
Detecting Feature Interactions with C�sar�Ald�ebaran

Henri Korver

CWI

P�O� Box ������ ���� GB Amsterdam� The Netherlands

henri�cwi�nl

Abstract

Bouma � Zuidweg �Dutch PTT� formalised a simple example of feature interaction between two
telephone services in LOTOS� The interaction takes place between the Abbreviated Dialling and
Originating Call Screening service in the IN CS�� Global Functional Plane� This paper reports
on the results that were gained by analysing the example in C�sar�Ald�ebaran� which is an
advanced LOTOS veri�cation toolbox� The results show that even for very small examples�
veri�cation goes beyond simulation and testing�

���� Mathematics Subject Classi�cation	 	
Q	� �Speci�cation and veri�cation of programs��
���� CR Categories	 F���� �Specifying and verifying and reasoning about programs��
Keywords
 Phrases	 ALDEBARAN� CAESAR� Feature Interaction� Intelligent Networks �IN��
LOTOS�
Note	 The author is supported by the European Communities under RACE project no�
��	�
Broadband Object Oriented Service Technology �BOOST��

� Introduction

Over the last ten years� telecommunication industry has been engaged in increasing the num�

ber of services that are supplied by the telephone networks� For instance� in many countries�
new services like Call Forwarding and Call Waiting are being added to the conventional

telephone service� And in fact� a large and rapid development of such and more advanced
services has been started� However� service engineers stress that unwanted interactions cause
di�culties in controlling the proper functioning of services� This problem� where unwanted

interactions interfere with the desired behaviour of services� is called feature interaction�
In this paper� it is demonstrated by a small example how formal methods and veri�cation

tools can be used for detecting feature interactions� In particular� an example of feature
interaction by Bouma � Zuidweg ��	 is veri�ed in C�sar�Ald�ebaran �
	� This work extends
the results of ��	 where the example is only tested�

The example centers around a LOTOS speci�cation of two telephone services� Abbreviated
Dialling �ABD� and Originating Call Screening �OCS�� ABD allows a user to use abbreviated

numbers� which will be expanded by the ABD service into network addresses� OCS o
ers the
possibility to forbid call set�up to numbers which are included in a screening list� e�g� your
mother�in�law� In principle� these two services can exhibit unwanted interaction� if a dialled

number is expanded too late� it might not be recognised as belonging to the list of numbers
to be screened�

�

In ��	� a desired property �feature� of a service is represented by a formula of a modal�
temporal logic� In this approach� feature interactions can be detected by checking whether

the conjunction of individual service features still holds� For example� suppose that the
services S� and S� satisfy the properties �� and �� respectively� When both services run in
parallel� the property �� � �� �the conjunction of �� and ��� should hold� for else there has

been some �unwanted� interaction between the two services�

In the example considered in this paper� modal�temporal formulas are only used for record�
ing feature interactions in a formal way� Unfortunately� the formulas used in the example

contain datatype de�nitions� which currently can not be checked automatically� �Although
there is su�cient technology� such tools have not yet been implemented��

To cope with this complication� in ��	 an alternative route was stipulated by using testers�
A tester is a simple LOTOS speci�cation� which encodes a property to be checked� and runs

in parallel with the original speci�cation� As soon as the property is violated� the tester
generates a special error transition� Bouma � Zuidweg used this technique in LITE� for

checking negative properties about services in their example� However� they claimed that
LITE was not yet powerful enough for proving positive properties �correctness�� This was
mainly due to the fact that the veri�cation tools in LITE can not yet handle full LOTOS�

In this paper� a simple extension of the testing method is presented which also allows for
proving positive properties in C�sar�Ald�ebaran� It works as follows� Hide all the gates
except the error gate in the parallel composition of the tester and the original speci�cation�

If the generated graph �obtained by using C�sar� of the resulting process contains an error
transition� then the property is violated� otherwise the property is satis�ed� �Ald�ebaran

was merely used for reducing the size of generated graphs with respect to Milner�s observation
equivalence��

By using C�sar�Ald�ebaran� I was able to verify all the service features �and interactions
between them� that are stated in ��	� Moreover� during the checking a bug was found in the

GPF model of ��	� This was due to a subtlety in one of the the initial values of the main
LOTOS speci�cation� To repair the error� the implementation of the ABD service had to be

changed� This is a typical illustration that even in this very simple example� one can bene�t
from formal methods as set up in ��	� In particular� when automatic veri�cation tools are
used as is shown here�

The paper is organised as follows� In the next section� the IN CS�� GFP model as given
in ��	 is quickly reviewed� In section �� the example of feature interaction between the ABD
and OCS service is presented� Then the example is analysed with the C�sar�Ald�ebaran

veri�cation toolbox in section �� Conclusions drawn from the analysis are discussed in section
��

� The GFP model in LOTOS

In ��	� a LOTOS speci�cation of the IN CS�� Global Functional Plane �GFP�� following the

