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Abstract

The Challenge HandshakeAuthentication Protocol, CHAP, is an authenticationprotocol
intendedfor useprimarily by hostsandroutersthat connectto a network servervia switched
circuits or dial-up lines, but might be appliedto dedicatedlinks aswell. In this paper, we
specify two versions ofthe protocol, usingthe formal languageLOTOS, and apply the
EUCALYPTUS model-basedverification tools to prove that the first version has a flaw,
whereas the second one is robust to passive and active attacksp€nie written in a tutorial
fashion with a strong emphasis the methodologyused. The relative simplicity of the CHAP
protocol allows one to include complete LOT&&ecificationsand definitions of propertiesso
that the experiment can be reproduced easily.
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1. Introduction

The ChallengeHandshakeAuthenticationProtocol, CHAP, is a protocol usedto authenticate

both ends ofa communicatiorlink. Suchauthenticatiorprotocolis intendedfor use primarily

by hosts and routers that connectto a PPP (Point-to-Point Protocol) network server via
switched circuits or dial-up lines, but might be applied to dedicated linkglasits description

can be found in [RFC1994}t usesa challengeresponsamechanisnmbasedon a nonce(a sort

of random number used only once) and a shared secret. This secret is only ktievantities

that want to authenticateeachother. Mutual authenticationcan be achievedby running the
protocol in both directions. In this case the shared secret can be the same for both directions, b
the RFC highly recommends to use two different secrets.

In this paper, wespecifythesetwo versionsformally in LOTOS, andusethe EUCALYPTUS
model-basederification tools [Gar96] to provethatthe first versionhas a flaw, whereasthe
second one isobustto passiveand active attacks.Although we did notknow the flaw before
starting this experimeni late 1997, it was well-known to somepeoplein the field, including
someonenho challengedus to find the flaw with our methodandtools. Interestingly,it took
only a couple of hours to specify the protocol and find the flaw.

Our verification methodologyis basedon the following principle. We derive the service
provided by the CHAP protocol when nointruderis present.This serviceis expressecdoy
suitable orderings of service primitives (such asAuthentication Request, Indication and
Confirmation)that we haveplacedat appropriateplacesin the behaviourof the protocol. We
prove that thiservicefulfils the authenticatioproperties.Thenwe insertan intruder process,
which behavesas an insecurefull-duplex communicatioriink. This meansthat messagegan
possibly be eavesdroppednterrupted,intercepted modified or insertedin the channelsby



some simpleout powerful intruder process.This intruder processcanthus mimic the classical
passiveand active attacksagainstthe CHAP protocol,but it is written in sucha way that it

cannot access the secsbtaredby the two protocolentitiesdirectly, and cannotbreakthe one-

way hash function used by the protod®y. that we meanthat the intruderis unableto forge a
message that would have a known hash. These hypotheses are sensible, otherwise it is clear t
CHAP, andin fact all security protocols,would be vulnerable.To verify that a protocol is

robust, we derive the actual service provigdtenthe intruderis presentandverify it against

the authentication properties.

The structureof the paperis asfollows. In section2 we give an informal descriptionof the
CHAP protocol,followed in section3 by its formalizationin LOTOS. In section4, we verify
that the protocol satisfiesthe authenticationproperty when nointruder is present.Finally, in
section5, we verify thatan intruder canbreakthe single-secretersionof CHAP, but cannot
break the two-secret version in the scenarios checked.

2. Description of CHAP

CHAP providesmutual authenticatiorbetweentwo parties.The basic principle of a one-way
authentication is as follows. Let us ctile two entitiesthe verifier andthe prover. The verifier
begins by sending a challenge (i.e. a nonce) to the proveprotier concatenatethe received
nonce with a shared secret and sends back a hash of this concatenated message.

Mutual authentication can be achieved by runnirgprotocoltwice: onerun in eachdirection.
In this casethe sharedsecretcan be the same for both directions, but the RFC highly
recommends to use two different secrets.

Figure 1 explainsthe protocol with a mutual authenticatiorand onesharedsecretS,,. Both
authenticationganbe interlaced.Thus the only requirementsare that the first messagamust
occur before the second one, andttiied one mustoccurbeforefourth one. We will describe
the other version later.
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Figure 1: CHAP - A double authentication with one shared secret

3. Formal specification

The specificationhas beenwritten in LOTOS, which is a standardizedormal description
language suitable for the description of distributed systems. It is made up of two components:



* A processalgebra,mostly inspiredby CCS [Mil89] and CSP [Hoa85], with a structured
operational semantics. It describes the behawbyrocesseandtheir interactionsLOTOS
has a rich set of operators (multiwsynchronization andbstractiorike in CSP, disabling,
...), and an explicit internal action like in CCS. LOTOS is briefly introduced in the appendix.
» An algebraic datatype language, ACT ONE [EM85Lype is definedby its signature(sorts
+ operations on the sorts) and by equations to give a meaning to the operations.

