
© Guy Leduc
Université de Liège

ULg 2.1

ILR

Ingénierie du logiciel dans les réseaux informatiques

Chapter 2

The LOTOS Language

© Guy Leduc
Université de Liège

ULg 2.2

ILR

LOTOS Basic Principles

Language Of Temporal Ordering Specification

Process Algebra (CCS & CSP) + Abstract Data Types (ACT ONE)

ISO Standard: IS 8807

Based partially on the LOTOS tutorial by Bolognesi & Brinksma [BoB87]

In LOTOS, a distributed, concurrent system is represented by a process , possibly
consisting of sub-processes.

Process = black box able to interact with other processes (its environment)

and / or to perform internal actions.

Atomic interactions are called events

Atomic = instantaneous, one at a time

An event occurs at an interaction point , or gate

An event may involve the exchange of data

Events imply process synchronization
When an event occurs, at least two processes participate in, or experience, that event ->
rendezvous

Process
a b

[BoB87] T. Bolognesi and E. Brinksma.
Introduction to the ISO Specification Language LOTOS.
Computer Networks and ISDN Systems 14 (1) 25-59 (1987).

© Guy Leduc
Université de Liège

ULg 2.3

ILR

Basic LOTOS - Process Definition

Process <process_id> <parameter_part> :=

<behaviour_expression>

endproc

Ex. : process P [a,b,c] := … endproc

process_id : an identifier which designates a process, that is a process name

parameter_part : in Basic LOTOS, a list of interaction points or gates

behaviour_expression : an expression defining the behaviour of the process, i.e.
the allowed orderings of events

Such expressions are built up from more elementary expressions by using
LOTOS operators.

P

a b c

Basic LOTOS is a simplified version of LOTOS without data types.
In Basic LOTOS, an event is just a gate name (or the internal event i)

© Guy Leduc
Université de Liège

ULg 2.4

ILR

Inaction

A basic behaviour expression : stop

process inaction [a,b] :=
stop

endproc

This process cannot perform any event

inaction
a

b

© Guy Leduc
Université de Liège

ULg 2.5

ILR

Action prefix

Prefixing a behaviour expression by an event g ; B

• B : a behaviour expression

• g : an event

process one_time_out [out_data] :=

 out_data ; stop

endproc

The event 'out_data' prefixes the behaviour expression stop

process one_time_buffer [in_data,out_data] :=

 in_data ; out_data ; stop

endproc

The event 'in_data' prefixes the behaviour expression (out_data ; stop)

one_time_out
out_data

one_time_buffer
 out_datain_data

© Guy Leduc
Université de Liège

ULg 2.6

ILR

Choice operator

Let B1 and B2 be two behaviour expressions

=> the behaviour expression (B1 [] B 2) defines a process that behaves either like B1 or
like B2. The choice offered is resolved by the environmen t.

If the environment offers an initial action of B1 (which is not in B2), then B1 is selected.

If the environment offers an initial action of both B1 and B2, then the selection is non
deterministic .

process simple_duplex_buffer [in_a,in_b,out_a,out_b] :=

in_a; (in_b ; (out_a ; out_b ; stop
 [] out_b ; out_a ; stop)

[] out_a; in_b ; out_b ; stop)

[]

in_b; (in_a; (out_b ; out _a ; stop

[] out_a ; out_b ; stop)

[] out_b ; in_a ; out_a ; stop)

endproc

simple_duplex_buffer

in_a

out_b

out_a

in_b

© Guy Leduc
Université de Liège

ULg 2.7

ILR

Nondeterminism

a ; (B1 [] B 2) and a ; B1 [] a ; B2 model different behaviours

process one [a,b,c]

a; (b; stop
 []

 c; stop)

endproc

a a a

b c b c

Examples of nondeterministic behaviours:
a; B1 [] a; B 2

The internal action i is also a source of nondeterminism

i; B 1 [] i; B 2

a; B1 [] i; B 2

process two [a,b,c]

a; b; stop

[]

a; c; stop

endproc

The choice of 'a' is not determined

© Guy Leduc
Université de Liège

ULg 2.8

ILR

Recursion - Process instantiation

process generator [out_data] :=

out_data ;
generator [out_data]

endproc

process one_slot_buffer [in_a, out_a] :=

in_a ;
out_a ;

one_slot_buffer [in_a, out_a]

endproc

process one_slot_buffer [in_a, out_a] :=

in_a; one_slot_buffer [out_a, in_a]

endproc

in_a out_a
one_slot_buffer

generator
out_data

Process instantiation: process name + list of actual gates

Instantiation with ≠ gates

© Guy Leduc
Université de Liège

ULg 2.9

ILR

Parallel composition without interaction (pure interleaving)

