
1

Verification of two versions of the Challenge Handshake
Authentication Protocol (CHAP)

Guy Leduc

Research Unit in Networking (RUN)
Université de Liège

Institut Montefiore, B28
B-4000 Liège, Belgium

leduc@montefiore.ulg.ac.be
http://www-run.ulg.ac.be/

Abstract

The Challenge Handshake Authentication Protocol, CHAP, is an authentication protocol
intended for use primarily by hosts and routers that connect to a network server via switched
circuits or dial-up lines, but might be applied to dedicated links as well. In this paper, we
specify two versions of the protocol, using the formal language LOTOS, and apply the
EUCALYPTUS model-based verification tools to prove that the first version has a flaw,
whereas the second one is robust to passive and active attacks. The paper is written in a tutorial
fashion with a strong emphasis on the methodology used. The relative simplicity of the CHAP
protocol allows one to include complete LOTOS specifications and definitions of properties, so
that the experiment can be reproduced easily.

Keywords: Security protocols; Verification; Model-checking; LOTOS; CHAP

1. Introduction

The Challenge Handshake Authentication Protocol, CHAP, is a protocol used to authenticate
both ends of a communication link. Such authentication protocol is intended for use primarily
by hosts and routers that connect to a PPP (Point-to-Point Protocol) network server via
switched circuits or dial-up lines, but might be applied to dedicated links as well. Its description
can be found in [RFC1994]. It uses a challenge response mechanism based on a nonce (a sort
of random number used only once) and a shared secret. This secret is only known to the entities
that want to authenticate each other. Mutual authentication can be achieved by running the
protocol in both directions. In this case the shared secret can be the same for both directions, but
the RFC highly recommends to use two different secrets.

In this paper, we specify these two versions formally in LOTOS, and use the EUCALYPTUS
model-based verification tools [Gar96] to prove that the first version has a flaw, whereas the
second one is robust to passive and active attacks. Although we did not know the flaw before
starting this experiment in late 1997, it was well-known to some people in the field, including
someone who challenged us to find the flaw with our method and tools. Interestingly, it took
only a couple of hours to specify the protocol and find the flaw.

Our verification methodology is based on the following principle. We derive the service
provided by the CHAP protocol when no intruder is present. This service is expressed by
suitable orderings of service primitives (such as Authentication Request, Indication and
Confirmation) that we have placed at appropriate places in the behaviour of the protocol. We
prove that this service fulfils the authentication properties. Then we insert an intruder process,
which behaves as an insecure full-duplex communication link. This means that messages can
possibly be eavesdropped, interrupted, intercepted, modified or inserted in the channels by

2

some simple but powerful intruder process. This intruder process can thus mimic the classical
passive and active attacks against the CHAP protocol, but it is written in such a way that it
cannot access the secret shared by the two protocol entities directly, and cannot break the one-
way hash function used by the protocol. By that we mean that the intruder is unable to forge a
message that would have a known hash. These hypotheses are sensible, otherwise it is clear that
CHAP, and in fact all security protocols, would be vulnerable. To verify that a protocol is
robust, we derive the actual service provided when the intruder is present, and verify it against
the authentication properties.

The structure of the paper is as follows. In section 2 we give an informal description of the
CHAP protocol, followed in section 3 by its formalization in LOTOS. In section 4, we verify
that the protocol satisfies the authentication property when no intruder is present. Finally, in
section 5, we verify that an intruder can break the single-secret version of CHAP, but cannot
break the two-secret version in the scenarios checked.

2. Description of CHAP

CHAP provides mutual authentication between two parties. The basic principle of a one-way
authentication is as follows. Let us call the two entities the verifier and the prover. The verifier
begins by sending a challenge (i.e. a nonce) to the prover. The prover concatenates the received
nonce with a shared secret and sends back a hash of this concatenated message.

Mutual authentication can be achieved by running the protocol twice: one run in each direction.
In this case the shared secret can be the same for both directions, but the RFC highly
recommends to use two different secrets.

Figure 1 explains the protocol with a mutual authentication and one shared secret Sab. Both
authentications can be interlaced. Thus the only requirements are that the first message must
occur before the second one, and the third one must occur before fourth one. We will describe
the other version later.

A B

A, Na

B, Nb

B, Hash (Na, Sab)

A, Hash (Nb, Sab)

Figure 1: CHAP - A double authentication with one shared secret

3. Formal specification
The specification has been written in LOTOS, which is a standardized formal description
language suitable for the description of distributed systems. It is made up of two components:

3

• A process algebra, mostly inspired by CCS [Mil89] and CSP [Hoa85], with a structured
operational semantics. It describes the behaviour of processes and their interactions. LOTOS
has a rich set of operators (multiway synchronization and abstraction like in CSP, disabling,
…), and an explicit internal action like in CCS. LOTOS is briefly introduced in the appendix.

• An algebraic datatype language, ACT ONE [EM85]. A type is defined by its signature (sorts
+ operations on the sorts) and by equations to give a meaning to the operations.

The LOTOS specification is composed of four processes: two CHAP entities A and B, and two
simplex communication media (figure 2). Both entities share a common secret Sab. We also
parametrize each CHAP entity by a nonce. Na (resp. Nb) is the nonce that A (resp. B) will use
to authenticate B (resp. A). The actual values of the nonces do not matter. The only requirement
is that they be distinct in order to model that these random values, used once, are thus very
unlikely to be the same in practice.

A B
medium

medium

lm mr

ml rm

env env

Figure 2: The architecture of the system

The structure of the LOTOS specification will thus be as follows:

Specification CHAP_protocol [env,lm,ml,rm,mr] :noexit

Behaviour
(CHAP_entity [env,lm,ml] (A,B,Na,Sab)
 |||
 CHAP_entity [env,rm,mr] (B,A,Nb,Sab)
)
 |[lm,ml,rm,mr]|
(medium [lm,mr]
 |||
 medium [rm,ml]
)
where
... (* Here follows the descriptions of the four processes *)
endspec

Before giving the description of the processes, we have to describe the data types, and discuss
their abstraction levels. Entities will be identified by elements of the sort id. At this stage we
have only two entities A and B. We also need data carriers for nonces and secret keys shared by
parties. As discussed above, two distinct nonces Na and Nb are enough. Moreover, for this first
version of the protocol, a single shared key Sab is used.