The LOTOS specification is composed of four processes: two CHAP eAtiies B, andtwo

simplexcommunicationrmedia (figure 2). Both entities sharea commonsecretS,,. We also

parametrize each CHAP entity by a noridg(resp.N,) is the noncethat A (resp.B) will use
to authenticat® (resp.A). The actual values of the nonces do not matiee.only requirement
is thatthey be distinctin orderto model that theserandomvalues,usedonce, are thus very

unlikely to be the same in practice.
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Figure 2: The architecture of the system

The structure of the LOTOS specification will thus be as follows:

Speci fication CHAP protocol [env,Imm,rmnm] :noexit

Behavi our

(CHAP entity [env,Immnm] (A B, Na, Sab)
|1

CHAP entity [env,rmnr] (B, A Nb, Sab)
)
[ [Imm,rmnr]|
(medium [ mnr]
11
medium[rmm ]
)
wher e

... (* Here follows the descriptions of the four processes *)
endspec

Before giving the description of the processes haveto describethe datatypes,anddiscuss
their abstractiorlevels. Entitieswill be identified by elementsof the sorti d. At this stagewe

have only two entitied andB. We also need data carriers for nonces and secreskaysdby

parties. As discussed above, two distinct nomaesndnb are enoughMoreover,for this first

version of the protocol, a single shared kel is used.

Abstract data types tummut to very usefulto modelin an elegantand abstractway the various
cryptographicfunctions. Someexamplesof public key operationsare given in [LG99]. In

CHAP, the only operationwe haveto modelis the one-wayhash functionwhich takesas
argumentsa nonceand a secretkey andreturnsa hashcode.We do not care aboutthe exact
algorithm which is usednd do not wantto modelit. What mattersfirst is that the hashcodes
should be different when either the nonces or the skeystdiffer. This is anideal modelof a



hashing algorithm. Secondlig,shouldbe impossibleto get thesecretkey from the hashcode

andthe nonce.To this end, it sufficesto define anoperationhash, with a nonceanda secret
key as arguments and which returnsashcode. The two propertiesare easilyfulfilled by not

providing any operation accessingthe arguments. The absenceof equations ensures
automatically that all terms constructed with distinct arguments are themselves distinct.

Type ids is
sorts id

opns A B ->id
endt ype

Type nonces is
sorts nonce
opns Na, Nb: -> nonce

endt ype

Type keys is
sorts key

opns Sab: -> key
endt ype

Type hashing is nonces, keys
sorts hash_code

opns hash: nonce, key -> hash_code
endt ype

Besides the basic datgpes, we introduceserviceprimitives which are eventsoccurringat the
interface between the CHAP protocol and the higher layer (i.enthgate).We considerthree
such primitives:

» Authentication request (AuthReq): Initiated by a higher layer to authenticate the other party.
» Authentication indication (Authind): Initiated by a CHARtity to indicatethat anotherparty
has requested an authentication.
» Authentication confirm (AuthConf): Initiated by a CHAP entity to confirm that the other party
has been authenticated.

Type primtives is

sorts primtive

opns Aut hReq, Authlnd, AuthConf: -> prinmtive
endt ype

The behaviour of a CHAP entity is divided into two independent parts correspandiegiwo
rolesof the entity: an initiator role and a respondingrole. When a CHAP entity receivesan
authenticatiorrequest,t startsacting in the initiator role. It will first sendits identity and a
nonce tothe otherentity, thenwait for the correcthashcodebeforeconfirming the success of
the authenticationIn parallel, the CHAP entity can behavein the respondingrole when it
receives a message from another party requestiagtaenticationin that case,it will indicate
the beginning of thauthenticatiorphaseandthensendbacka hash ofthe receivednonceand
the secret key.

The two rolesare modelledas independenprocessesunning in parallel as both behaviours
should be allowed to execute concurrently. These processes are parametrizeddnyities of
the involved parties, by the used nonce (for the initiator role) and by the shared secret.



Process CHAP entity [env, send, get] (ny_id,your_id:id, ny_nonce:nonce,
our_secret:key) :noexit :=

Initiator [env,send,get] (ny_id,your_id, ny_nonce, our_secret)

Responder [env, send, get] (ny_id,your _id, our_secret)
wher e

Process Initiator [env, send,get] (ny_id,your _id:id,
my_nonce: nonce, our _secret: key) :noexit
env! Aut hReq! my_i d! your _i d; (* Request to authenticate other party *)
send! ny_i d! my_nonce,; (* Send id and nonce to other party *)
get ! your _i d?h: hash_code; (* wait for hash code from other party *)
env! Aut hConf!my _id!your _id [h = hash(my_nonce, our _secret)];
(* Confirm success of authentication

i f hash code is correct *)
stop
endpr oc

Process Responder [env,send,get] (my_id,your id:id,our_secret:key) :noexit

get ! your _i d?n: nonce; (* Request fromother party *)

env! Aut hl nd! your _i d! ny_i d; (* Indicate start of authentication phase *)
send! my_id! hash(n, our_secret); (* Send back a hash to other party *)

stop

endpr oc

endproc (* CHAP entity *)

The last process to be described is the medium. It is modelled as a simple one-place buffer.