CCITT recommendations as close as possible� was given� The interested reader can �nd the
LOTOS code in appendix A�

�LITE has been developed within the ESPRIT project �
�� �LOTOSPHERE��

One of the objectives was that formal speci�cations allow for computer�assisted analysis of
feature interactions� In this section� the example will be explained informally� For a more

thorough treatment� one is referred to ��	�

��� Datatype de�nitions

The GFP model has abstract datatypes de�nitions for the following data�

Network addresses abstractly identify points in the network� In our example� we actually
have three addresses� a�� a� and null� In fact� null is a special case� it is the address

which is not associated with any point in the network�

Dialled numbers represent the numbers that can be dialled on a terminal� In the exam�
ple� there are four numbers that can be dialled� d�� d�� wrong�number and abd�

�the abbreviation of d��� Furthermore� there is a function translate which expands
abbreviated numbers� The following de�nition is speci�c for the example�

translate�abd��� d� �

not�dn eq abd�� �� translate�dn� � dn �

where dn is a variable ranging over dialled numbers� There is also a function

get�address which computes the destination address of a dialled number� In our
particular example� we have�

get	address�d
� � a
�

get	address�d�� � a��

get	address�wrong	number� � null�

get	address�abd�� � null�

Lastly� there is a function screen which is used by the OCS service for screening

telephone numbers� The following de�nition is speci�c for the example�

screen�d
� � no	match �

screen�d�� � match �

screen�abd�� � no	match �

screen�wrong	number� � error �

Call reference provides a unique identi�er for each basic call process� Because we shall
only consider one incoming telephone call� the call reference �which is represented by a
natural number� will always be zero�

Call instance data is the record carrying the information associated with a Basic Call

Process� It contains a call reference �which is here always set to zero�� a calling line
identity �which is not used here�� a dialled number and a destination number�

SIB end is the type covering all possible termination values for SIBs�

Detection points are used for modelling the �dis�arming of triggers which invoke the tele�
phone services�

�

��� Processes

The LOTOS model is built around two gates� poi �point of invocation� and por �point of
return�� Values of the detection�point type are used to identify particular points in the

Basic Call Process where telephone services are invoked� All interactions in the LOTOS
model are of the form�

poi �detection point� �call instance date�

por �detection point� �call instance date�

For example�

poi� address	collected �cid�call	ref
 cli
dialled	nr
 dest	nr�

por� continue	as	is �new	cid� call	instance	data

The following processes are distinguished in the LOTOS model�

SIB processes� Each Service Independent Building Block �SIB� is represented by a LOTOS
process that performs a particular function� such as Screen and Translate� These

functions are used for building services� A service can be composed by the usual LOTOS
operators like parallel composition� enabling� disabling and choice�

Basic Call Process �BCP�� This process describes the interactions �poi and por� in a

telephone network� An example of this is given in Figure ��

Trigger detection� This process determines whether a trigger is armed and calls the �Invoke

service� process if appropriate�

Invoke service� This process determines which service script to call if a particular trigger

point is detected�

Service logic processes� A service is modelled by a LOTOS process that calls one or more
SIBs�

��� Reformulating the speci�cation

For being able to analyse the LOTOS speci�cation in C�sar several parts had to be refor�

mulated� For the interested reader some modi�cations are mentioned here�

� Some datatypes� e�g� Dialled numbers� had to be polished� as they were not accepted by

the CAESAR compiler� In polishing the datatypes� the function mk�dialled�number

was removed and the constants d�� d� were added� Moreover� I changed the name of

the constant ab �the abbreviated number of d�� in abd� which is in my opinion a more
appealing name� At last� for coherent notation� I rede�ned the equality function for
dialled numbers via the equality between natural numbers� as was already done for the

other types�

� The function update�destination�number was added for revising the ABD service�

�

� We changed the BCP process because C�sar does not allow recursive process instanti�
ation on the left �and also the right� side of a parallel operator� In the original speci�ca�

tion of the BCP process such in�nitely growing recursion is used for modelling arbitrary
many incoming phone calls from the external world� We remedied this by changing the
speci�cation in such way that only one particular phone call can be considered at the

time�

The code that was actually analysed in C�sar�Ald�ebaran can be found in appendix A�

� The example� ABD and OCS

The example of Bouma � Zuidweg consists of two services� Abbreviated Dialling �ABD�

and Originating Call Screening �OCS�� ABD allows a user to use abbreviated numbers which
then will be expanded by the ABD service into network addresses� OCS gives the possibility
to forbid call setup to numbers included in a screening list� In principle� these two services

can exhibit unwanted interaction� if a dialled number is expanded too late� it might not be
screened�

A desired property of the ABD service could be that the dialled number must have been
translated before the call is completed� i�e� the connection is established� This feature is

formalised by the following ACTL formula�

�� � AFfpoi�complete call�cidg
�get destination number�cid� eq

get address�translate�get dialled number�cid����

This is a reformulation of a formula given in ��	� Note that this formula has not been checked
directly� As far as I know currently no tools exist for checking formulas that are parametrised

by data� However� it can be checked by encoding the formula into a tester as is described in
the next section� Here logic formulas are only used for recording service features �and their

interactions� in an elegant way�

For OCS a similar formula can be written�

�� � AFfpoi�complete call�cidg

�screen�get dialled number�cid�� eq no match�

The speci�cation of these services is straightforward� ABD is realised by de�nition of a LO�
TOS process ABD that invokes a SIB called Translate� This SIB in its turn consults a

function translate�dialled�number��dialled�number� ABD is instantiated through up�
date of the function trigger�ABD�trigger�points�call�instance�data��Bool�

The OCS service is de�ned in a similar manner� de�ne a process OCS invoking an SIB
taking care of the actual screening� The screening is realised by a function
screen�dialled�number��SIB�end� which has the output values match and no�match�

The full LOTOS speci�cation of the IN CS�� GFP� the ABD and OCS service and the
relevant SIBs� can be found in appendix A�

The next section reports on how I checked that GFP � ABD � �� and GFP � OCS � ���
Moreover� to discover interaction I checked the property ����� relative to GFP�ABD�OCS�

�

It is proven that GFP � ABD� OCS �� �� � ��� This con�rms that indeed dialled numbers
are expanded too late such that they could not be screened� It also has been veri�ed that if

the order of invocation of the ABD and OCS service is reversed� no �unwanted� interaction
occurs�
All these results con�rm the statements made in ��	� However� it turned out that still

something was not in order� Namely� after switching the ABD service o
� property �� was
still satis�ed �GFP � ��� which certainly is undesirable� This was due to a subtility in the

initialisation of the main process in the LOTOS speci�cation� In the next section� one can
read how the bug is repaired�

� Analysis in C�sar�Ald�ebaran

C�sar�Ald�ebaran is an advanced veri�cation toolbox for LOTOS programs� and it basi�
cally consists of two tools� C�sar is a tool that allows for generating the transition graph of

a LOTOS speci�cation� To our knowledge C�sar is at the moment the only tool which can
handle �full� LOTOS up to some reasonable restrictions� The graphs that are generated by

C�sar can be used by several other tools like Ald�ebaran� AUTO� MEC and XESAR� One
of these tool called Ald�ebaran has also been integrated in CAESAR� This tool is used for
reducing and comparing transitions graphs with respect to several behavioural equivalences�

e�g� Milner�s observation equivalence� In the analysis of the example� I used both tools�

��� Generating graphs

As a �rst experiment� I generated with C�sar the graph of the main speci�cation �the GPF
including the ABD and OCS service� which is denoted by the following LOTOS process
header�

IN	Global	Functional	Plane � poi
 por �

�mk	call	instance	data��
 abd�
 null
 a���

Here the initial values mk�call�instance	
�abd��
�a�� are taken from ��	� For this
situation� a graph containing
� states and
� edges was generated by using C�sar� By
Ald�ebaran� the graph was reduced to �� states and �� edges with respect to Milner�s

observation equivalence� The minimised graph is given below�

des ��

�

��

��
�POI �CALL	ORIGINATED �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 A���
��

��
�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 A���
��

��
�POI �ADDRESS	COLLECTED �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 A���

�

��
�POI �ADDRESS	ANALYSED �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 A���
��

��
�POR �CONTINUE	WITH	NEW	DATA �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

��
�POI �COMPLETE	CALL �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

��

��
�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

��
�POI �BUSY �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

��
�POI �NO	ANSWER �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

��
�POI �CALL	ACCEPTANCE �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

��

��
�POI �END	OF	CALL �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

��

��
�POI �END	OF	CALL �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

��

�
�
�POI �END	OF	CALL �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

��

�

�
�
�POI �ACTIVE �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

�

�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 A���
��

�
�
�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

�
�
�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

�

�
�
�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

��

In Figure �� this graph is represented in the style adopted from ��	 which is �hopefully� more
readable� This picture can be interpreted as the transition graph given above in the following
sense� The points where the arrows bounce against the boxes in the picture correspond to

the the states in the transition graph� These points have been labeled with the original state
names� Furthermore� to guide the intuition� I have also visualised the places where the ABD

and OCS services are invoked�

por !continue_as_is !mk_call_instance_data(0,d2,null,a2)

poi !call_acceptance !mk_call_instance_data(0,d2,null,a2)

por !continue_as_is !mk_call_instance_data(0,d2,null,a2)

poi !end_of_call !mk_call_instance_data(0,d2,null,a2)

OCS

poi !address_collected !mk_call_instance_data(0,abd2,null,a2)

por !continue _as_is !mk_call_instance_data(0,abd2,null,a2)

poi! call_originated !mk_call_instance_data(0,abd2,null,a2)