B1 ||| B2

process duplex_buffer [in_a,in_b,out_a,out_b] :=

buffer [in_a,out_a]

|||

buffer [in_b,out_b]

where

process buffer [in, out] :=

in; out; stop
endproc

endproc

No interaction between B1 and B2 is possible

Buffer

Buffer

in_a out_a

out_b in_b

© Guy Leduc
Université de Liège

ULg 2.10

ILR

Parallel composition with interaction

B1 |[a1,...,an]| B2

process two_buffers [in_a, middle, out_b] :=

buffer [in_a,middle]

|[middle]|

buffer [middle,out_b]

where

process buffer[in, out] :=

in; out; stop
endproc

endproc

Every interaction ai is performed simultaneously in both processes B1 and B2

Actions not in a1,...,an are not synchronized.

Buffer Bufferin_a

middle

out_b

© Guy Leduc
Université de Liège

ULg 2.11

ILR

Examples of parallel architectures

Protocol_
Entity_1

Protocol_
Entity_2

Underlying_service_provider

Interf3 Interf4

A protocol

Process
Protocol [interf1, interf2, interf3, interf4] :=

Protocol_entity_1 [interf1, interf3]
|[Interf3]|
Underlying_service_provider [interf3, interf4]
|[Interf4]|
Protocol_entity_2 [interf2, interf4]

endproc

Interf1 Interf2

Process
Protocol [interf1, interf2, interf3, interf4] :=

(Protocol_entity_1 [interf1, interf3]
 |||
 Protocol_entity_2 [interf2, interf4]
)
|[interf3, interf4]|
Underlying_service_provider [interf3, interf4]

endproc

2 solutions

© Guy Leduc
Université de Liège

ULg 2.12

ILR

Multiway-rendezvous

It is easy to describe the synchronization of more than two processes

Example:

B1 [g] || B2 [g] || B3 [g]

Three processes synchronize on g:

g occurs if the three processes are ready to perform g

where || means the synchronization on all gates

© Guy Leduc
Université de Liège

ULg 2.13

ILR

Hiding

hide a 1,..., an in B

Hiding conceals the observable actions a1,....,an present in B from the environment.

These actions are thus made unavailable for synchronization with other processes.

process two_place_buffer [in_a, out_b] :=

hide middle in

(buffer [in_a,middle]

|[middle]|

 buffer [middle,out_b])

where

process buffer[in, out] :=

in; out; stop

endproc

endproc

Buffer Buffer

Two_place_buffer

in_a
middle

out_b

© Guy Leduc
Université de Liège

ULg 2.14

ILR

Equivalent sequential process

process two_place_buffer [in,out] :=

in; one_message_in_left [in,out]

where

process one_message_in_left [in,out] :=

i; (in; two_messages_in [in,out]

 []

 out; two_place_buffer [in,out])

where
process two_messages_in [in,out] :=

out; one_message_in_left [in,out]

 endproc

endproc

endproc

Internal
action:

This is the
hidden
action
'middle'

© Guy Leduc
Université de Liège

ULg 2.15

ILR

Use of hiding in architectural design

Protocol_
Entity_1

Protocol_
Entity_2

Underlying_service_provider

Interf3 Interf4

A service provider

Interf1 Interf2

Process Service Provider [interf1, interf2] :=

hide interf3, interf4 in
((Protocol_entity_1 [interf1, interf3]
 |||
 Protocol_entity_2 [interf2, interf4]
)
 |[interf3, interf4]|
 Underlying_service_provider [interf3, interf4]
)
endproc

This external
box represents
hiding
(or abstraction)

© Guy Leduc
Université de Liège

ULg 2.16

ILR

Successful termination of a process

No successful termination
process one_slot_buffer [in_a,out_a] :=

in_a ; out_a ;

one_slot_buffer [in_a,out_a]

endproc

Unsuccessful termination : stop
process one_time_buffer [in_a,out_a] :=

in_a ; out_a ; stop

endproc

Successful termination : exit

process connection_phase [CR,CC] :=
CR ; CC ; exit

endproc

© Guy Leduc
Université de Liège

ULg 2.17

ILR

Sequential composition

B1 » B2
B2 is enabled iff B1 terminates successfully (exit construct)

process sender [ConReq, ConConf, Data] :=

Connection_phase [ConReq, ConConf]