Process Medium [input,output] :noexit :=

i nput ?x: i d?n: nonce; output!x!n; Medium [input, output]

[]

i nput ?x:i d?h: hash_code; output!x!h; Medium [input, out put]
endpr oc

4. Protocol verification without intrusion

We have used the Eucalyptus toolbox [Gar96] (figure 3) which is composed of:
* APERO[Pec96]:a front-endtool that supportsmore user-friendly notationsthan ACT
ONE to define complex data types, and compiles them into ACT ONE types;
» XELUDO [STS94]: a simulator of the LOTOS specifications;

« C/ESAR [FGKF96]: a compiler of LOTOS specifications into Labelled Transifgistem
(LTS);

« ALDEBARAN [FGK™96]: a verifier which minimizes a LTS while preserving an

equivalence, and compares two LTS according to various preorders and equivalences;

* EXHIBITOR [Gar 98]: a tool that checkswhethera tracematchinga given criterion can
be found in a LTS.
The first step consists of usinghe CASAR tool to generatea LTS from the LOTOS
specification. Let us call this LT&HAP.
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Figure 3: The Eucalyptus toolbox

The second step consists of using the ALDEBARAN toahinimize the resultinggraph. This
first minimizationis alwaysdonemodulothe strong bisimulation equivalencgPar81], which
preserves all the properties of the graph. We call the reducedHaPSoi si m This versionof
the LTS will be very useful to find detailed diagnostic sequeatteswards.One cancheckthe
absence of livelocks (also called divergences, i.e. loops of internal actionff)eamnesenceof
one deadlock state, which is simply the normal completion state.

The next stepis to derive the serviceprovided by this protocol, when ncsecurity failure is
observed. To this end, we simply have to hatlehe actionsexceptthe serviceprimitives, and
further reducethe graph modulo a suitable equivalence.The point hereis to choosethis
equivalence. Formal definitions of some of them are given in appendix 2.

» The strong bisimulation equivalencegPar81] will preserveall interestingproperties.After
reduction, we getHAP_ser vi ce. bi sim

 If thereareno divergencesthe branchingbisimulationequivalencgvGW89] will preserve
all propertiesexpressiblan the ACTL* logic, while reducingthe LTS further. ACTL* is
ACTL [DNV90] without the nextoperator.Thesepropertiesnclude all relevantsafety and
liveness properties. After reduction, we get CHAP_servi ce. branchi ng. If there are
divergencesthey will disappeain the reduction.Therefore,if divergencesare considered
harmlesgor fair), this has noimpact, but if divergencesmay be consideredharmful (or
unfair), this reduction is not adequate.

» If we are only interestenh safetypropertiesdisregardindivenessones,we canreducethe
LTS even furthemodulothe safety equivalencelhis reductionpreservesll the properties
expressiblein BSL (Branching Time Safety Logic) [BFG*91]. After reductionwe get
CHAP_servi ce. saf ety. As security propertiesare almost always safety properties,this

reduction will be very useful in practice. The only liveness security property is the non-denial
of service.

The applicationof thesereductionsto the CHAP protocolwithout any securitythreadleadsto
the following LTS sizes:



Nb. of states Nb. of transitions
CHAP 62 104
CHAP. bi si m 62 104
CHAP servi ce. bisim 62 104
CHAP ser vi ce. branchi ng 16 24
CHAP servi ce. safety 16 24

The exampleis so simple (e.g. deterministic),that no reductionis achievedby the strong
bisimulation, not even when interactions with the media are hidden. The LTS of
CHAP_ser vi ce. saf ety is actuallyisomorphicto the LTS generatedy the following LOTOS
behaviour:

env! Aut hReq! Al B; env! Aut hl nd! Al B; env! Aut hConf! Al B; stop

Y
env! Aut hReq! B! A; env! Aut hl nd! B' A; env! Aut hConf! Bl A; stop

It is easy tacheckthat the serviceprimitives appeatin correctsequencesiamelythatrequests
precedendications,themselvegrecedingconfirmations for eachdirection.However,as this
will be usefulin the secondpart of this paper,we are going to expressthe authentication
properties formally.

Authentication means that the other party is the one it claims to be. tisisgrviceprimitives,
we can formally express this property as follows:

An env! Aut hConf ! X! Y should not occur before anv! Aut hl nd! X! Y.

Indeed,if this werenot fulfilled, this would meanthatuserX could geta confirmation of its
authentication requestb userY, while userY would not have beemotified of anything.This
would clearly indicatea securitybreachin the authenticatiorprotocol, assomeoneelse would
have successfully impersonated Y.

This property is easy to check wite exhibitor tool. For onedirection, it sufficesto codethe
target error sequence as follows:

<whi | e> ~[ env! Aut hl nd! Al B] <until> [env! Aut hConf! Al B]
meaning a sequencethat eventually executesenv! Aut hConf! Al B without executing any
env! Aut hl nd! Al B before.

In this case, no such sequence is of course found and the property is fulfilled.

5. Protocol verification with intrusion

In this section, weverify the robustnes®f this protocol when passiveand active attacksare
takeninto account.To this end, we replacethe full-duplex communicationmedium by an
intruder process(figure 4), which can of coursebehaveas a reliable medium, but can also
perform the following classical attacks [Sta99]:

 Interception:This is a (passive)attackon confidentiality. The intruder gains accessto a
protocol message, stores it in its data base for possible reuse of (part$twg modelsthe
classical wiretapping.

» Modification: This is an (active) attack on integrity. The intruderardy gainsaccesso but
tampers with a captured message.



» Fabrication:This is an (active) attackon authenticity. The intruder insertscouterfeit objects
into the system. For example, it can insert spurious messages in the communication channe

env env
Q Im mr ?
g —(O—
A intrudel B
mOm
mi rm

Figure 4: The system in the presence of an intruder

These attacks potentialgllow the intruderto perform masqueradeageplay and modification of
messages.

* A masqueradéakesplacewhenthe intruder pretendgo be a different entity. This may be
achieved e.g. by capturing authentication sequences and replaying them.

* Replay involves the passive capture of a data unit and its subsequent retransmission.

» Modification of a message means that some portion of a legitimate messétgeed,or that
messages are reordered to produce an unauthorized effect.

In this paper focusing on authenticatiove will not considerpure serviceinterruptionattacks,

such as denial of service, although this would be very easy to do. The denial of service basicall
prevents or inhibitshe normaluse ofa facility, such asa communicatiorchannelor a server.
Examples are the suppression of messages in transit, or the overloaalimefwbrk or system

with messages so as to degrade performance.

The behaviour of the system with an intruder in place can be described as follows:

Specification CHAP_ intruder [env,Imm,rmnm] :noexit
Behavi our

(CHAP entity [env,Imm] (A B, Na, Sab)

|l
CHAP entity [env,rmnr] (B, A Nb, Sab)

[Imm,rmnr]|

ntruder [Imm,rmnr] (cons(A cons(B,cons(INT,nil_id))),
cons(Ni, nil_nonce),
ni | _hash,
cons(Si, nil_key))

)
|
|

endspec

The intruderprocess has foysarametergseebelow) which representts currentknowledge.
They arelists of userids, nonces hashcodesandsecretkeys he knows initially or intercepts
during the protocol run. The list data type used to store e.g. ids could be defined as follows:



Type id_lists is ids, Bool ean
sorts id_Ilist
opns nil __id:->id_list
cons: id,id_list ->id_list
add: id,id_list ->id_list (* add wi thout duplicates *)

_isin_: id,id_list -> Boo
egns forall x,y:id, il:id_list

ofsort id_Ilist

X isin il => add(x,il) ;

=il;
not (x isinil) =>add(x,il) = cons(x,il);

of sort Bool

x isinnil_id = fal se;
x isin cons(y,il) = (x eqy) or (xisinil);
endt ype

From the above instantiation of the intruder process, weagce that the initial knowledgeof
the intruder is composed of:

* His own identityINT, and the identities of the involved partiesind B. They arenot secret
and are sent in clear anyway, so they could have been learnt from a previous run.

* A*“nonce” the intruder can use to initiate a run. He could possibly use it several times.

» Akey S the intruder will use to fabricate fake hash codes. Thiskeyldbe different from
S, Which is supposed to be known AyandB only.

The LOTOS specification of the intruder process can now be given. It models a pinateas

interceptany messaggand increasehis knowledgeaccordingly),and sendat any time any

(fake) message which can be built from its knowledge.

Process Intruder [Imm,rmnr] (il:id_list, nl: nonce_list, hl:hash_list,
sl: secret_list) :noexit :=

(* first four lines are interceptions of all possible nessages *)

| n?x:id?n: nonce; Intruder [Imm,rmnr] (add(x,il),add(n,nl),hl,sl)

[]

rn?x:id?n: nonce; Intruder [Imm,rmnr] (add(x,il),add(n,nl),hl,sl)

[]

| n?x: i d?h: hash_code; Intruder [ImmM,rmnr] (add(x,il),nl,add(h,hl),sl)

[]
rn?x: i d?h: hash_code; Intruder [ImmM,rmnr] (add(x,il),nl,add(h,hl),sl)

(* next lines are transm ssions of all possible nessages the intruder can
fabricate *)
[]
(choice x:id,n:nonce [] [(x isinil) and (nisinnl)] ->
(m!x!'n; Intruder [Imm,rmnr] (il,nl,hl,sl)
[]
nrix!n; Intruder [ImmM,rmm] (il,nl,hl,sl))
)
[]
(choice x:id, h:hash_code [] [(x isinil) and (h isin hl)] ->
(m!x!'h; Intruder [Imm,rmnr] (il,nl,hl,sl)
[]
nr!x!h; Intruder [ImmM,rmm] (il,nl,hl,sl))




(* a hash code can be fabricated by just replaying an observed one
(as in the line above) or by contructing a new one from known nonces
and keys (as in the line below) *)

[]
(choice x:id,n:nonce, k:key [] [(x isinil) and (nisinnl) and (k isin sl)]
-> (mM!'x!hash(n,k); Intruder [ImmM,rmnr] (il,nl,hl,sl)
[]
nr!x!hash(n,k); Intruder [Imm,rmm] (il,nl,hl, sl))
)

endpr oc

We are now readyto apply againthe verification stepsexplainedin section4. We get the
following numbers:

Nb. of state4 Nb. of
transitions
CHAP i nt ruder 9178 27 790
CHAP i ntruder. bi sim 916 4234
CHAP i ntruder service. bi sim 419 1434 No livelock
CHAP i nt ruder servi ce. branchi ng 126 418
CHAP i ntruder service.safety 37 76 Still nondeterministig

Even with 37 states and 76 transitiotig last graphis difficult to read.So we checkwhether
the authentication property is satisfied using EXHIBITOR.

The verdict is that there is a sequence violating the authentication property. It is given by:
<initial state>
env! Aut hReq! A B
env! Aut hl nd! Bl A
env! Aut hConf! Al B
<goal state>

We canindeednotice that a confirmationis receivedby A, while B has not receivedany
indication. The indication present in the sequence occuY's atde, not aB'’s.

However, it is not easyto understandthe security failure from this sequenceof service
primitives. To get a detailed scenario of the attack, we have to searchirigakohsequencen
theCHAP_i nt r uder . bi si mspecification. This gives the following sequence:

<initial state>

env! Aut hReq! A! B

| m Al Na

m ! B! Na

env! Aut hl nd! B! A

| m Al hash( Na, Sab)

m ! B! hash( Na, Sab)

env! Aut hConf! Al B

<goal state>

The attack is now Crystal clear, and shown on figure 5:

1. The intruder intercepts the authentication requesitbanhds td3,

2. It impersonateB and sends another authentication requeAtusing the same nondg
3. A sends back a hash Mf with the shared secr8&f,

4. The intruder intercepts this hash code and uses it as a response to tiésingglest

10



5. A believes he has talked By while he has only talked to the intruder

A INT
—_— A’ I\b
AuthReq!AIE \_
B, Na
<—/
Authind!B!A A, Hash (N, Sab)

\

B, Hash (M, Sab)

AuthConflAlB /
———————

Figure 5: The scenario of the attack

The CHAP protocol thus fails to perform its authentication service. The essetiie attackis

the fact that the intruder usasimself as a way tcomputethe hashcode hehasto sendback

to A to complete the protocol. A proposed better variant of CHAP consists of having two shared
secrets, onger direction (figure 6). It would at leastbar the aboveattack,as A would expect

m ! B! hash( Na, Sba) insteadof m ! B! hash(Na, Sab) in step5, which would not allow the
intruder to send a valid authentication response.

A B
A, Na

\

B, Hash (M, Sa)

PLE

B, Np

L

A, Hash (N, Sab)

\

Figure 6: CHAP with two shared secrets

We will check whether this variant is robust. For that purpose weneed to adapt our
specificationas shownbelow. The only differenceis the presenceof two secretkeys S, and
S,, sharedby A and B. Oneis usedin the initiator role, and the other one is usedin the
responder role.
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Speci fication CHAP2_intruder [env,Imm,rmnr] :noexit
Behavi our

(CHAP entity [env,Imm] (A B, Na, Sab, Sha)

|
CHAP entity [env,rmnr] (B, A Nb, Sba, Sab)

[Imm,rmnr]]|

ntruder [Imm,rmnr] (cons(A cons(B,cons(INT,nil_id))),
cons(N, nil _nonce),
ni | _hash,
cons(Si, nil_key))

)
|
|

wher e

Process CHAP entity [env,send, get] (ny_id,your_id:id,
ny_nonce: nonce,
our_secret _out, our_secret_in: key)
‘noexit =
Initiator [env,send,get] (ny_id,your_id, my_nonce, our_secret _in)
|
Responder [env, send, get] (ny_id,your_id,our_secret_out)
endpr oc

endspec

We are now readyto apply againthe verification stepsexplainedin section4. We get the
following numbers:

Nb. of stateq Nb. of
transitions
CHAP2 i ntruder 9 206 27 720
CHAP2 i ntruder. bisim 885 4 156
CHAP2 i ntruder service. bi sim 288 900 No livelock
CHAP2 i ntruder service. branchi ng 64 176
CHAP2 i ntruder service.safety 25 50 Deterministig

In this case,no sequenceiolating the authenticatiorproperty is found bythe exhibitor tool.

However, that does not mean that the intruder has no effebe system.If we look carefully
at the minimized graphprojectedon the serviceprimitives, we seemore states andransitions
thanwithout the presenceof the intruder. This meansthat the userscan perceivesomeof the
intruder’s actions, as tentative attacks, but without any breach authenticationAn example
of suchsequences the occurrenceof an Aut hi nd! Al B without a prior Aut hReq! Al B. This is

becausehe intruder can generatea fake authenticatiorrequestto B, composedof the well-

known identity of A and a nonce.This will inevitably trigger an Aut hi nd! Al B, but without
consequence for the security of the system.

Even though CHAP proved to be robust in the preseh@air intruder,an interestingguestion
is the confidencewe canhavein this result. Thereare potentialweak pointsin our approach.
Thefirst oneis the modelof the intruder and its initial knowledge.In our opinion, the very
simple structureof the intruder processgives high confidence.It is constructedin such a
systematicway that it could even beautomated.The initial knowledgeis perhapsmore
debatablelt is clearthatthe power ofthe intruder canbe increasedby adding new piecesof
information in his initial knowledge.Clearly, we have initialized it with a minimum and
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reasonable information. Adding the nonéesndB are going to usein the protocolrun would
only makesensef our intrudercould guessthe noncesin advanceWe did not considerthis
realistic. Anyway, asthe noncesare sentin clear,the intruder canlearnthem quite easily and
reuse them at will.

Another potentialveakness of ouapproachs the studiedscenariojn which A andB merely
try and authenticate themselves. It is swtethat this scenariais sufficiently general.Suppose
an entity calledNT is known toA as a respectable party and both of them share two &egret
S, andS, for authentication. This can be similar betw#dm andB. Now, supposéNT starts
behaving as an intruder. Using the shared seavetsid it be possiblefor INT to impersonate

A when talking tdB, for example? Such a question cannot be answered directly, andtehbws
the context in which the verification is carried out is very important. In [Low96] and

[LBK *96], attackshave beerfound respectivelyin the Needham-Shroedeand Equicrypt
protocols in such contexts.

To extend our proof, we will consider the following richer scenario:

* A (resp.B) may initiate a CHAP protocol either wiBh(resp.A) or INT

* A (resp.B) shares distinct secret keys wigl{resp.A) andINT

* A (resp.B) can respond to an authentication request fBofmesp.A) or INT

To strengthen the power of the intruder, we consider that the secrets he shatesnaliBfor
both directionsare all equal. This potentially allows the intruder to reusemessagesn more
contexts.

The structure of the LOTOS specification becomes the following:

Speci ficati on CHAP2_intruder_ext [env,Imm,rmnr] :noexit
Behavi our

(CHAP entity [env,Imm] (A B, INT, Na, Sab, Sbha, Si)

|1
CHAP entity [env,rmnr] (B, A I NT, Nb, Sha, Sab, Si)

[Imm,rmnr]]|

ntruder [Imm,rmnr] (cons(A cons(B,cons(INT,nil_id))),
cons(Ni, nil_nonce),
ni | _hash,
cons(Si, nil_key))

)
|
|

wher e
Process CHAP entity [env, send,get] (ny_id,your_id,your_id_2:id,
ny_nonce: nonce,
our_secret_out, our_secret_in,
our_secret_2:key) :noexit :=
(I'nitiator [env,send,get] (my_id,your_id, ny_nonce, our_secret_in)
[]
Initiator [env,send,get] (ny_id, your_id_2,ny_nonce, our_secret_2)

)
|l

|
Responder [env, send, get] (ny_id,your_id,our_secret_out)

|11
Responder [env, send, get] (ny_id,your_id_2,our_secret_2)
endpr oc

endspec
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Unfortunately, the size of the generated model turns out to be tom lsigcha case,we could

have used the compositional approach of the toolset to generate the global LTS from those of tt
componentgafter minimization). This approachsometimesvorks, but for somesystems,the

LTS of the componentsare even larger than the LTS of the whole system. Therefore,we
favouredanotherapproachFortunately the structureof the specificationis suchthat we can

tackle the problem in parts. Indeed, the CHAP entity is a process of theXarmy) ||| z.

Then the two CHAP entities are again combined|lpy And finally, this resulting process iis
synchronized parallelism with the intruder.

Given the well-known property thak| z) [] (Y] 2) hasthe sametracesas(X[]Y)| z, where|
means any parallel composition operator, we can split the set of tracespédifeationinto 4
subsets:

» whenA can only initiate a run witB, andB can only initiate a run witA

* whenA can only initiate a run witB, andB can only initiate a run witiNT

» whenA can only initiate a run witlNT, andB can only initiate a run witA

* whenA can only initiate a run wittNT, andB can only initiate a run witiNT

The union of these cases will gia# the possiblesequencesThereforeit sufficesto dealwith
the 4 casesindependentlyand checkwith the exhibitor tool that none of them containsany
sequence matching our given pattern.

We could think that the first case has been verifiedalready with the CHAP2_i nt r uder
specification.This is not true. In this specificationthe CHAP entitiesdid not acceptrequests
from INT, which we would like to allow nowT he secondandthird casesare symmetrical,so
that only one needs to lgeneratedThe fourth casecanbe left out, asthis scenariocannever
generate anyut hConf ! Al B, nor anyAut hConf ! B! A, which makesit impossibleto violate the
authentication property.

To do so, itsufficesto prunethe two instancesf the CHAP_ent i ty processFor example,to
check the second case, we consider:

Specification CHAP2_int_AB Bl [env,Imm,rmnr] :noexit

Behavi our

((Initiator [env,Imm] (A B, Na, Sha)
|
Responder [env,Imm] (A B, Sab)

|11
Responder [env,Imm] (A INT,Si)

)
|
(Initiator [env,rmm] (B, INT, Nb, Si)
I
R
I
Responder [env,rmnr] (B, INT, Si)
)

|
ni
N
esponder [env,rmnmr] (B, A Sbha)
N
S

[Imm,rmnr]]|

ntruder [Imm,rmnr] (cons(A cons(B,cons(INT,nil_id))),
cons(N, nil _nonce),
ni | _hash,
cons(Si, nil_key))

)
|
|

endspec
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If we apply again the verification steps explainedin section 4 to the two specifications
representingcases 1 and 2 above (called cHAP2_int_AB BA and CHAP2_int_AB_ Bl
respectively), we get the following numbers:

Nb. of stateq Nb. of

transitions
CHAP2 int AB BA 673 990 3238734
CHAP2 int _AB BA. bisim 41 808 298 608
CHAP2 int _AB BA service.bisim 1152 4 500 No livelock
CHAP2 i nt AB BA service. branching 64 176
CHAP2 int AB BA service.safety 25 50 Deterministid
CHAP2 int AB BI 789 744 3816 751
CHAP2 int AB BI. bisim 54 624 389 040
CHAP2 int _AB Bl service.bisim 1164 4 657 No livelock
CHAP2 int AB Bl service. branching 16 30
CHAP2 int AB Bl service.safety 10 15 Deterministid

The verdict of the EXHIBITOR tool is that thereis no sequencein none of these two
specificationsthat falsifies our authenticatiorproperty. We canthus considerthat the second
version of the CHAP protocol is robustto the attacksand in the configurationswe have
considered.

Does it mean that this version of CHAP is absolutely secure?

We cannot declare that for the following reasons:

We verified the robustness ansingle protocolrun. We did not prove a more generalresult

stating that our conclusions are stdllid if we consideran intruderwhich canparticipatein
multiple protocol runs and possibly acquire additional knowledge that he could reuse to breal
the protocol. Moreover,scenariosvith infinitely many protocol runs cannotbe finite-state

(and thus cannot be verifidry our method)pecausehis would requireto assigninfinitely

many differents noncesto the entities. Executing severalsuccessiveruns with the same
nonce(to keepthe systemfinite-statebut with infinite traces), wouldhot modelthe system
correctly.

Our model of cryptographic functions, such as hashing, is idealized. If there is a weakness i
the hashing function used by the protocol, an intruder might be capable of breaking it without
having the secret key.

We have not modelledthe establishmenbf the sharedsecretsbetweenthe parties, and
therefore we did not consider attacks on this protocol. If this protocol has #heotdruder

could acquiresomeknowledgeof the sharedsecret,which we did nottakeinto accountin

our verification.

6. Conclusion

This paper illustrates a model-badedmal verification process forsecurity protocolsby using
the specification language LOTOS, and the CHAP protocol as an example.

We have shown how intrusion can be taken into accountby adding an intruder process
replacing the communication channels. Our model ofititiaderis very simple and powerful.
He can mimic very easily real-world non cryptographicand non repetitive attackson the
behaviourof the protocol. The ideaof explicitly introducingan intruderwasfirst proposedin

[DEK82, DY83] in anothersetting. This idea was then used in the Interrogator system
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[MCF87], where the participantsare modelled as communicatingstate-machinesand the
network is assumedo be underthe control of an intruder, which can intercept messages,
destroy or modify them, orpassthem through unmodified. The NRL Protocol Analyser
[KMM94, Mea94] is similar to the Interrogator, bilee goalis hereto prove the unreachability
of some undesirablestates.It can deal with infinite-state systemsbut the searchis less
automated tham the Interrogator.The differencebetweenour approachandthesemethodsis
that we do not have to define some pathological tatgétsto be searchedor by the tool. We
just give safety properties expressed on sequences of service primitives.

We have explainethe validation processandthe formalizationof securitypropertiesas safety
properties.Thesepropertiesare similar to the correspondenceroperties, usedn [WL93],
which require that certain events dake placeonly if othershavetakenplacepreviously.Our
approach is similar to [Low96, LR97] whereauthenticatiorprotocolswere specifiedin CSP
[Hoa85] and checkedby the FDR tool by verifying the trace inclusion relation betweenthe
system andhe property.This tool andthe onewe haveusedare not classicalmodel-checkers
but rather equivalence or preorder checkers. Model-checkers (e.g. [MZS$B,7]) havealso
been used in similar ways.

The model-basethethodsare extremelypowerful at finding subtleflaws in protocols,but are
lessadequatdo prove correctnessvhen no bug igound. This is becauseahey are appliedon
simplified, though realistic, models of the systems.On the other hand, theorem provers
[Kem89, CG90, Bol96, Sch98]can provide suchproofs and can also deal more easily with
infinite-state systems. However, the proofs are usledlyautomatedandwhen no proof has
beenderivedfor a given property, it is not easyto know whetherthe propertyis wrong or
whether the toosimply did notfind it. In particular,an attackthat falsifies the propertyis not
provided automatically.

In our approach, the verification is quite automaticl allows oneto makeefficient corrections
andimprovementsHowever,aswith any model-checkingnethodswe havehad to simplify

the model to keep it finite-state. There exist ways to extenchétirodto infinite-statesystems.

In [Low96], an additional induction proof has been provided to extend the correctness guarante
to an arbitrary number of involved entities.

Another approachwhich circumventsthe problem of adding an explicit intruder process is
proposed in [AG97] where the Spi-calculus is used to describe security protocols. Theddea is
verify that the protocol specificationplacedin any Spi-calculuscontextis equivalentto the
expected ideal behaviour (i.e. without intruder). Threads expressible in the Spi-calctihusare
implicitly considered among the possible contexts. However, this approach is not solwessy to
in practicebecausehe equivalences sometimesoo strong. For example,some intruder's
actions may be such that the equivalenaeidulfilled, while the securityof the systemis not

in danger,becausehe non equivalencesimply resultsfrom the falsification of an irrelevant
property. In the CHAP protocol, wehave indeed seen that indruder’s actions are often
noticeableby the usersof the protocol (e.g. by the occurrenceof some extra indication
primitives) while the authentication property was still verified.
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Appendix 1: Overview of the LOTOS operators

* stop IS an inactive (deadlocked) process.

* goj...0n[SP]; P (action-prefixing)is a procesghatfirst performsan (observable)action on
gateg andthenbehavedike P. Thetupleo;...0o, determineghe dataexchangediuring the
synchronisation: either data sent,!fay or data(of sorts) received,by ?x:s. The variables
declaredin o;...0,, t0 receivedatacan appearin the selectionpredicate(i.e. the boolean
expressionyP. Data can be received only if they ver$.

* i;Pis a process that first performs an internal action and then behaves like

* exit(ey,...ey) IS @ processhat successfullyterminateslt performsan action on gate 5 and
then turns into stop. The tuple ey,...e,, determineshe data transmittedto the subsequent
process (see the enabling operator).

* P;0 Py (choice) is a process that can behave eithePlila like Po. The choices resolved
bK the first processwhich performsan action. Notice that internal actionsalso resolvethe
choice.

* P;p|[r]| P2 is the parallel composition &; andPs with synchronisation on the gatesin

* hider in P hides actions af occurring at gates present in thersete. renames them
* P;»acceptxjisy,..xys, in Po (enabling) is the sequential compositiorPgaindPo, i.e. Ps
can start when P; has terminatedsuccessfully.A processterminating successfullycan
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transmit data to its successor: the tuple.e,, associated witkxit determines the data values

transmitted anéccept x;7:s7,...x,:s, in Specifies the dat@e expects to receive.

* P;j[> P (disabling) allowsP, to disableP; providedP; has not terminated successfully.

* [SP]- P (guard) behaves like if the guardSp is true and liketop otherwise.

o letxz=txj,...xp=tx, in P (InStantiation) instantiates the free variablgsx,, in P.

* choice x1:57,...x,:5, 0 P (Choice over values). Assumimrgdepends orthe variablesy;...x,,
(of sortssj...sy), choice x7:51,...x,:5, 0 P Offers a choicébetweenthe processe®(tx;...tx,)
for all the combinations ofalues(tx;...tx,) of sorts(s;...s,). For example choice x:Nat ©
P(x) meansP(0) 0 P(1)0 P(2)0 ...

Appendix 2: Definitions of equivalences

Consider TS = [5, A, T, sgwhereS is the setof states,A the alphabetf actions(with i
denoting the internal action),the set of transitions arggthe initial state.

A relationR [0 Sx Sis a (strongpisimulation iff 0 P,QU0 R ,0 a0 A:

() if P & P, then 0Q’ suchtha & Q and®’' Q' IR,

(i)if Q & Q’, then OP’ suchthaP & P’ and®’,Q'IR.
Sys, =81, A, Ty, so,Hand Sys, = [By, A, Tz, sp,Ularebisimilar, denotedSys, ~ Sys,, iff
there exists a strong bisimulation relatRn] S, x S,, such thats, s, [L1 R

A relationR 0 Sx Sis abranching bisimulation iff O 0P,QU0 R ,[Ja [0 A:
() (if P & P’, then 0Q’, Q" such thaQil Q & Q" and P,QMRand®, Q"0 R)
or (if P L P, then,Q I R),
(i) (if Q & Q’, then OP’, P” such thaP " pra pr andP’,Q MO Rand®”’,Q'00 R)
or (if Q 5 @, then®, Q' R).
Sys; =[5, A, T1, so,lJand Sys =[5, A, Tz, sp,lJarebranching bisimilar, denotedSys,

=pb Sy$, iff there exists a branching bisimulation relatRnlJ S; x S,, suchthat [$; ,so,10]
R

A relationR 0 Sx Sis aweak simulation iff 0 IP,Q00 R ,0adA:

it P 2 P then 0Q’ such thaQ 5,8 Q andP' QMR.
Sys, =[5, A, Ty, sp,lcan be simulated by Sys [$, A, T, sp,L] denoted Sysss Sys,, iff
there exists a weak simulation relatRnl] §; x S,, such thatsy , sp,l 11 R

Sys, = [B1, A, T, so,and Sys = [, A, Ty, sp,[Jaresafety equivalent, denotedSys, =s
Sys,, iff Sys <sSys andSys <sSys.
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