering the interface channels c1 and r1. Such a pattern can be frequently found in
multi-tiered client-server systems:

hide c2, r2, c3, r3 in
P [c1, c2, r1, r2] |[c2, r2]| P [c2, c3, r2, r3] |[c3, r3]| Q[c3, r3]

After being called, the components P do some calculation and then call their neighbor.
They may perform different computations, but this is not relevant for the architectural model.
Their interaction behavior is the same; they all have the same architectural model. Com-
ponent Q finishes the chain and returns a result which is forwarded back through the chain
without a modification. The components are modeled as LOTOS processes:1

process P [c1, c2, r1, r2] : noexit :=
c1 ? x : Msg; (∗ receive call ∗)
choice y : Msg [] (∗ compute ∗)

i; c2 ! y; (∗ send call ∗)
r2 ? z : Msg; (∗ receive return ∗)
r1 ! z; (∗ send return ∗)
P [c1, c2, r1, r2] (∗ next cycle ∗)

endproc

process Q[c, r] : noexit :=
c ? x : Msg; (∗ receive call ∗)
choice y : Msg [] (∗ compute ∗)

i; r ! y; (∗ send return ∗)
Q[c, r] (∗ next cycle ∗)

endproc

A disadvantage of this pattern is, that all processes P are locked until the computation
has passed down the chain and returned a result. The architecture would be more efficient if a
P is ready for the next computation right after the call down the chain. Such an improvement
can be made by changing the architectural style from a call-return to a batch-sequential one
(Fig. 1(b)):

hide c2, c3 in
P ′[c1, c2] |[c2]| P ′[c2, c3] |[c3]| Q[c3, r1]

1The internal action i makes the choice an internal one. We use internal choice to model an arbitrary
internal computation.

2



A component P ′ now only calls its neighbor in the chain, does not get a return result and is
ready for the next computation:

process P ′[c1, c2] : noexit :=
c1 ? x : Msg; (∗ receive call ∗)
choice y : Msg [] (∗ compute ∗)

i; c2 ! y; (∗ send call ∗)
P ′[c1, c2] (∗ next cycle ∗)

endproc

It can easily be seen that the two patterns are not related by a classical refinement relation,
regardless of the underlying semantics: even in the trace semantics2 the batch-sequential
pattern is not a refinement of the call-return pattern.3

What happened? Essentially one property does not hold any more in the concrete batch-
sequential pattern, namely that it is not possible to make a call on channel c1 until the
preceding call to c1 has been answered at r1. This can be formalized in ACTL and be model-
checked using XTL:

AG ([c1] A[true¬c1 Ur1 true]) (1)

Exactly this change has been intended to improve efficiency. Other properties remain valid,
e.g. that each call to c1 is eventually answered on r1 (2), or that return messages from Q are
eventually forwarded without a change (3):4

AG ([c1] A[truetrue Ur1 true]) (2)

∀ x : Msg • AG ([r3 ! x] A[true¬r1 Ur1 ! x true]) (3)

3 Discussion and related work

One could argue that the transformation above is not necessary or could be avoided when the
abstract specification is the batch-sequential pattern. The call-return pattern would then be
an inappropriate formalization of the architecture, not incorporating enough (or the right)
requirements.

But when developing an architecture it is initially not that clear what the relevant re-
quirements are. Furthermore, usually not all requirements are completely known when the
first architectural model is derived, especially when using an iterative development process.
Finally additional requirements may be added in the evolution of the system. Therefore,
changes like the one presented above are not unlikely to occur in practice.

The work most closely related to ours is [12] where refinement transformations of architec-
tural schemas, comparable to our patterns, are formally defined. However the refinements are
solely defined on the structure and neglect the architectural behavior. Therefore behavioral
non-refinements cannot be detected using this formalization.

The ADL’s Wright [2], PADL [3] and Rapide [10] also have a notion of refinement. This
refinement only permits the exchanging of a component but not the change of the overall
structure. The new component has to conform to the abstract specification (or to the role

2Which is the weakest of all process semantics and cannot even distinguish between external and internal
choice.

3But vice versa.
4Property (3) is given for the call-return pattern, for the batch-sequential pattern it is trivially true.
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in the case of Wright). Simultaneous structural and behavioral transformations, as the one
presented above, are not allowed.

Jones proposes an efficiency transformation similar to our example for his object based
design notation πoβλ [8]. He formalized πoβλ in the π-calculus and tried to prove formally
that the transformation is a correct refinement. The proof failed. We think that it has to fail
because the patterns are not behavioral equivalent.

Finally, there has lately been some work in the field of architectural patterns [4, 14],
however without a precise specification and without analyzing possible transformations.

4 Conclusion

An architectural model usually has some implementation bias; it does not only reflect the
intended requirements but has also additional architectural properties inherent to its structure
and its behavior. Some of these properties may not be of importance for the system in question
or even not be desired.

When putting further requirements into consideration the architecture may have to be
changed completely, such that it does not establish a formal refinement relation to its pre-
decessor; some of the architectural properties may have changed. Using predefined trans-
formations with known (and proved) preservations and non-preservations of properties could
help in making such restructuring decisions. Such architectural development steps, where the
structure of the system changes, may then not be related by refinement any more. Of course,
in the development of the components of an architecture classical refinement is still of great
value.
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