Abstract data types turn out to very useful to model in an elegant and abstract way the various
cryptographic functions. Some examples of public key operations are given in [LG99]. In
CHAP, the only operation we have to model is the one-way hash function, which takes as
arguments a nonce and a secret key and returns a hash code. We do not care about the exact
algorithm which is used and do not want to model it. What matters first is that the hash codes
should be different when either the nonces or the secret keys differ. This is an ideal model of a

4

hashing algorithm. Secondly, it should be impossible to get the secret key from the hash code
and the nonce. To this end, it suffices to define an operation hash, with a nonce and a secret
key as arguments and which returns a hash code. The two properties are easily fulfilled by not
providing any operation accessing the arguments. The absence of equations ensures
automatically that all terms constructed with distinct arguments are themselves distinct.

Type ids is
sorts id
opns A,B: -> id
endtype

Type nonces is
sorts nonce
opns Na,Nb: -> nonce
endtype

Type keys is
sorts key
opns Sab: -> key
endtype

Type hashing is nonces, keys
sorts hash_code
opns hash: nonce,key -> hash_code
endtype

Besides the basic data types, we introduce service primitives which are events occurring at the
interface between the CHAP protocol and the higher layer (i.e. the env gate). We consider three
such primitives:

• Authentication request (AuthReq): Initiated by a higher layer to authenticate the other party.
• Authentication indication (AuthInd): Initiated by a CHAP entity to indicate that another party

has requested an authentication.
• Authentication confirm (AuthConf): Initiated by a CHAP entity to confirm that the other party

has been authenticated.

Type primitives is
sorts primitive
opns AuthReq, AuthInd, AuthConf: -> primitive
endtype

The behaviour of a CHAP entity is divided into two independent parts corresponding to the two
roles of the entity: an initiator role and a responding role. When a CHAP entity receives an
authentication request, it starts acting in the initiator role. It will first send its identity and a
nonce to the other entity, then wait for the correct hash code before confirming the success of
the authentication. In parallel, the CHAP entity can behave in the responding role when it
receives a message from another party requesting an authentication. In that case, it will indicate
the beginning of the authentication phase and then send back a hash of the received nonce and
the secret key.

The two roles are modelled as independent processes running in parallel as both behaviours
should be allowed to execute concurrently. These processes are parametrized by the identities of
the involved parties, by the used nonce (for the initiator role) and by the shared secret.

5

Process CHAP_entity [env,send,get] (my_id,your_id:id, my_nonce:nonce,
 our_secret:key) :noexit :=

Initiator [env,send,get] (my_id,your_id,my_nonce,our_secret)
|||
Responder [env,send,get] (my_id,your_id,our_secret)

where

Process Initiator [env,send,get] (my_id,your_id:id,
 my_nonce:nonce,our_secret:key) :noexit
:=
env!AuthReq!my_id!your_id; (* Request to authenticate other party *)
send!my_id!my_nonce; (* Send id and nonce to other party *)
get!your_id?h:hash_code; (* Wait for hash code from other party *)
env!AuthConf!my_id!your_id [h = hash(my_nonce,our_secret)];
 (* Confirm success of authentication
 if hash code is correct *)
stop
endproc

Process Responder [env,send,get] (my_id,your_id:id,our_secret:key) :noexit
:=
get!your_id?n:nonce; (* Request from other party *)
env!AuthInd!your_id!my_id; (* Indicate start of authentication phase *)
send!my_id!hash(n,our_secret); (* Send back a hash to other party *)
stop
endproc

endproc (* CHAP_entity *)

The last process to be described is the medium. It is modelled as a simple one-place buffer.

Process Medium [input,output] :noexit :=
input?x:id?n:nonce; output!x!n; Medium [input,output]
[]
input?x:id?h:hash_code; output!x!h; Medium [input,output]
endproc

4. Protocol verification without intrusion

We have used the Eucalyptus toolbox [Gar96] (figure 3) which is composed of:
• APERO [Pec96]: a front-end tool that supports more user-friendly notations than ACT

ONE to define complex data types, and compiles them into ACT ONE types;
• XELUDO [STS94]: a simulator of the LOTOS specifications;
• CÆSAR [FGK+96]: a compiler of LOTOS specifications into Labelled Transition System

(LTS);
• ALDEBARAN [FGK+96]: a verifier which minimizes a LTS while preserving an

equivalence, and compares two LTS according to various preorders and equivalences;
• EXHIBITOR [Gar 98]: a tool that checks whether a trace matching a given criterion can

be found in a LTS.
The first step consists of using the CÆSAR tool to generate a LTS from the LOTOS
specification. Let us call this LTS CHAP.

6

EditorMain Window

LOTOS
specification

with ADT
extensions

LOTOS
specification
suitable for
the verifier

LOTOS
specification
suitable for

the simulator

Simulator
Model

generator

LTS
model

Diagnostic
Sequence

Trace
Analyser

XELUDO

APERO

CÆSAR

ALDEBARAN,
etc.

a

b c

Converter

Verifier
EXHIBITOR

Minimizer

Figure 3: The Eucalyptus toolbox

The second step consists of using the ALDEBARAN tool to minimize the resulting graph. This
first minimization is always done modulo the strong bisimulation equivalence [Par81], which
preserves all the properties of the graph. We call the reduced LTS CHAP.bisim. This version of
the LTS will be very useful to find detailed diagnostic sequences afterwards. One can check the
absence of livelocks (also called divergences, i.e. loops of internal actions), and the presence of
one deadlock state, which is simply the normal completion state.

The next step is to derive the service provided by this protocol, when no security failure is
observed. To this end, we simply have to hide all the actions except the service primitives, and
further reduce the graph modulo a suitable equivalence. The point here is to choose this
equivalence. Formal definitions of some of them are given in appendix 2.

• The strong bisimulation equivalence [Par81] will preserve all interesting properties. After
reduction, we get CHAP_service.bisim.

• If there are no divergences, the branching bisimulation equivalence [vGW89] will preserve
all properties expressible in the ACTL* logic, while reducing the LTS further. ACTL* is
ACTL [DNV90] without the next operator. These properties include all relevant safety and
liveness properties. After reduction, we get CHAP_service.branching. If there are
divergences, they will disappear in the reduction. Therefore, if divergences are considered
harmless (or fair), this has no impact, but if divergences may be considered harmful (or
unfair), this reduction is not adequate.

• If we are only interested in safety properties, disregarding liveness ones, we can reduce the
LTS even further modulo the safety equivalence. This reduction preserves all the properties
expressible in BSL (Branching Time Safety Logic) [BFG+91]. After reduction we get
CHAP_service.safety. As security properties are almost always safety properties, this
reduction will be very useful in practice. The only liveness security property is the non-denial
of service.

The application of these reductions to the CHAP protocol without any security thread leads to
the following LTS sizes:

7

Nb. of states Nb. of transitions
CHAP 62 104
CHAP.bisim 62 104
CHAP_service.bisim 62 104
CHAP_service.branching 16 24
CHAP_service.safety 16 24

The example is so simple (e.g. deterministic), that no reduction is achieved by the strong
bisimulation, not even when interactions with the media are hidden. The LTS of
CHAP_service.safety is actually isomorphic to the LTS generated by the following LOTOS
behaviour:

env!AuthReq!A!B; env!AuthInd!A!B; env!AuthConf!A!B; stop
|||
env!AuthReq!B!A; env!AuthInd!B!A; env!AuthConf!B!A; stop

It is easy to check that the service primitives appear in correct sequences, namely that requests
precede indications, themselves preceding confirmations, for each direction. However, as this
will be useful in the second part of this paper, we are going to express the authentication
properties formally.

Authentication means that the other party is the one it claims to be. Using the service primitives,
we can formally express this property as follows:

An env!AuthConf!X!Y should not occur before an env!AuthInd!X!Y.

Indeed, if this were not fulfilled, this would mean that user X could get a confirmation of its
authentication request to user Y, while user Y would not have been notified of anything. This
would clearly indicate a security breach in the authentication protocol, as someone else would
have successfully impersonated Y.

This property is easy to check with the exhibitor tool. For one direction, it suffices to code the
target error sequence as follows:

<while> ~[env!AuthInd!A!B] <until> [env!AuthConf!A!B]
meaning a sequence that eventually executes env!AuthConf!A!B without executing any
env!AuthInd!A!B before.

 In this case, no such sequence is of course found and the property is fulfilled.

5. Protocol verification with intrusion

In this section, we verify the robustness of this protocol when passive and active attacks are
taken into account. To this end, we replace the full-duplex communication medium by an
intruder process (figure 4), which can of course behave as a reliable medium, but can also
perform the following classical attacks [Sta99]:

• Interception: This is a (passive) attack on confidentiality. The intruder gains access to a
protocol message, stores it in its data base for possible reuse of (parts of) it. This models the
classical wiretapping.

• Modification: This is an (active) attack on integrity. The intruder not only gains access to but
tampers with a captured message.

8

• Fabrication: This is an (active) attack on authenticity. The intruder inserts couterfeit objects
into the system. For example, it can insert spurious messages in the communication channel.

A Bintruder

lm mr

ml rm

env env

Figure 4: The system in the presence of an intruder

These attacks potentially allow the intruder to perform masquerade, replay and modification of
messages.

• A masquerade takes place when the intruder pretends to be a different entity. This may be
achieved e.g. by capturing authentication sequences and replaying them.

• Replay involves the passive capture of a data unit and its subsequent retransmission.
• Modification of a message means that some portion of a legitimate message is altered, or that

messages are reordered to produce an unauthorized effect.

In this paper focusing on authentication, we will not consider pure service interruption attacks,
such as denial of service, although this would be very easy to do. The denial of service basically
prevents or inhibits the normal use of a facility, such as a communication channel or a server.
Examples are the suppression of messages in transit, or the overloading of a network or system
with messages so as to degrade performance.

The behaviour of the system with an intruder in place can be described as follows:

Specification CHAP_intruder [env,lm,ml,rm,mr] :noexit

Behaviour

(CHAP_entity [env,lm,ml] (A,B,Na,Sab)
 |||
 CHAP_entity [env,rm,mr] (B,A,Nb,Sab)
)
|[lm,ml,rm,mr]|
Intruder [lm,ml,rm,mr] (cons(A,cons(B,cons(INT,nil_id))),
 cons(Ni,nil_nonce),
 nil_hash,
 cons(Si,nil_key))
...
endspec

The intruder process has four parameters (see below) which represent its current knowledge.
They are lists of user ids, nonces, hash codes and secret keys he knows initially or intercepts
during the protocol run. The list data type used to store e.g. ids could be defined as follows:

9

Type id_lists is ids, Boolean
sorts id_list
opns nil_id:-> id_list
 cons: id,id_list -> id_list
 add: id,id_list -> id_list (* add without duplicates *)
 isin: id,id_list -> Bool
eqns forall x,y:id, il:id_list
 ofsort id_list
 x isin il => add(x,il) = il;
 not (x isin il) => add(x,il) = cons(x,il);
 ofsort Bool
 x isin nil_id = false;
 x isin cons(y,il) = (x eq y) or (x isin il);
endtype

From the above instantiation of the intruder process, we can notice that the initial knowledge of
the intruder is composed of:

• His own identity INT, and the identities of the involved parties A and B. They are not secret
and are sent in clear anyway, so they could have been learnt from a previous run.

• A “nonce” the intruder can use to initiate a run. He could possibly use it several times.
• A key Si the intruder will use to fabricate fake hash codes. This key should be different from

Sab, which is supposed to be known by A and B only.

The LOTOS specification of the intruder process can now be given. It models a process that can
intercept any message (and increase his knowledge accordingly), and send at any time any
(fake) message which can be built from its knowledge.

Process Intruder [lm,ml,rm,mr] (il:id_list, nl: nonce_list, hl:hash_list,
 sl: secret_list) :noexit :=

(* first four lines are interceptions of all possible messages *)

lm?x:id?n:nonce; Intruder [lm,ml,rm,mr] (add(x,il),add(n,nl),hl,sl)
[]
rm?x:id?n:nonce; Intruder [lm,ml,rm,mr] (add(x,il),add(n,nl),hl,sl)
[]
lm?x:id?h:hash_code; Intruder [lm,ml,rm,mr] (add(x,il),nl,add(h,hl),sl)
[]
rm?x:id?h:hash_code; Intruder [lm,ml,rm,mr] (add(x,il),nl,add(h,hl),sl)

(* next lines are transmissions of all possible messages the intruder can
 fabricate *)
[]
(choice x:id,n:nonce [] [(x isin il) and (n isin nl)] ->
 (ml!x!n; Intruder [lm,ml,rm,mr] (il,nl,hl,sl)
 []
 mr!x!n; Intruder [lm,ml,rm,mr] (il,nl,hl,sl))
)
[]
(choice x:id,h:hash_code [] [(x isin il) and (h isin hl)] ->
 (ml!x!h; Intruder [lm,ml,rm,mr] (il,nl,hl,sl)
 []
 mr!x!h; Intruder [lm,ml,rm,mr] (il,nl,hl,sl))
)

10

(* a hash code can be fabricated by just replaying an observed one
 (as in the line above) or by contructing a new one from known nonces
 and keys (as in the line below) *)

[]
(choice x:id,n:nonce,k:key [] [(x isin il) and (n isin nl) and (k isin sl)]
 -> (ml!x!hash(n,k); Intruder [lm,ml,rm,mr] (il,nl,hl,sl)
 []
 mr!x!hash(n,k); Intruder [lm,ml,rm,mr] (il,nl,hl,sl))
)
endproc

We are now ready to apply again the verification steps explained in section 4. We get the
following numbers:

Nb. of states Nb. of
transitions

CHAP_intruder 9 178 27 790
CHAP_intruder.bisim 916 4 234
CHAP_intruder_service.bisim 419 1 434 No livelock
CHAP_intruder_service.branching 126 418
CHAP_intruder_service.safety 37 76 Still nondeterministic

Even with 37 states and 76 transitions, the last graph is difficult to read. So we check whether
the authentication property is satisfied using EXHIBITOR.

The verdict is that there is a sequence violating the authentication property. It is given by:
<initial state>
env!AuthReq!A!B
env!AuthInd!B!A
env!AuthConf!A!B
<goal state>

We can indeed notice that a confirmation is received by A, while B has not received any
indication. The indication present in the sequence occurs at A’s side, not at B’s.

However, it is not easy to understand the security failure from this sequence of service
primitives. To get a detailed scenario of the attack, we have to search for an invalid sequence on
the CHAP_intruder.bisim specification. This gives the following sequence:

<initial state>
env!AuthReq!A!B
lm!A!Na
ml!B!Na
env!AuthInd!B!A
lm!A!hash(Na,Sab)
ml!B!hash(Na,Sab)
env!AuthConf!A!B
<goal state>

The attack is now Crystal clear, and shown on figure 5:
1. The intruder intercepts the authentication request that A sends to B,
2. It impersonates B and sends another authentication request to A using the same nonce Na
3. A sends back a hash of Na with the shared secret Sab
4. The intruder intercepts this hash code and uses it as a response to the initial A’s request

11

5. A believes he has talked to B, while he has only talked to the intruder

A INT

A, Na

B, Na

A, Hash (Na, Sab)

B, Hash (Na, Sab)

AuthReq!A!B

AuthInd!B!A

AuthConf!A!B

Figure 5: The scenario of the attack

The CHAP protocol thus fails to perform its authentication service. The essence of this attack is
the fact that the intruder uses A himself as a way to compute the hash code he has to send back
to A to complete the protocol. A proposed better variant of CHAP consists of having two shared
secrets, one per direction (figure 6). It would at least bar the above attack, as A would expect
ml!B!hash(Na,Sba) instead of ml!B!hash(Na,Sab) in step 5, which would not allow the
intruder to send a valid authentication response.

A B

A, Na

B, Nb

B, Hash (Na, Sba)

A, Hash (Nb, Sab)

Figure 6: CHAP with two shared secrets

We will check whether this variant is robust. For that purpose we need to adapt our
specification as shown below. The only difference is the presence of two secret keys Sab and
Sba shared by A and B. One is used in the initiator role, and the other one is used in the
responder role.

12

Specification CHAP2_intruder [env,lm,ml,rm,mr] :noexit

Behaviour

(CHAP_entity [env,lm,ml] (A,B,Na,Sab,Sba)
 |||
 CHAP_entity [env,rm,mr] (B,A,Nb,Sba,Sab)
)
|[lm,ml,rm,mr]|
Intruder [lm,ml,rm,mr] (cons(A,cons(B,cons(INT,nil_id))),
 cons(Ni,nil_nonce),
 nil_hash,
 cons(Si,nil_key))
where

Process CHAP_entity [env,send,get] (my_id,your_id:id,
 my_nonce:nonce,
 our_secret_out, our_secret_in:key)
 :noexit :=
Initiator [env,send,get] (my_id,your_id,my_nonce,our_secret_in)
|||
Responder [env,send,get] (my_id,your_id,our_secret_out)
endproc
...
endspec

We are now ready to apply again the verification steps explained in section 4. We get the
following numbers:

Nb. of states Nb. of
transitions

CHAP2_intruder 9 206 27 720
CHAP2_intruder.bisim 885 4 156
CHAP2_intruder_service.bisim 288 900 No livelock
CHAP2_intruder_service.branching 64 176
CHAP2_intruder_service.safety 25 50 Deterministic

In this case, no sequence violating the authentication property is found by the exhibitor tool.
However, that does not mean that the intruder has no effect on the system. If we look carefully
at the minimized graph projected on the service primitives, we see more states and transitions
than without the presence of the intruder. This means that the users can perceive some of the
intruder’s actions, as tentative attacks, but without any breach in the authentication. An example
of such sequence is the occurrence of an AuthInd!A!B without a prior AuthReq!A!B. This is
because the intruder can generate a fake authentication request to B, composed of the well-
known identity of A and a nonce. This will inevitably trigger an AuthInd!A!B, but without
consequence for the security of the system.

Even though CHAP proved to be robust in the presence of our intruder, an interesting question
is the confidence we can have in this result. There are potential weak points in our approach.
The first one is the model of the intruder and its initial knowledge. In our opinion, the very
simple structure of the intruder process gives high confidence. It is constructed in such a
systematic way that it could even be automated. The initial knowledge is perhaps more
debatable. It is clear that the power of the intruder can be increased by adding new pieces of
information in his initial knowledge. Clearly, we have initialized it with a minimum and

13

reasonable information. Adding the nonces A and B are going to use in the protocol run would
only make sense if our intruder could guess the nonces in advance. We did not consider this
realistic. Anyway, as the nonces are sent in clear, the intruder can learn them quite easily and
reuse them at will.

Another potential weakness of our approach is the studied scenario, in which A and B merely
try and authenticate themselves. It is not sure that this scenario is sufficiently general. Suppose
an entity called INT is known to A as a respectable party and both of them share two secret keys
Sai and Sia for authentication. This can be similar between INT and B. Now, suppose INT starts
behaving as an intruder. Using the shared secrets, would it be possible for INT to impersonate
A when talking to B, for example? Such a question cannot be answered directly, and shows that
the context in which the verification is carried out is very important. In [Low96] and
[LBK +96], attacks have been found respectively in the Needham-Shroeder and Equicrypt
protocols in such contexts.

To extend our proof, we will consider the following richer scenario:
• A (resp. B) may initiate a CHAP protocol either with B (resp. A) or INT
• A (resp. B) shares distinct secret keys with B (resp. A) and INT
• A (resp. B) can respond to an authentication request from B (resp. A) or INT

To strengthen the power of the intruder, we consider that the secrets he shares with A and B for
both directions are all equal. This potentially allows the intruder to reuse messages in more
contexts.

The structure of the LOTOS specification becomes the following:

Specification CHAP2_intruder_ext [env,lm,ml,rm,mr] :noexit

Behaviour

(CHAP_entity [env,lm,ml] (A,B,INT,Na,Sab,Sba,Si)
 |||
 CHAP_entity [env,rm,mr] (B,A,INT,Nb,Sba,Sab,Si)
)
|[lm,ml,rm,mr]|
Intruder [lm,ml,rm,mr] (cons(A,cons(B,cons(INT,nil_id))),
 cons(Ni,nil_nonce),
 nil_hash,
 cons(Si,nil_key))
where
Process CHAP_entity [env,send,get] (my_id,your_id,your_id_2:id,
 my_nonce:nonce,
 our_secret_out, our_secret_in,
 our_secret_2:key) :noexit :=
(Initiator [env,send,get] (my_id,your_id,my_nonce,our_secret_in)
 []
 Initiator [env,send,get] (my_id,your_id_2,my_nonce,our_secret_2)
)
|||
Responder [env,send,get] (my_id,your_id,our_secret_out)
|||
Responder [env,send,get] (my_id,your_id_2,our_secret_2)
endproc
...
endspec

14

Unfortunately, the size of the generated model turns out to be too big. In such a case, we could
have used the compositional approach of the toolset to generate the global LTS from those of the
components (after minimization). This approach sometimes works, but for some systems, the
LTS of the components are even larger than the LTS of the whole system. Therefore, we
favoured another approach. Fortunately, the structure of the specification is such that we can
tackle the problem in parts. Indeed, the CHAP entity is a process of the form (X [] Y) ||| Z.
Then the two CHAP entities are again combined by |||. And finally, this resulting process is in
synchronized parallelism with the intruder.

Given the well-known property that (X|Z)[](Y|Z) has the same traces as (X[]Y)|Z, where |
means any parallel composition operator, we can split the set of traces of the specification into 4
subsets:
• when A can only initiate a run with B, and B can only initiate a run with A
• when A can only initiate a run with B, and B can only initiate a run with INT
• when A can only initiate a run with INT, and B can only initiate a run with A
• when A can only initiate a run with INT, and B can only initiate a run with INT

The union of these cases will give all the possible sequences. Therefore it suffices to deal with
the 4 cases independently and check with the exhibitor tool that none of them contains any
sequence matching our given pattern.

We could think that the first case has been verified already with the CHAP2_intruder
specification. This is not true. In this specification, the CHAP entities did not accept requests
from INT, which we would like to allow now. The second and third cases are symmetrical, so
that only one needs to be generated. The fourth case can be left out, as this scenario can never
generate any AuthConf!A!B, nor any AuthConf!B!A, which makes it impossible to violate the
authentication property.

To do so, it suffices to prune the two instances of the CHAP_entity process. For example, to
check the second case, we consider:

Specification CHAP2_int_AB_BI [env,lm,ml,rm,mr] :noexit
...
Behaviour
((Initiator [env,lm,ml] (A,B,Na,Sba)
 |||
 Responder [env,lm,ml] (A,B,Sab)
 |||
 Responder [env,lm,ml] (A,INT,Si)
)
 |||
 (Initiator [env,rm,mr] (B,INT,Nb,Si)
 |||
 Responder [env,rm,mr] (B,A,Sba)
 |||
 Responder [env,rm,mr] (B,INT,Si)
)
)
|[lm,ml,rm,mr]|
Intruder [lm,ml,rm,mr] (cons(A,cons(B,cons(INT,nil_id))),
 cons(Ni,nil_nonce),
 nil_hash,
 cons(Si,nil_key))
endspec

15

If we apply again the verification steps explained in section 4 to the two specifications
representing cases 1 and 2 above (called CHAP2_int_AB_BA and CHAP2_int_AB_BI
respectively), we get the following numbers:

Nb. of states Nb. of
transitions

CHAP2_int_AB_BA 673 990 3 238 734
CHAP2_int_AB_BA.bisim 41 808 298 608
CHAP2_int_AB_BA_service.bisim 1 152 4 500 No livelock
CHAP2_int_AB_BA_service.branching 64 176
CHAP2_int_AB_BA_service.safety 25 50 Deterministic

CHAP2_int_AB_BI 789 744 3 816 751
CHAP2_int_AB_BI.bisim 54 624 389 040
CHAP2_int_AB_BI_service.bisim 1 164 4 657 No livelock
CHAP2_int_AB_BI_service.branching 16 30
CHAP2_int_AB_BI_service.safety 10 15 Deterministic

The verdict of the EXHIBITOR tool is that there is no sequence, in none of these two
specifications, that falsifies our authentication property. We can thus consider that the second
version of the CHAP protocol is robust to the attacks and in the configurations we have
considered.

Does it mean that this version of CHAP is absolutely secure?

We cannot declare that for the following reasons:
• We verified the robustness in a single protocol run. We did not prove a more general result

stating that our conclusions are still valid if we consider an intruder which can participate in
multiple protocol runs and possibly acquire additional knowledge that he could reuse to break
the protocol. Moreover, scenarios with infinitely many protocol runs cannot be finite-state
(and thus cannot be verified by our method), because this would require to assign infinitely
many differents nonces to the entities. Executing several successive runs with the same
nonce (to keep the system finite-state but with infinite traces), would not model the system
correctly.

• Our model of cryptographic functions, such as hashing, is idealized. If there is a weakness in
the hashing function used by the protocol, an intruder might be capable of breaking it without
having the secret key.

• We have not modelled the establishment of the shared secrets between the parties, and
therefore we did not consider attacks on this protocol. If this protocol has a hole, the intruder
could acquire some knowledge of the shared secret, which we did not take into account in
our verification.

6. Conclusion

This paper illustrates a model-based formal verification process for security protocols by using
the specification language LOTOS, and the CHAP protocol as an example.

We have shown how intrusion can be taken into account by adding an intruder process
replacing the communication channels. Our model of this intruder is very simple and powerful.
He can mimic very easily real-world non cryptographic and non repetitive attacks on the
behaviour of the protocol. The idea of explicitly introducing an intruder was first proposed in
[DEK82, DY83] in another setting. This idea was then used in the Interrogator system

16

[MCF87], where the participants are modelled as communicating state-machines and the
network is assumed to be under the control of an intruder, which can intercept messages,
destroy or modify them, or pass them through unmodified. The NRL Protocol Analyser
[KMM94, Mea94] is similar to the Interrogator, but the goal is here to prove the unreachability
of some undesirable states. It can deal with infinite-state systems but the search is less
automated than in the Interrogator. The difference between our approach and these methods is
that we do not have to define some pathological target states to be searched for by the tool. We
just give safety properties expressed on sequences of service primitives.

We have explained the validation process and the formalization of security properties as safety
properties. These properties are similar to the correspondence properties, used in [WL93],
which require that certain events can take place only if others have taken place previously. Our
approach is similar to [Low96, LR97] where authentication protocols were specified in CSP
[Hoa85] and checked by the FDR tool by verifying the trace inclusion relation between the
system and the property. This tool and the one we have used are not classical model-checkers
but rather equivalence or preorder checkers. Model-checkers (e.g. [MCJ97, MSS97]) have also
been used in similar ways.

The model-based methods are extremely powerful at finding subtle flaws in protocols, but are
less adequate to prove correctness when no bug is found. This is because they are applied on
simplified, though realistic, models of the systems. On the other hand, theorem provers
[Kem89, CG90, Bol96, Sch98] can provide such proofs and can also deal more easily with
infinite-state systems. However, the proofs are usually less automated, and when no proof has
been derived for a given property, it is not easy to know whether the property is wrong or
whether the tool simply did not find it. In particular, an attack that falsifies the property is not
provided automatically.

In our approach, the verification is quite automatic and allows one to make efficient corrections
and improvements. However, as with any model-checking methods, we have had to simplify
the model to keep it finite-state. There exist ways to extend the method to infinite-state systems.
In [Low96], an additional induction proof has been provided to extend the correctness guarantee
to an arbitrary number of involved entities.

Another approach which circumvents the problem of adding an explicit intruder process is
proposed in [AG97] where the Spi-calculus is used to describe security protocols. The idea is to
verify that the protocol specification placed in any Spi-calculus context is equivalent to the
expected ideal behaviour (i.e. without intruder). Threads expressible in the Spi-calculus are thus
implicitly considered among the possible contexts. However, this approach is not so easy to use
in practice because the equivalence is sometimes too strong. For example, some intruder's
actions may be such that the equivalence is not fulfilled, while the security of the system is not
in danger, because the non equivalence simply results from the falsification of an irrelevant
property. In the CHAP protocol, we have indeed seen that indruder’s actions are often
noticeable by the users of the protocol (e.g. by the occurrence of some extra indication
primitives) while the authentication property was still verified.

References

[AG97] M. Abadi and A.D. Gordon. A Calculus for Cryptographic Protocols: The Spi
Calculus. Proceedings of the 4th ACM Conference on Computer and
Communication Security, 1997.

[BFG+91] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez and J. Sifakis. Safety for
Branching Time Semantics. In: 18th ICALP, Berlin, July 1991. Springer-Verlag.

[BoB87] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems 14 (1) 25-59 (1987).

17

[Bol96] D. Bolignano. Formal verification of cryptographic protocols. In: Proc. of the 3rd
ACM Conference on Computer and Communication Security, 1996.

[CG90] P. Chen and V. Gligor. On the Formal Specification and Verification of a
Multiparty Session Protocol. In: Proc. of the IEEE Symposium on Research in
Security and Privacy, 1990.

[DEK82] D. Dolev, S. Even, and R. Karp. On the Security of Ping-Pong Protocols.
Information and Control, pp. 57-68, 1982.

[DNV90] R. De Nicola, F.W. Vaandrager. Actions versus State Based Logics for Transition
Systems. Proc. Ecole de Printemps on Semantics of Concurrency, LNCS 469,
Springer Verlag, Berlin, 1990, 407-419.

[DoY83] D. Dolev, and A. Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198-208, March 1983.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and
Initial Semantics. In: W. Brauer, B. Rozenberg, A. Salomaa, eds., EATCS ,
Monographs on Theoretical Computer Science, Springer Verlag, 1985.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M.
Sighireanu. CADP (CÆSAR/ALDEBARAN Development Package): A Protocol
Validation and Verification Toolbox. In: R. Alur and T. Henzinger, eds, Proc. of
the 8th Conference on Computer-Aided Verification (New Brunswick, New
Jersey, USA), Aug. 1996.

[Gar96] H. Garavel. An overview of the Eucalyptus Toolbox. In: Proc. of the COST247
workshop (Maribor, Slovenia), June 1996.

[Gar98] H. Garavel. OPEN/CÆSAR: An Open Software Architecture for Verification,
Simulation and Testing. Proc. of TACAS’98, LNCS 1384, Springer-Verlag,
Berlin, 1998, 68-84.

[GL97a] F. Germeau, G. Leduc. Model-based Design and Verification of Security Protocols
using LOTOS. Proc. of the DIMACS Workshop on Design and Formal
Verification of Security Protocols, Rutgers University, NJ, USA, Sept. 97, 22 p.

[GL97b] F. Germeau, G. Leduc. A computer-aided design of a secure registration protocol.
Formal Description Techniques and Protocol Specification, Testing and
Verification, FORTE/PSTV’ 97, Chapman & Hall, London (1997), 145-160.

[Hoa 85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

[ISO8807] ISO/IEC. Information Processing Systems – Open Systems Interconnection –
LOTOS, a Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour. IS 8807, February 1989.

[Kem89] R. Kemmerer. Using Formal Methods to Analyse Encryption Protocols. IEEE
Journal on Selected Areas in Communications, 7(4):448-457, 1989.

[KMM94] R. Kemmerer, C. Meadows, and J. Millen. Three Systems for Cryptographic
Protocol Analysis. Journal of Cryptology, 7(2):14-18, 1989.

[LBK +96] G. Leduc, O. Bonaventure, E. Koerner, L. Léonard, C. Pecheur, D. Zanetti.
Specification and verification of a TTP protocol for the conditional access to
services. In: Proc. of 12th J. Cartier Workshop on “Formal Methods and their
Applications: Telecommunications, VLSI and Real-Time Computerized Control
System”, Montreal, Canada, 2-4 Oct. 96.

[LBL +99] G. Leduc, O. Bonaventure, L. Léonard, E. Koerner, C. Pecheur. Model-Based
Verification of a Security Protocol for Conditional Access to Services. Formal
Methods in System Design, Vol. 14, No. 2, March 1999, 171-191.

[LG99] G. Leduc and F. Germeau. Verification of Security Protocols using LOTOS -
Method and Application. To appear in Computer Communications, special issue on
“Formal Description Techniques in Practice”.

[Low96] G. Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: T. Margaria and B. Steffen (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 1055, Springer-Verlag, 1996.

18

[LR97] G. Lowe and B. Roscoe. Using CSP to Detect Errors in the TMN Protocol, IEEE
Transactions on Software Engineering, vol. 23 (10), Oct. 1997, 659-669.

[MCF87] J. Millen, S. Clark, and S. Freedman. The Interrogator: Protocol Security
Analysis. IEEE Transactions on Software Engineering, SE-13(2), 1987.

[MCJ97] W. Marrero, E. Clarke, and S. Jha. A Model Checker for Authentication Protocols.
Proc. of the DIMACS Workshop on Design and Formal Verification of Security
Protocols, Rutgers University, Sept. 1997.

[Mea94] C. Meadows. The NRL Protocol Analyser: An Overview. Journal of Logic
Programming 1994:19, 20:1-679.

[Mil 89] R. Milner. Communication and Concurrency. Prentice-Hall Intern., London, 1989.
[MSS97] J. Mitchell, V. Shmatikov, U. Stern. Finite-State Analysis of SSL 3.0 and Related

Protocols. Proc. of the DIMACS Workshop on Design and Formal Verification of
Security Protocols, Rutgers University, Sept. 1997.

[NFG+91] R. de Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action based framework
for verifying logical and behavioural properties of concurrent systems. University
of La Sapienza, Roma.

[Par81] D. Park. Concurrency and Automata on Infinite Sequences.In P. Deussen ed.,
Theoretical Computer Science, LNCS 104, Springer Verlag, March 1981, 167-
183.

[Pec96] C. Pecheur. Improving the Specification of Data Types in LOTOS. Doctoral
Dissertation, University of Liège, July 1996.

[RFC1994]W. Simpson. PPP Challenge Handshake Authentication Protocol (CHAP). RFC
1994, August 1996.

[Sch98] S. Schneider. Verifying Authentication Protocols in CSP. IEEE Transactions on
Software Engineering vol. 24 (9), Sept. 1998, 751-758.

[Sta99] W. Stallings. Cryptography and Network Security - Second Edition. Prentice-Hall,
1999.

[STS94] B. Stepien, J. Tourrilhes, and J. Sincennes. ELUDO: The University of Ottawa
Toolkit. Technical Report, Univesity of Ottawa, 1994.

[vGW89] R. van Glabeek and W. Weijland. Branching-Time and Abstraction in Bisimulation
Semantics. Proc. of the 11th World Computer Congress, San Francisco, 1989.

[WL93] Woo and S. Lam. A Semantic Model for Authentication Protocols. In : Proc. of
IEEE Symposium on Research in Security and Privacy, 1993.

Appendix 1: Overview of the LOTOS operators

• stop is an inactive (deadlocked) process.
• go1…on[SP]; P (action-prefixing) is a process that first performs an (observable) action on

gate g and then behaves like P. The tuple o1…on determines the data exchanged during the
synchronisation: either data sent, by !tx, or data (of sort s) received, by ?x :s. The variables
declared in o1…on to receive data can appear in the selection predicate (i.e. the boolean
expression) SP. Data can be received only if they verify SP.

• i; P is a process that first performs an internal action and then behaves like P.
• exit(e1,…en) is a process that successfully terminates. It performs an action on gate δ and

then turns into stop. The tuple e1,…en determines the data transmitted to the subsequent
process (see the enabling operator).

• P1 ■■ P2 (choice) is a process that can behave either like P1 or like P2. The choice is resolved
by the first process which performs an action. Notice that internal actions also resolve the
choice.

• P1 |[Γ]| P2 is the parallel composition of P1 and P2 with synchronisation on the gates in Γ.

• hide Γ in P hides actions of P occurring at gates present in the set Γ, i.e. renames them i.
• P1 » accept x1:s1,…xn:sn in P2 (enabling) is the sequential composition of P1 and P2, i.e. P2

can start when P1 has terminated successfully. A process terminating successfully can

19

transmit data to its successor: the tuple e1,…en associated with exit determines the data values
transmitted and accept x1:s1,…xn:sn in specifies the data P2 expects to receive.

• P1 [> P2 (disabling) allows P2 to disable P1 provided P1 has not terminated successfully.
• [SP]→ P (guard) behaves like P if the guard SP is true and like stop otherwise.
• let x1=tx1,…xn=txn in P (instantiation) instantiates the free variables x1…xn in P.
• choice x1:s1,…xn:sn ■■ P (choice over values). Assuming P depends on the variables x1…xn,

(of sorts s1…sn), choice x1:s1,…xn:sn ■■ P offers a choice between the processes P(tx1…txn)

for all the combinations of values (tx1…txn) of sorts (s1…sn). For example, choice x:Nat ■■

P(x) means P(0) ■■ P(1) ■■ P(2) ■■ ...

Appendix 2: Definitions of equivalences
Consider a LTS = 〈S, A, T, s0〉 where S is the set of states, A the alphabet of actions (with i
denoting the internal action), T the set of transitions and s0 the initial state.

A relation R ⊆ S × S is a (strong) bisimulation iff ∀ 〈P,Q〉 ∈ R ,∀ a ∈ A:

(i) if P →a P’, then ∃ Q’ such that Q →a Q’ and 〈P’,Q’〉 ∈ R,

(ii) if Q →a Q’, then ∃ P’ such that P →a P’ and 〈P’,Q’〉 ∈ R.

Sys1 = 〈S1, A, T1, s01
〉 and Sys2 = 〈S2, A, T2, s02

〉 are bisimilar, denoted Sys1 ~ Sys2, iff

there exists a strong bisimulation relation R ⊆ S1 × S2, such that 〈s01
,s02

〉 ∈ R

A relation R ⊆ S × S is a branching bisimulation iff ∀ 〈P,Q〉 ∈ R ,∀ a ∈ A:

 (i) (if P →a P’, then ∃ Q’, Q” such that Q →i * Q’ →a Q” and 〈P,Q’〉 ∈ R and 〈P’,Q” 〉 ∈ R)

or (if P →i P’, then 〈P’,Q 〉 ∈ R),

(ii) (if Q →a Q’, then ∃ P’, P” such that P →i * P’ →a P” and 〈P’,Q 〉 ∈ R and 〈P” ,Q’〉 ∈ R)

or (if Q →i Q’, then 〈P,Q’〉 ∈ R).

Sys1 = 〈S1, A, T1, s01
〉 and Sys2 = 〈S2, A, T2, s02

〉 are branching bisimilar, denoted Sys1

≈bb Sys2, iff there exists a branching bisimulation relation R ⊆ S1 × S2, such that 〈s01
,s02

〉 ∈
R

A relation R ⊆ S × S is a weak simulation iff ∀ 〈P,Q〉 ∈ R ,∀ a ∈ A:

if P →i * →a P’, then ∃ Q’ such that Q →i * →a Q’ and 〈P’,Q’〉 ∈ R .
Sys1 = 〈S1, A, T1, s01

〉 can be simulated by Sys2 = 〈S2, A, T2, s02
〉, denoted Sys1 ≤s Sys2, iff

there exists a weak simulation relation R ⊆ S1 × S2, such that 〈s01
, s02

〉 ∈ R

Sys1 = 〈S1, A, T1, s01
〉 and Sys2 = 〈S2, A, T2, s02

〉 are safety equivalent, denoted Sys1 ≈s

Sys2, iff Sys1 ≤s Sys2 and Sys2 ≤s Sys1.