» Data_phase [Data]

where
process connection_phase [ConReq, ConConf] :=

ConReq; ConConf ; exit

endproc

process Data_phase [Data] :=

Data; Data_phase [Data]

endproc

endproc
When B1 is composed of several parallel sub-processes,
B1 terminates successfully iff all parallel sub-processes
terminate successfully

© Guy Leduc
Université de Liège

ULg 2.18

ILR

Disabling - Disruption

B1 [> B2

B1 can be disrupted at any time by B2

process Data_transfer [DatReq, DatConf, DisReq] :=

normal_transfer [DatReq, DatConf]

[> disconnect_phase [DisReq]

where

process normal_transfer [DatReq, DatConf] :=
DatReq; DatConf; normal_transfer [DatReq, DatConf]

endproc

process disconnect_phase [DisReq] :=

DisReq; stop

endproc
endproc

© Guy Leduc
Université de Liège

ULg 2.19

ILR

Full LOTOS

An observable event = a gate name + a list of values (or value expressions)

Examples: g<5> g<true> g<3,false> g<>

The representations of data values (e.g. 3) and value expressions (e.g. 3+5) in
LOTOS are derived from the specification language for abstract data types (ADT)
ACT ONE.

Principles of ACT ONE will be presented later.

Observable events have a finer structure

© Guy Leduc
Université de Liège

ULg 2.20

ILR

Extended action-prefix - Part 1: Value declarations

g!E; B

E = value expression = an expression describing a data value

Examples:

!(3+5) , !(x+1) , !true , !'toto' , !not(x) , !min(x,y)

In Basic LOTOS, g; B is a process that offers g and then behaves like B:

Formally: g; B —g → B

In (full) LOTOS, g!E; B is a process that offers g<value(E)> and then behaves like B:

Formally: g!E; B —g<value(E)> → B

Ex. : g!(3+5); B —g<8>→ B

© Guy Leduc
Université de Liège

ULg 2.21

ILR

Extended action-prefix - Part 2: variable declaration

g?x:t; B

x is a variable name

t is a sort identifier. It indicates the domain of values over which x ranges

Examples: ?x:integer ?text:string ?x:boolean

g?x:t; B (x) is a process that offers all events g<v> where v is any value in the
domain of sort t and then behaves like B (v)

g?x:nat; B (x) thus allows all events in the set {g<0>, g<1>, g<2>, ...}

Formally: g?x:t; B —g<v> → [v/x] B

for every v in the domain of sort t where [v/x] B is the result of the replacement
by v of every free occurrence of x in B.

Ex. : g?x:integer; h!(x+1); stop —g<3>→ h!(3+1); stop

 g?x:integer; h!(x+1); stop —g<5>→ h!(5+1); stop

© Guy Leduc
Université de Liège

ULg 2.22

ILR

Scope of variables

(sap1?x:int; sap2!x; stop) II (sap3!x; stop)

scope of
 ?x:int

free occurrence
of x

binding
occurrence

of x

Usual rules for nested scopes apply

© Guy Leduc
Université de Liège

ULg 2.23

ILR

Synchronization between two processes
Interprocess communication

1. Value matching

process process Synchron. Type of Effect

A B condition interaction

g!E1 g!E2 value(E1) value synchronization

= matching

value(E2)

Example:

g is a gate modelling a service interface
sap_id is a value representing the service access point identifier

g!sap_id; B models interaction at the SAP identified by sap_id at the interface g

© Guy Leduc
Université de Liège

ULg 2.24

ILR

Synchronization between two processes
Interprocess communication

2. Value passing
3. Value generation

process process Synchron. Type of Effect

A B condition interaction after synchron.

g?x:t g!E value (E) value x = value(E)

is (in domain) passing

"intput" "output" of sort t

g?x:t g?y:u t = u value x = y = v

generation and v is some

"negotiation" value (in domain)

of sort t

© Guy Leduc
Université de Liège

ULg 2.25

ILR

Extended action-prefix: several attributes

Example: g!sap_id?x:primitive ; B

Synchronization conditions in presence of several attributes

• Same number of attributes in both action offers

• Synchronization conditions for every pair of attributes

A := g!3?x:primitive; B

A' := g!3!connect_request; B' can synchronize with A

A'' := g!3!true; B'' cannot synchronize with A

A''' := g!4!connect_request; B''' cannot synchronize with A

A

A' or A" or A"'

g

© Guy Leduc
Université de Liège

ULg 2.26

ILR

Selection Predicate

A selection predicate can be associated with an action denotation.

 g1?x:nat [x<3]; g2!x; stop

This predicate may contain variables that occur in the variable declarations (?x:t)

It imposes restrictions on the values that may be bound to these variables.

g1?x:nat [x<3]; g2!x; stop has the following three possible transitions:

—g1<0>→ g2!0; stop

—g1<1>→ g2!1; stop

—g1<2>→ g2!2; stop

Predicate

© Guy Leduc
Université de Liège

ULg 2.27

ILR

A value negotiation between two processes

g?qos:nat [qos ≤ max]; B1 (qos)

 I[g]I

g?qos:nat [qos ≥ min]; B2 (qos)

=

g?qos:nat [(qos ≤ max) and (qos ≥ min)];

 (B1 (qos)

 I[g]I

B2 (qos))

Constraint-oriented style

© Guy Leduc
Université de Liège

ULg 2.28

ILR

Guarded Expressions

Any behaviour expression may be preceded by a guard (i.e. a predicate + an arrow).

Interpretation:

If the predicate holds, the behaviour expression that follows the guard is possible

Otherwise, the whole expression is equivalent to 'stop'

Example 1
[x>0] -> g!x; next_process [...] (x,..)

[]

[x<0] ->g!-x; next_process [...] (x,..)

si x=1: g!1; next_process [...] (1,...)

si x=-2: g!2; next_process [...] (-2,...)

si x = 0: stop

Example 2
[x>0] -> processus1

[]

[x=5] -> processus2

[]

[x>3] -> processus3

Predicates need not be mutually
exclusive

© Guy Leduc
Université de Liège

ULg 2.29

ILR

Parametric process and instantiation

Process declaration:

process compare [in,out] (min,max:int) :=

in?x:int;

([min<x<max] -> out!x; compare [in,out] (min,max)

[] [x≤min] -> out!min; compare [in,out] (x,max)

[] [x≥max] -> out!max; compare [in,out] (min,x))

endproc

Process instantiation: compare [one,two] (x,2*x)

Formal parameters are replaced by value expressions.

Name clashes are avoided by a suitable renaming.

compare [one,two] (x,2*x) has the same behaviour as:

one?y:int;

 ([x<y<2*x] -> two!; compare [one,two] (x,2*x)
[] [y≤x] -> two!x ; compare [one,two] (y,2*x)
[] [y≥2*x] -> two!2*x; compare [one,two] (x,y))

© Guy Leduc
Université de Liège

ULg 2.30

ILR

Sequential composition with value passing

Connection_phase …
>>
Data_phase …

One would like to express that the behaviour of the Data_phase depends on
parameters that are established in the Connection-Phase.

• Data_phase will be specified as a parametric process

• We need a mechanism for instantiating these parameters when the first process
terminates and enables the second.

Succesful termination with value offers

The exit process can have a finite list of value expressions added to it.

gate1?x:int; gate2?y:int; gate3?z:int; exit (x,y,z)

tsap!cei ?qual:int ?exp_data: bool [qual>min]; exit (qual, exp_data)

© Guy Leduc
Université de Liège

ULg 2.31

ILR

Accepting values from the Enabling Process

Connection_Phase […] (…)

>> accept qos: qos_sort in Data_Phase […] (qos)

Requirement:
The sort qos_sort must match the sort of the value expression that

Connection_Phase exits

This implies that in an expression like B1 >> accept x 1:t1, … xn:tn in B2

B1 always exits the same number of value expressions of the same sorts.

This leads to the definition of the functionality of a process.

© Guy Leduc
Université de Liège

ULg 2.32

ILR

The functionality of a process

Functionality = the list of the sorts of the values offered at successful termination

Process connect1 [gate1, gate2, gate3] : exit (int, int, int) :=

gate1?x:int; gate2?y:int; gate3?z:int; exit (x,y,z)

endproc

Processconnect2 [tsap] (tcei: tcei_sort, min: int) : exit (int, bool) :=

 tsap!cei ?qual:int ?exp_data: bool [qual > min]; exit (qual, exp_data)

endproc

The construct exit (any sort_id) is used when

• a value must be passed on successful termination because the next process is
expecting one,

BUT

• the process does not care about the value to be passed on successful termination

Functionality

© Guy Leduc
Université de Liège

ULg 2.33

ILR

Rules on the functionality
Examples

funct (stop) = noexit

funct (exit) = exit

funct (g; B) = funct (B)

funct (B1 [] B2) = funct (B1) if funct (B1) = funct (B2) or funct (B2) = noexit

funct (B2) if funct (B1) = noexit

undefined otherwise (static semantic error)

funct (B1 |[…]| B2) = funct (B1) if funct (B1) = funct (B2)

noexit if funct (B1) = noexit or funct (B2) = noexit

undefined otherwise (static semantic error)

funct (B1 [> B2) = funct (B1) if funct (B1) = funct (B2) or funct (B2) = noexit

funct (B2) if funct (B1) = noexit

undefined otherwise (static semantic error)

funct (B1 >> B2) = funct (B2) if funct (B1) ≠ noexit

noexit otherwise

© Guy Leduc
Université de Liège

ULg 2.34

ILR

Generalized choice

B1 [] B 2 expresses the choice among two behaviours

By associativity of the choice operator, one can express the choice among a finite numbe r
of behaviours as follows:

B1 [] B 2 [] … [] B n

The generalized choice operator allows one to specify the choice among a possibly
infinite set of behaviours as follows:

Let B(x) be a behaviour expression that depends on the (free) variable x of sort nat:

Choice x:nat [] B(x) expresses the choice among the behaviours B(v) for all v of sort nat.

In other words, it is equivalent to: B(0) [] B(1) [] B(2) [] …

General form : choice x1:t1, … xn:tn [] B (x1, … xn)

© Guy Leduc
Université de Liège

ULg 2.35

ILR

Let operator

It allows the association of value expressions to free variables:

let x1:t1 = E1, … xn: tn = En in B (x1, … xn)

The xi's are free variables in B

The ti's are the sorts of these variables

The Ei's are the value expressions associated with the xi's

© Guy Leduc
Université de Liège

ULg 2.36

ILR

Abstract data types
The ACT ONE langage

• Notion of abstract data type

• Specification of an ADT

• Combining of ADT

• Usage of ADT

© Guy Leduc
Université de Liège

ULg 2.37

ILR

Notion of abstract data type

Classical data types
Ex: "Unsigned integers, declared unsigned , obey the laws of arithmetics modulo

2^n, where n is the number of bits in the representation."

C Language Definition, X/OPEN Portability Guide

Abstract Data Types (= ADT)

• Formal (mathematical) definition —> no ambiguity.

• No reference to implementation.

• (Almost) no "built-in" law - all properties are written.

What is to be defined ?

• Sets of data values = sorts

Ex: booleans, natural numbers, …

• Functions to handle these values = operations
Ex: addition over naturals, negation over booleans, …

These are abstract mathematical objects — No physical organization is
defined !

© Guy Leduc
Université de Liège

ULg 2.38

ILR

Specification of an ADT: sorts and operations

Specification of an ADT in ACT ONE

In three parts: sorts , operations and equations

I. Specification of sorts

sorts Nat (* definition of a new sort "Nat" *)

—> introduces a domain whose content remains to be defined.

II. Specification of operations

opns succ : Nat -> Nat (* successor of a Nat is a Nat *)
0 : -> Nat (* constant 0 is a Nat *)
+ : Nat, Nat -> Nat (* "+" is used in infix notation *)

sorts + operations (over these sorts) = a signature

Combining operations yields terms

= representations of values contained in the sorts.

Ex: 0, succ(0), 0+0, 0+succ(0), succ(0+0)…

A priori succ(0) ≠ 0+succ(0) ≠ succ(0+0) —> we must add equations .

© Guy Leduc
Université de Liège

ULg 2.39

ILR

Specification of an ADT: equations

III. specification of equations
eqns forall x, y : Nat (* for all terms x, y of sort Nat *)

ofsort Nat (* sort of sides of equations *)
x + 0 = x ; (* x+0 denotes the same value as x *)
x + succ(y) = succ(x+y) ;

Conditional equations are allowed:

y = 0 => x + y = x ; (* if y = 0 then x + y = x *)

Equations define an equivalence relation between terms.

Each equivalence class corresponds to a single value that all terms of this
class denote.

Ex: the (abstract) value 1 is defined by the class (of terms)

{ succ(0), succ(0)+0, succ(0+0), … }

© Guy Leduc
Université de Liège

ULg 2.40

ILR

Specification of an ADT: complete definition

I + II + III = specification of a data type

type NaturalNumber is
sorts Nat
opns succ : Nat -> Nat

0 : -> Nat
+ : Nat, Nat -> Nat

eqns forall x, y : Nat
ofsort Nat
x + 0 = x ;
x + succ(y) = succ(x+y) ;

endtype

…
succ(succ(0))

succ(0)+succ(0)
…

0
0+0
…

succ(0)
0+succ(0)
succ(0+0)

…

0 succ succ

+ Nat

© Guy Leduc
Université de Liège

ULg 2.41

ILR

Combining of ADT: inheritance

type natural_number is
sorts nat
opns 0 : -> nat

succ : nat -> nat
endtype

type nat_number_with_addition is nat_number
opns + : nat, nat ->nat
eqns forall x,y : nat

ofsort nat
x + 0 = x ;
x + succ(y) = succ(x+y) ;

endtype

nat_number_with_addition inherits sorts, operations and equations of
natural_number.

Permits structuring of definitions in a hierarchical manner.

© Guy Leduc
Université de Liège

ULg 2.42

ILR

Combining of ADT: library, renaming

library Boolean, NaturalNumber, Bit endlib

Only one predefined library, containing various base types:

Boolean, Element, NaturalNumber, Set, String,

DecimalDigit, HexGigit, OctDigit, Bit,

DecimalString, HexString, OctString, BitString, Octet, OctetString.

cf. annex A of ISO IS 8807.

type bit is boolean renamedby
sortnames bit for bool
opnnames 0 for false

1 for true
endtype

Creates a new type with same structure as source type (isomorphic).

© Guy Leduc
Université de Liège

ULg 2.43

ILR

Combining of ADT: parametrized types

type data is
formalsorts data
formalopns error_data : -> data

endtype

type queue_data is data
sorts queue
opns empty_queue : -> queue

add : data, queue -> queue
first : queue -> data

eqns forall x, y : data, q : queue
ofsort data
first(empty_queue) = error_data ;
first(add(x,empty_queue)) = x ;
first(add(x,add(y,q))) = first(add(y,q)) ;

 endtype

The formal sorts, operations and equations define necessary conditions that
parameters must fulfill.

© Guy Leduc
Université de Liège

ULg 2.44

ILR

Combining of ADT: actualization

type nat_number_queue is queue_data
actualizedby nat_number using

sortnames nat for data
natqueue for queue

opnnames 0 for error_data
endtype

The formal elements of queue_data are actualized by elements of nat_number,
according to the given bindings.

Remarks:

• a binding may be omitted if formal and actual elements have the same
name.

• a binding for a non-formal element is considered as a renaming

 (Ex: queue —> natqueue)

© Guy Leduc
Université de Liège

ULg 2.45

ILR

Usage of ADT: structure of a specification

specification <specification-identifier> <parameter-list>
…
type … endtype
library … endlib
type … endtype
…

behaviour <behaviour-expression>
where

process <process-identifier> < parameter-list > :=
< behaviour-expression >
where …
endproc
…
type … endtype
library … endlib
…
process < process-identifier > < parameter-list > :=
< behaviour-expression >
where …
endproc

 endspec

© Guy Leduc
Université de Liège

ULg 2.46

ILR

Usage of ADT: ADT in behaviour expressions

• action denotation g !v ?x:s; B(x)

• selection predicates g ?x:s [x = y]; B(x)

g ?x:s [predicate (x)]; B(x)

• guards [x = y] -> B

[predicate] -> B

• parameters and functionality process P [g] (x:s) : exit(s) := B(x) endproc
P [g] (v) >> accept x:s in B(x)

• generalized choice choice x:s [] B(x)

• local value let x:s = v in B(x)

Remark: s is the name of a sort, not of a type !

A type = a collection of sorts, operations and equations, useful only for
structuring and organizing the ADT definitions.

© Guy Leduc
Université de Liège

ULg 2.47

ILR

LOTOS summary

• Mathematically well-defined : developed from a well-established body of theory

Process algebra + Abstract Data Types
Operational semantics

• Constructive: Symbolically executable

• Expressive: allows the description of
- Architectures

- Dynamic behaviours of processes

Concurrency

Nondeterminism

Synchronous and asynchronous communications

 - But no explicit time, no priorities
• Supports various levels of abstractions

• Supports the description of large systems