 ABD

poi !no_answer !mk_call_instance_data(0,d2,null,a2)

por !continue_as_is !mk_call_instance_data(0,d2,null,a2)

poi !busy !mk_call_instance_data(0,d2,null,a2)

por !continue_as_is !mk_call_instance_data(0,d2,null,a2)

poi !complete_call !mk_call_instance_data(0,d2,null,a2)

por !continue_with_new_data !mk_call_instance_data(0,d2,null,a2)

por !continue _as_is !mk_call_instance_data(0,abd2,null,a2)

6

3

10

9

1

12

4

7

14

13

8

poi !end_of_call !mk_call_instance_data(0,d2,null,a2)

poi !end_of_call !mk_call_instance_data(0,d2,null,a2)

poi !active !mk_call_instance_data(0,d2,null,a2)

poi !address_analysed !mk_call_instance_data(0,abd2,null,a2)

Por_choice

5

11

20

Po
i_

se
qu

en
ce

Figure �� IN CS�� Global Functional Plane�

Due to the small size of the graph one can easily check that property �� is satis�ed� every

time an attempt is made to establish the connection �COMPLETE�CALL� the destination address
corresponds with the expansion of the abbreviated number that was dialled�

�

On the other hand� property �� does not hold because one can see in the same graph
that the call has not been rejected �by returning a CLEAR�CALL�� This is caused by the fact

that the number d� could not be screened while it was abbreviated �as abd�� when the OCS
service was active� This is a typical example of feature interaction because property �� holds
when the OCS service operates in isolation �which I also checked�� but does not hold when

the ABD service is involved�

To this point the computer analysis con�rms the statements of Bouma � Zuidweg� How�
ever� we are not done yet� Remarkably� I found out that property �� was still satis�ed when

the ABD service was switched o
� which means that �� is always true� Clearly� this does not
meet with our expectations� because when the ABD service is switched o
 one would like to

have that abbreviated numbers can not be used any more� This inconsistency is due to the
strange initialisation of the GFP process� where the call instance data is initialised by

mk call instance�
� abd�� null� a���

However� the telephone network may not know in advance that a� is the destination address of
the �abbreviated� dialled number abd�� We corrected this by changing the last initialisation

parameter as follows

mk call instance�
� abd�� null� get address�abd���

saying that initially the system tries to �nd the destination address of the dialled number

itself� In this example �see appendix A� this means that in the beginning the destination
address is unde�ned as the dialled number is an abbreviation� Recall that in section
� we

de�ned that get�address	abd���null� But then� it appeared that property �� was not
satis�ed any more when turning the ABD service on again� This was due to the fact that
in the original speci�cation the ABD service only updates dialled numbers �if abbreviated��

but it should also update the corresponding destination address� as this is not done by the
telephone network in the example� After �xing this� the service behaved properly�

As a �nal example of our veri�cation� the following graph shows there is no feature inter�

action when the ABD and OCS service are invoked in reverse order� �The graph is generated
by C�sar and minimised with respect to observation equivalence with Ald�ebaran��

des ��
 �
 ��

��
�POI �CALL	ORIGINATED �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 NULL��
��

��
�POR �CONTINUE	AS	IS �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 NULL��
��

��
�POI �ADDRESS	COLLECTED �MK	CALL	INSTANCE	DATA ��
 ABD�
 NULL
 NULL��
��

��
�POR �CONTINUE	WITH	NEW	DATA �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

��
�POI �ADDRESS	ANALYSED �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���
��

��
�POR �CLEAR	CALL �MK	CALL	INSTANCE	DATA ��
 D�
 NULL
 A���

�

In this graph� one can see that the abbreviated number is expanded before the screening
took place� And� as we wished� the call is rejected �CLEAR�CALL�� Note that in our speci�c

example� number d� has been inserted in the screening list� screen	d���match as is de�ned
in section
�

�

��� Checking features with testers

In the previous section� we just looked into the generated graph for checking whether certain
properties �features� were satis�ed� Of course this is not the way we want to do it in general�

for the graphs are mostly much larger and the properties to be veri�ed more intrinsic� It would
be better to check the properties directly with an automatic model checker� Unfortunately�
we are not aware of a tool supporting a modal�temporal logic which incorporates data� �This

despite the fact that we have the technology for implementing such tools��
For this reason� we here follow an alternative route which is based on testers as described

in ��	� A tester is a simple LOTOS speci�cation which encodes a property to be checked
and runs in parallel with the original speci�cation� As soon as the property to be tested is
violated� the tester �res a special error transition� In ��	� testers are only used for discovering

errors� but not for proving positive properties
However� here we describe a simple trick which also allows us drawing positive conclusions

by using testers� It works as follows� hide all gates except the error gate� in the parallel
composition of the tester and the process to be veri�ed� Then generate with C�sar the
graph of the resulting process� If the graph contains an error transition than we know the

property is violated �false�� and otherwise the property is true�
Next� it is shown how property �� is actually checked with this method in the revised

example �see the previous section��

We placed a tester �ABD�tester� encoding the property �� of the ABD service in parallel
with the main speci�cation �IN�Global�Functional�Plane� and hided all gates except
the error gate� The resulting process is denoted by Test� In LOTOS�

specification Test � error � � exit

hide poi
 por in

�

IN	Global	Functional	Plane � poi
 por �

�mk	call	instance	data��
 abd�
 null
 get	address�abd����

��poi��

ABD	tester �poi
 error�

�

endspec �� Test ��

C�sar�Ald�ebaran generated the following minimised graph for process Test�

des ��
 �

�

This represents a graph containing just one state� It is trivial to see that this trivial
graph does not contain an error transition� Thus� it can be concluded that the ABD

service does satisfy property ���

Note that when graphs are larger� say �������� states� one can search for an error

transition by the various pattern matching algorithms that are available on the Unix
operating system� e�g� the grep command� Such commands can be used without any
risk as C�sar always generates connected graphs �unless C�sar is wrong�� So� it can

not be the case that the error transition was found by a pattern matching command
�grep� although the error occurred harmless in a disconnected part of the graph�

�

In an analogous way� we should be able to verify the other properties �� and �� � ���
However� we did not verify these properties by testers as Bouma � Zuidweg did not specify the

tester encoding ��� Note that we did verify these properties by just observing the generated
graphs as we did in the previous section�

� Discussion

I consider the experiment as successful� the results of Bouma � Zuidweg are strengthened

by the application of veri�cation tools� In particular� a bug was found in the example during
veri�cation in C�sar which was not detected while testing in LITE�

It turned out that the graphs generated by C�sar were extremely small� not more than

� states and
� edges� Maybe a lot of possible branches had to be explored internally but

due to the presence of data most branches could be cut o
� Nevertheless� it indicates that
far more complicated examples can be handled than the one that is analysed in this paper�

There are also several points for improvement� For instance� I am looking forward using

modal�temporal property checkers that are parametrised with data� In my opinion� it really
would be a step forward if we reach the point where one can check the logic properties given
in this paper directly� without �rst having to encode them into testers� Since one can already

introduce errors while translating properties into testers�

Another improvement would be to generalise the example such that it can handle more
than one incoming phone call in parallel� Then� it can be investigated whether the properties
checked in this paper still hold in such more realistic setting� Moreover� it would be interesting

to see how fast the state space of this new example grows in the number of incoming phone
calls� Maybe the C�sar�Ald�ebaran toolbox will already be pushed to its limit for just a

small number of incoming calls�

Acknowledgements

In the �rst place� I would like to thank Wiet Bouma and Han Zuidweg for their correspondence

and making their LOTOS code available to me� Furthermore� I am indebted to Hubert
Garavel for answering all my questions about the C�sar�Ald�ebaran tools� Lastly� I would
like to thank Frits Vaandrager for spotting a bug in� and for his helpful feedback on� an earlier

version of this paper�

References

��	 W� Bouma and H� Zuidweg� Formal analysis of feature interactions by model checking�

Proceedings of the Second Workshop on Protocol Veri�cation� Eindhoven� The Nether�
lands� �����

�
	 Jean�Claude Fernandez and Hubert Garavel and Laurent Mounier and Anne Rasse and
Carlos Rodr��guez and Joseph Sifakis� A Toolbox for the Veri�cation of LOTOS Programs�

Proceedings of the ��th International Conference on Software Engineering ICSE����Mel�
bourne� Australia� ���
�

��

��	 A�S� Klusener and S�F�M� van Vlijmen and A� van Waveren� Service Independent Build�
ing Blocks�I� Concepts� Examples and Formal Speci�cations� Report P����� Program�

ming Research Group� University of Amsterdam� ����� A shorter version of this paper
appeared in� Proceedings of the RACE IS�N Conference �International Conference on
Intelligence in Broadband Services and Networks	� Paris� France�
�rd �
�th November�

�����

��

A The main speci�cation

In the de�nition of the abstract datatypes one can �nd annotations of the form 	
� ���
��

These are used by a preprocessor of C�sar called caesar�adt for compiling the datatypes

into e�cient C code�

specification Example � poi
 por � � exit

library Boolean endlib

library NaturalNumber endlib

behaviour

IN	Global	Functional	Plane � poi
 por �

�mk	call	instance	data��
 abd�
 null
 get	address�abd����

�� In the original specification the instance is

�mk	call	instance	data��
 abd�
 null
 a��� ��

where

type Address is Boolean
 NaturalNumber

sorts address ��� implementedby ADT	ADRRESS comparedby ADT	CMP	ADRRESS

enumeratedby ADT	ENUM	ADRRESS printedby ADT	PRINT	ADRRESS ��

opns null ��� implementedby ADT	NULL constructor ��

a
 ��� implementedby ADT	A
 constructor ��

a� ��� implementedby ADT	A� constructor �� � �� address

	 eq 	 ��� implementedby ADT	EQ	ADRRESS �� � address
 address �� Bool

ord ��� implementedby ADT	ORD	ADRRESS �� � address �� Nat

eqns forall ad

 ad� � address

ofsort Nat

ord�null� � � �

ord�a
� � Succ�ord�null�� �

ord�a�� � Succ�ord�a
�� �

ofsort Bool

ad
 eq ad� � ord�ad
� eq ord�ad�� �

endtype

type Dialled	Number is

Boolean
 Address
 SIB	End
 NaturalNumber

sorts dialled	number ��� implementedby ADT	DIALLED	NUMBER comparedby ADT	CMP	DIALLED	NUMBER

enumeratedby ADT	ENUM	DIALLED	NUMBER printedby ADT	PRINT	DIALLED	NUMBER ��

opns wrong	number ��� implementedby ADT	WRONG	NUMBER constructor ��

abd� ��� implementedby ADT	ABD� constructor ��

d
 ��� implementedby ADT	D
 constructor �� � �� dialled	number

d� ��� implementedby ADT	D� constructor �� � �� dialled	number

get	address ��� implementedby ADT	GET	ADDRESS �� � dialled	number �� address

	 eq 	 ��� implementedby ADT	EQ	DIALLED	NUMBER ��� dialled	number
 dialled	number �� Bool

screen ��� implementedby ADT	SCREEN �� � dialled	number �� SIB	end

translate ��� implementedby ADT	TRANSLATE �� � dialled	number �� dialled	number

abbreviated ��� implementedby ADT	ABBREVIATED ��

ok ��� implementedby ADT	OK �� � dialled	number �� Bool

ord ��� implementedby ADT	ORD	AD �� � dialled	number �� Nat

eqns forall ad
 ad

 ad� � address
 dn
 dn

 dn� � dialled	number

�

ofsort address

�� get	address�mk	dialled	number�ad�� � ad � ��

get	address�d
� � a
�

get	address�d�� � a��

get	address�wrong	number� � null�

get	address�abd�� � null�

ofsort Nat

ord�wrong	number� � ��

ord�abd�� � Succ�ord�wrong	number���

ord�d�� � Succ�ord�abd����

ofsort Bool

ok�dn� � not�dn eq wrong	number� �

dn
 eq dn� � ord�dn
� eq ord�dn�� �

abbreviated�abd�� � true �

not�dn eq abd�� �� abbreviated�dn��false �

ofsort dialled	number

�� The following equations are specific for the example ��

translate�abd��� d� �

not�dn eq abd�� �� translate�dn� � dn �

ofsort SIB	end

screen�d
� � no	match �

screen�d�� � match �

screen�abd�� � no	match �

screen�wrong	number� � error �

endtype

type SIB	End is

Boolean
 NaturalNumber

sorts SIB	end ��� implementedby ADT	SIB	END comparedby ADT	CMP	SIB	END

enumeratedby ADT	ENUM	SIB	END printedby ADT	PRINT	SIB	END ��

opns match ��� implementedby ADT	MATCH constructor ��

no	match ��� implementedby ADT	N�	MATCH constructor ��

success ��� implementedby ADT	SUCCES constructor ��

error ��� implementedby ADT	ERROR constructor �� � �� SIB	end

ord ��� implementedby ADT	ORD	SIB	END �� � SIB	end �� Nat

	eq	 � ��� implementedby ADT	EQ	SIB	END �� SIB	end
 SIB	end �� Bool

eqns forall x
 y � SIB	end

ofsort Bool

x eq y � ord�x� eq ord�y� �

ofsort Nat

ord�error� � � �

ord�success� � Succ�ord�error�� �

ord�no	match� � Succ�ord�success�� �

ord�match� � Succ�ord�no	match�� �

endtype �� SIB	End ��

type Call	Instance	Data is

Address
 Dialled	Number
 NaturalNumber

sorts call	instance	data ��� implementedby ADT	CALL	INSTANCE	DATA

comparedby ADT	CMP	CALL	INSTANCE	DATA

enumeratedby ADT	ENUM	CALL	INSTANCE	DATA

printedby ADT	PRTNT	CALL	INSTANCE	DATA ��

��

opns mk	call	instance	data ��� implementedby ADT	MK	CALL	INSTANCE	DATA constructor ��

� Nat
 dialled	number
 address
 address �� call	instance	data

get	call	reference ��� implementedby ADT	GET	CALL	REFERENCE ��

� call	instance	data �� Nat

get	calling	line	identity ��� implementedby ADT	GET	CALLING	LINE	IDENTITY ��

� call	instance	data �� address

get	dialled	number ��� implementedby ADT	GET	DIALLED	NUMBER ��

� call	instance	data �� dialled	number

get	destination	number ��� implementedby ADT	GET	DESTINATION	NUMBER ��

� call	instance	data �� address

update	dialled	number ��� implementedby ADT	UPDATE	DIALLED	NUMBER ��

� dialled	number
 call	instance	data �� call	instance	data

update	destination	number ��� implementedby ADT	UPDATE	DESTINATION	NUMBER ��

� address
 call	instance	data �� call	instance	data

eqns forall cr�Nat
 dn
 dn
� dialled	number

cli
 dst
 ad
� address

ofsort Nat

get	call	reference�mk	call	instance	data�cr
dn
cli
dst�� � cr�

ofsort dialled	number

get	dialled	number�mk	call	instance	data�cr
dn
cli
dst�� � dn�

ofsort address

get	calling	line	identity�mk	call	instance	data�cr
dn
cli
dst�� � cli�

get	destination	number�mk	call	instance	data�cr
dn
cli
dst�� � dst�

ofsort call	instance	data

update	dialled	number�dn

 mk	call	instance	data�cr
 dn
 cli
 dst�� �

mk	call	instance	data�cr
 dn

 cli
 dst��

update	destination	number�ad

 mk	call	instance	data�cr
 dn
 cli
 dst�� �

mk	call	instance	data�cr
 dn
 cli
 ad
�

endtype �� Call	Instance	Data ��

type Trigger	Points is

NaturalNumber
 Boolean
 Call	Instance	Data

sorts trigger	points ��� implementedby ADT	TRIGGER	POINTS comparedby ADT	CMP	TRIGGER	POINTS

enumeratedby ADT	ENUM	TRIGGER	POINTS printedby ADT	PRINT	TRIGGER	POINTS ��

opns call	originated ��� implementedby ADT	CALL	ORIGINATED constructor ��

address	collected ��� implementedby ADT	ADDRESS	COLLECTED constructor ��

address	analysed ��� implementedby ADT	ADDRESS	ANALYSED constructor ��

complete	call ��� implementedby ADT	COMPLETE	CALL constructor ��

busy ��� implementedby ADT	BUSY constructor ��

no	answer ��� implementedby ADT	ANSWER constructor ��

call	acceptance ��� implementedby ADT	CALL	ACCEPTANCE constructor ��

active ��� implementedby ADT	ACTIVE constructor ��

end	of	call ��� implementedby ADT	END	OF	CALL constructor ��

continue	as	is ��� implementedby ADT	CONTINUE	AS constructor ��

continue	with	new	data ��� implementedby ADT	CONTINUE	WITH	NEW	DATA constructor ��

handle	as	transit ��� implementedby ADT	HANDLE	AS	TRANSIT constructor ��

initiate	call ��� implementedby ADT	INITIATE	CALL constructor ��

party	handling ��� implementedby ADT	PARTY	HANDLING constructor ��

clear	call ��� implementedby ADT	CLEAR	CALL constructor �� � �� trigger	points

ord ��� implementedby ADT	ORD	TRIGGER	POINTS �� � trigger	points �� Nat

	eq	 ��� implementedby ADT	EQ	TRIGGER	POINTS �� � trigger	points
 trigger	points �� Bool

is	armed ��� implementedby ADT	IS	ARMED �� � trigger	points
 call	instance	data �� Bool

trigger	ABD ��� implementedby ADT	TRIGGER	ABD �� � trigger	points
 call	instance	data �� Bool

trigger	OCS ��� implementedby ADT	TRIGGER	OCS �� � trigger	points
 call	instance	data �� Bool

��

eqns

forall t
t

 t� � trigger	points
 cid� call	instance	data

cr� Nat
 dn� dialled	number
 cli
 dst� address

ofsort Nat

ord�call	originated� � � �

ord�address	collected� � Succ�ord�call	originated�� �

ord�address	analysed� � Succ�ord�address	collected�� �

ord�complete	call� � Succ�ord�address	analysed�� �

ord�busy� � Succ�ord�complete	call�� �

ord�no	answer� � Succ�ord�busy�� �

ord�call	acceptance� � Succ�ord�no	answer�� �

ord�active� � Succ�ord�call	acceptance�� �

ord�end	of	call� � Succ�ord�active�� �

ord�continue	as	is� � Succ� ord�end	of	call�� �

ord�continue	with	new	data� � Succ�ord�continue	as	is�� �

ord�handle	as	transit� � Succ�ord�continue	with	new	data�� �

ord�initiate	call� � Succ�ord�handle	as	transit�� �

ord�party	handling� � Succ�ord�initiate	call�� �

ord�clear	call� � Succ�ord�party	handling�� �

ofsort Bool

t
 eq t� � ord�t
� eq ord�t�� �

trigger	ABD�t

 cid� � t
 eq address	analysed �

trigger	OCS�t

 cid� � t
 eq address	collected �

is	armed�t

 cid� � trigger	ABD�t

 cid� or

trigger	OCS�t

 cid� �

endtype �� Trigger	Points ��

process Poi	sequence �poi
call	terminate� � exit

��

poi� call	originated �cid� call	instance	data�

poi� address	collected �cid� call	instance	data�

poi� address	analysed �cid� call	instance	data�

poi� complete	call �cid� call	instance	data�

�

�

poi� busy �cid� call	instance	data�

exit

��

poi� no	answer �cid� call	instance	data�

exit

��

poi� call	acceptance �cid� call	instance	data�

poi� active �cid� call	instance	data�

exit

�

��

�

poi� end	of	call �cid� call	instance	data�

exit

��

call	terminate� exit

�

�

��

endproc �� Poi	sequence ��

process Por	choice �poi
 por
 call	setup
 call	terminate�

�cid� call	instance	data� � exit

��

�

poi�dp � trigger	points �cid�

�

por� continue	as	is �new	cid� call	instance	data�

Por	choice�poi
 por
 call	setup
 call	terminate��cid�

��

por� continue	with	new	data �new	cid� call	instance	data�

Por	choice�poi
 por
 call	setup
 call	terminate��new	cid�

�� ��

por� initiate	call �new	cid� call	instance	data�

call	setup� new	cid�

Por	choice�poi
 por
 call	setup
 call	terminate��cid�

��

por� handle	as	transit �new	cid� call	instance	data�

call	setup� new	cid�

call	terminate� exit ��

��

por� clear	call �new	cid� call	instance	data�

call	terminate� exit

�

�

endproc �� Por	choice ��

process Basic	call �poi
 por� �cid� call	instance	data�� exit ��

hide call	setup in

�

�

hide call	terminate in

�

Poi	sequence�poi
 call	terminate�

��poi
call	terminate��

Por	choice�poi
por
call	setup
 call	terminate��cid�

�

�

��

exit

�

endproc �� Basic	call ��

process Trigger	Detection �poi
 por� � exit

��

poi �detection	point� trigger	points �cid� call	instance	data�

�

� �is	armed�detection	point
 cid�� ��

�

Invoke	Service�detection	point
 cid� ��

accept return	point� trigger	points

new	cid� call	instance	data in

��

�

por �return	point �new	cid�

Trigger	Detection �poi
 por�

�

�

�

��

�not�is	armed�detection	point
 cid�� � ��

�

por �continue	as	is �cid�

Trigger	Detection �poi
 por�

�

�� exit

�

endproc �� Trigger	Detection ��

process Invoke	Service �dp� trigger	points
 cid� call	instance	data�

� exit�trigger	points
 call	instance	data�

��

�trigger	ABD�dp
 cid�� �� ABD�cid�

��

�trigger	OCS�dp
 cid�� �� OCS�cid�

�� If we want to switch off a service �ABD�cid�� or �OCS�cid��

must be changed in �exit�dp
 cid�� ��

endproc �� Invoke	Service ��

process Screen �d� dialled	number�� exit�SIB	end�

�� exit�screen�d��

endproc �� Screen ��

process Translate �d� dialled	number�� exit�SIB	end
 dialled	number�

��

�ok�d� � �� exit�success
 translate�d��

��

�not �ok�d��� �� exit�error
 d�

endproc �� Translate ��

process ABD �cid� call	instance	data�

� exit�trigger	points
 call	instance	data�

��

Translate�get	dialled	number�cid�� ��

accept termination� SIB	end
 new	number� dialled	number in

�

�termination eq success� ��

exit�continue	with	new	data

update	dialled	number�new	number

update	destination	number�get	address�new	number�

cid���

�� Instead of the original�

�exit�continue	with	new	data

update	dialled	number�new	number
 cid��� ��

��

��

�not�termination eq success�� ��

exit�clear	call
 cid�

�

endproc�� ABD ��

process OCS �cid� call	instance	data�

� exit�trigger	points
 call	instance	data�

��

Screen�get	dialled	number�cid�� ��

accept termination� SIB	end in

�

�termination eq no	match� ��

exit�continue	as	is
 cid�

��

�not�termination eq no	match�� ��

exit�clear	call
cid�

�

endproc�� OCS ��

process ABD	tester �poi
 error� � exit

��

poi� dp � trigger	points �cid �call	instance	data �

�

�abbreviated�get	dialled	number�cid��

and �dp eq address	collected�� ��

Check�poi
 error��get	dialled	number�cid��

��

�not��abbreviated�get	dialled	number�cid���

and �dp eq address	collected��� �� ABD	tester�poi
 error�

�

endproc �� ABD	tester ��

process Check �poi
 error��d� dialled	number�� exit

��

poi� dp � trigger	points �cid �call	instance	data �

�

��dp eq complete	call� and

not�get	destination	number�cid�

eq get	address�translate�d���� ��

error� stop

��

�not ��dp eq complete	call� and

not�get	destination	number�cid�

eq get	address�translate�d����� ��

� Check �poi
 error��d� �

��

exit

�

endproc �� Check ��

process IN	Global	Functional	Plane � poi
 por � �cid �call	instance	data� � exit

��

��

� Basic	call � poi
 por � �cid�

��poi
por ��

Trigger	Detection �poi
 por �

�

endproc �� IN	Global	Functional	Plane ��

endspec

��

