
Verification of security protocols using LOTOS-method and application

G. Leduc, F. Germeau

Research Unit in Networking (RUN), Institut Montefiore B28, University of Liège, B-4000 Liege, Belgium

Abstract

We explain how the formal language LOTOS can be used to specify security protocols and cryptographic operations. We describe how
security properties can be modelled as safety properties and how a model-based verification method can be used to verify the robustness of a
protocol against attacks of an intruder. We illustrate our technique on a concrete registration protocol. We find an attack, correct the protocol,
propose a simpler yet secure protocol, and finally a more sophisticated protocol that allows a better discrimination between intruder’s attacks
and classical protocol errors. � 2000 Elsevier Science B.V. All rights reserved.

Keywords: Security protocol; LOTOS; Protocol verification; Model-checking

1. Introduction

With the development of the Internet and especially with
the birth of electronic commerce, the security of commu-
nications between computers becomes a crucial point. All
these new applications require reliable protocols able to
perform secure transactions. The environment of these
operations is very hostile because no transmission channel
can be considered safe. Formal descriptions and verifica-
tions can be used to obtain the assurance that a protocol
cannot be threatened by an intruder.

Our approach consists of using a generic formal language
(LOTOS) and its associated verification methods and tools
to verify security protocols. We explain how LOTOS can be
used to specify security protocols and cryptographic oper-
ations, and show how security properties can be modelled as
safety properties and checked automatically by a model-
based verification tool. In our method a simple and powerful
intruder process is explicitly added to the specification, so
that the verification of the security properties guarantees the
robustness of the protocol against attacks of such an
intruder.

Our approach is similar to Refs. [24,25] where authenti-
cation protocols were specified in CSP [17] and checked by
the FDR tool by verifying the trace inclusion relation
between the system and the property. This tool and the
one we have used are not classical model-checkers but
rather equivalence or preorder checkers. Model-checkers
(e.g. Refs. [26,30]) have also been used in similar ways.

The model-based methods are extremely powerful at
finding subtle flaws in protocols, but are less adequate to
prove correctness when no bug is found. This is because
they are applied on simplified, though realistic, models of
the systems. On the other hand, theorem provers [2,7,19,32]
can provide such proofs and can also deal more easily with
infinite-state systems. However, the proofs are usually less
automated, and when no proof has been derived for a given
property, it is not easy to know whether the property is
wrong or whether the tool simply did not find it. In par-
ticular, an attack that falsifies the property is not provided
automatically.

We illustrate our technique on a concrete registration
protocol which is a part of the Equicrypt protocol [21]
designed in the ACTS OKAPI project. We have already
verified and corrected the subscription protocol [22,23]
and the registration protocol [13,14] of Equicrypt. This
paper extends our previous work in two ways: firstly, we
present a more complete picture of our approach and
secondly, we propose an enhanced design in two steps: we
find a simpler registration protocol that remains secure, and
a more sophisticated protocol that allows a better discrimi-
nation between intruder’s attacks and classical protocol
errors.

The paper is organized as follows: in Section 2, we will
show that the LOTOS language is appropriate to handle the
specification of security protocols at a high level of abstrac-
tion. With its flexibility, a wide range of cryptographic
operations can be modelled. We will describe the establish-
ment of security properties and the associated verification
process in Section 3. The verification is quite automatic and

Computer Communications 23 (2000) 1089–1103

0140-3664/00/$ - see front matter � 2000 Elsevier Science B.V. All rights reserved.
PII: S0140-3664(99)00239-X

www.elsevier.com/locate/comcom

E-mail address: leduc@montefiore.ulg.ac.be (G. Leduc).

allows one to certify that an intruder cannot break a crypto-
graphic protocol with different kinds of attacks. An appli-
cation of our method on a concrete protocol will be
presented in Section 4. We will also point out that it is
possible to tune a protocol in order to obtain new properties
and improve its behaviour. Finally, we compare our
approach with related work.

2. LOTOS specification

In our approach the formal specification of a security
protocol is written in LOTOS [4,18] which is a standardized
language suitable for the description of distributed systems.
It is made up of two components:

• A process algebra, mostly inspired by CCS [29] and CSP
[17], with a structured operational semantics. It describes
the behaviour of processes and their interactions. LOTOS
has a rich set of operators (multiway synchronization and
abstraction like in CSP, disabling,…), and an explicit
internal action like in CCS.

• An abstract datatype language, ACT ONE [10], with an
initial semantics. A type is defined by its signature
(sorts � operation on the sorts) and by equations to
give a meaning to the operations.

A LOTOS specification is composed of two different
parts. The first one is dedicated to the description of the
abstract data types and the cryptographic operations in par-
ticular. The second part describes the behaviour of the
different entities involved in the protocol. We will firstly
deal with this description.

2.1. Behaviour

Every security protocol involves several entities called
principals. A principal can be any object that plays a role
in the evolution of the protocol. Example of principals are
users, hosts or processes. When we address the verification
of the security of the protocol, we must make some assump-

tions on the behaviour of the principals. Thus principals are
qualified as trusted or not. A trusted principal will always
react according to the expected behaviour. A non-trusted
principal can try and break the protocol with an unexpected
behaviour although it is considered genuine by the other
entities.

Principals are linked together with communication
channels to exchange messages. These communication
channels are generally considered insecure, that is an
intruder can act passively or actively on the transferred
information. He can eavesdrop on messages, intercept
them, replay old ones, or create new ones. The goal
followed by the intruder ranges from a simple denial of
service to the access to prohibited rights.

The behaviour section of a LOTOS specification is
composed of several processes which interact with each
other through interaction points called gates. Each principal
involved in the protocol is modelled by a process that
describes its exact behaviour. LOTOS allows the synchro-
nization of two or more processes via interactions that can
occur at each gate. A one way communication channel
between two principals is modelled by the synchronization
of the transmission gate of one principal with the reception
gate of the other principal. A second synchronization
handles the other way of the communication channel.

For instance, Fig. 1 depicts a system with two principals
where the communication channel is modelled by the
synchronization of the gate A_to_B of principal A with
the gate A_to_B of principal B and with the synchroniz-
ation of the gate B_to_A of principal A with the same gate
of principal B.

To introduce the intruder that will try to threaten the
protocol we replace the simple communication channels
by one central process that will act as the intruder. Thus
the intruder can intercept all messages and transmit them
or not, with or without modification. We will enter into the
details of the intruder’s behaviour in Section 2.3. Back to
our example, the principals are not interacting directly with
each other but indirectly through the intruder process (Fig.
2). The intruder is the only principal considered untrusted.
All other principals are trusted. We model cases where a
principal is not trusted by giving enough power to the
intruder to act as a genuine principal.

Finally, we use an environment to monitor the progress of
the protocol. When a principal reaches a sensitive point, he
informs the environment by sending it a message through

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031090

Fig. 1. Principals without intruder.

Fig. 2. Principals with intruder and environment.

the System_State gate. These messages are called
security events and will be developed further in Section
3.2. They will be of a great help to perform the formal
verification. The environment is also responsible for the
reception of error messages. Fig. 2 presents the complete
structure of a typical LOTOS specification that models a
security protocol between two principals.

Each process that represents a principal is parameterized
with some initial knowledge. This knowledge includes iden-
tifiers, keys or whatever information a principal must know
or generate locally before running the protocol. As we will
see later, such a knowledge is the core of the intruder’s
modelling.

2.2. Abstract data types

2.2.1. Principles
The specification of the behaviour only describes the

exchange of messages. It does not consider the data trans-
ferred by these messages. Abstract data types define the
elements that are handled by the behavioural part. They
define which kind of data are used by the protocol but
also which operations are allowed on these data. Only the
defined operations are permitted. With this restriction,
complex cryptographic operations can be abstracted away
from mathematical details. We will see that only a simple
description of their characteristics is needed.

With LOTOS, abstract data types are written in ACT
ONE. Each LOTOS variable can only have values of a
particular sort defined during the declaration. A LOTOS
type is a module composed of one or several sorts, oper-
ations and equations. A sort is the name given to a set of
values that belong to the same domain. Specific operations
are defined on the values of each sort and the semantics of
these operations is provided by specific equations. This
structure allows for a great flexibility in the handling of
data in LOTOS.

A lot of mechanisms exist in modern cryptography [33],
but only a few of them are actually used in security proto-
cols. We do not intend to make an exhaustive translation of
cryptographic operations into ACT ONE. We just want to
show the level of abstraction provided by LOTOS and the
relative simplicity in the definition. Thus we will focus on
two examples that represent the most widely used oper-
ations: encryption and signature in public-key crypto-
graphy. More subtle and complex cryptographic
operations can be modelled. In Section 4 we present a regis-
tration protocol that uses a zero-knowledge identification
scheme.

ACT ONE is not only used to define the data transferred
in messages, but also to define the internal database of
information of each principal. For instance, a registration
principal needs to manage a registration database that will
also be defined in ACT ONE as a table of records with
multiple fields. This application is quite common and will
not be developed further in this paper.

Definition of abstract data types can rapidly become very
cumbersome to design. Thus our specifications are written
using data type language extensions, as offered by the
APERO tool [31] included in the Eucalyptus toolbox. The
original text has to be preprocessed by the APERO trans-
lator to get a valid LOTOS specification. This provides for a
smaller and more readable specification and for some level
of immunity w.r.t. underlying processing tools. However,
some types were written from scratch, hence, it was neces-
sary to take tools restrictions explicitly into account. The
other parts of the toolset will be explained in Section 3.3.

2.2.2. Public-key encryption and signature
The following ACT ONE definition models the public-

key encryption operation. It does not rely on any particular
implementation (e.g. RSA) nor on any particular mathema-
tical concept. For simplicity, we assume that public and
private keys are base values of some sorts and that a
match(PublicKey,PrivateKey) operation exists that
returns true if the public key corresponds to the private key.

type EncryptedMessage is
Message, PublicKey, PrivateKey

sorts EncryptedMessage
opns
E (�! constructor �):

PublicKey, Message
- � EncryptedMessage

D: PrivateKey, EncryptedMessage
- � Message

eqns
forall msg: Message,

pubkey: PublicKey
prvkey: PrivateKey

ofsort Message
Match(pubkey,prvkey) � �
D(prvkey,E(pubkey,msg)) � msg;

not(Match(pubkey,prvkey)) � �
D(prvkey,E(pubkey,msg))
� Message_Junk;

endtype.

The encryption function E and the decryption function D
are defined as abstract operations that are the reverse of each
other. Decryption with a bad key is handled explicitly and
produces a distinguished value Message_Junk without
any meaning. Once encrypted, the only way to access the
message is through the decryption function called with the
right private key.

The signature operation is defined in the same way with a
verification function V that returns true if the signature is
correct (i.e. the verification is performed with the right
public key). We consider that a signed message is composed
of the message in clear and of an encrypted hash of it. Thus
our model provides the GetMessage operation to access
the message without any key. Of course, no operation allows
the derivation of the private key.

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1091

type SignedMessage is
Message, PublicKey, PrivateKey

sorts SignedMessage
opns
S (�! constructor �):

PrivateKey, Message
- � SignedMessage

V: PublicKey, SignedMessage - � Boolean
GetMessage: SignedMessage - � Message
eqns
forall msg: Message,

pubkey: PublicKey
prvkey: PrivateKey

ofsort Boolean
V(pubkey,S(prvkey,msg)) �

Match(pubkey,prvkey);
ofsort Message
GetMessage(S(prvkey,msg))� msg;
endtype.

We assume with these definitions that no one can break
the public key cryptosystem by getting the message in clear
from the encrypted message without having the private key,
or forging a signed message from the message in clear with-
out having the private key. Note that LOTOS easily
provides processes that transgress this rule, and thus break
any cryptosystem. For example, we can write a process that
enumerates all possible messages, encrypts them and tests
whether there is some matching between one of them and a
given encrypted message. These kinds of unrealistic
LOTOS behaviours should thus be avoided, because this
would break any reasonable assumption about crypto-
graphy. Hopefully, these unrealistic processes are very
special and easily avoidable. In particular, the tools will
reject them because they would conceptually generate infi-
nite-state (or very large) models.

2.3. The intruder

2.3.1. Model
We want to model an intruder as a process that can mimic

attacks of a real-world intruder. Thus our intruder process
shall be able to:

• eavesdrop on and/or intercept any message exchanged
among the entities;

• decrypt parts of messages that are encrypted with his own
public key and store them; and

• introduce fake messages in the system. A fake message is
an old message replayed or a new one built up from
components of old messages including components the
intruder was unable to decrypt.

The intruder merely replaces communication channels
linking principals involved in the protocol. He behaves in
such a way that neither the receiver of a fake message, nor
the sender of an intercepted message can notice the intrusion.

The LOTOS process that models the intruder manages a

knowledge base. Each time the intruder catches a message,
he tries to decrypt its encrypted parts. Then he stores each
part of the message in separate sets of values, one per data
sort. These sets constitute the intruder’s knowledge base
that increases each time a message is received. The intruder
tries to collect as much information as he can from the
intercepted messages. His behaviour is simple and repeti-
tive. He does not deduce anything from his knowledge base.
He just stores information for future use.

When one of the trusted principals is ready to receive a
message, the intruder analyzes his knowledge base to deter-
mine the messages he can create. He builds them with
values stored in his sets. As he tries every combination of
these values, the intruder tries to send every possible
message he can create with his knowledge.

The intruder is parameterized with some initial knowl-
edge which gives him a certain amount of power. Remem-
ber that all principals except the intruder are considered
trusted. Thus as we want to cover cases where regular prin-
cipals are untrusted, the intruder must be able to act as these
principals. So his initial knowledge must comprise enough
information to allow this behaviour. For instance, in a proto-
col where a user must register with a trusted authority, the
intruder must be able to act as a valid user from the point of
view of the trusted authority. But he must also be able to act
as a valid trusted authority from the point of view of the
user. This example will be explained in more details in the
example of Section 4.

The key point is the power given to the intruder. Security
protocols are based on some assumptions provided by the
mathematical background of cryptographic operations. As
we want to be realistic, our intruder will not be powerful
enough to break a cryptosystem. As LOTOS provides
processes that transgress this rule, it would be easy to define
an intruder that tries a brute force attack to guess a private
key or a random number. The intruder’s behaviour is thus
deliberately limited in this respect.

2.3.2. Specification of the intruder
The following LOTOS code describes a 3-way exchange

between two principals. Its purpose is to show the intruder’s
interactions with trusted principals. Therefore data types are
simplified.

Principal A interacts through gates A_Send_B and
A_Receive_B and principal B uses gates B_Send_A
and B_Receive_A. The intruder is synchronized with
each gate. His behaviour is a loop where each iteration is
either a message reception or a message transmission. The
structure of the intruder is thus very simple and not at all
error prone. The body of the loop is merely an enumeration
of a couple of possible message receptions, followed by a
couple of message transmissions. When a message is
received, it is segmented into all its fields, which are stored
in separate sets. The encrypted fields that can be decrypted
by one of the known keys are stored in clear. These actions
are modelled by the insert operation in the specification

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031092

below. As regards message transmission, LOTOS provides
the choice operator that automatically enumerates all the
possible messages that can be built from a set of compo-
nents. Here, this set is actually a multiset where each
element is a set of message fields, and the selection is
modelled by the is_in_knowledge predicate.

Although the structure of the LOTOS specification is
such that only two principals are present, this does not
mean that A and B know a priori that they are executing a
run between them. This can only be known by executing a
correct authentication protocol.

behaviour
Principal_A [A_Send_B,A_Receive_B]

(Initial_Knowledge_of_A)
�[A_Send_B,A_Receive_B]�
Intruder [A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]
(Initial_Knowledge_of_I)

�[B_Send_A,B_Receive_A]�
Principal_B [B_Send_A,B_Receive_A]

(Initial_Knowledge_of_B)
where
process Principal_A

[A_Send_B,A_Receive_B]
(Knowledge_of_A: Knowledge)
:noexit U

A_Send_B !Message_1;
A_Receive_B ?Message_2:Type_2;
A_Send_B !Message_3;
stop
endproc

process Principal_B
[A_Send_B,A_Receive_B]
(Knowledge_of_B: Knowledge)
:noexit U

B_Receive_A ?Message_1:Type_1;
B_Send_A !Message_2;
B_Receive_A ?Message_3: Type_3;
stop
Endproc

process Intruder
[A_Send_B,A_Receive_B,
B_Send_A,B_Receive_A]
(Knowledge_of_I: Knowledge)
:noexit U

(A_Send_B ?Message_1:Type_1;
Intruder [A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]
(Insert(Message_1,Knowledge_of_I))

)
[]
(B_Send_A ?Message_2:Type_2;
Intruder [A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]

(Insert(Message_2,Knowledge_of_I))
)
[]
(A_Send_B ?Message_3:Type_3;
Intruder [A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]
(Insert(Message_3,Knowledge_of_I))

)
[]
(choice Message_1:Type_1 []
[Message_1 is_in Knowledge_of_I] - �
B_Receive_A !Message_1;
Intruder[A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]
(Knowledge_of_I)

)
[]
(choice Message_2:Type_2 []
[Message_2 is_in Knowledge_of_I] - �
A_Receive_B !Message_2;
Intruder[A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]
(Knowledge_of_I)

)
[]
(choice Message_3:Type_3 []
[Message_3 is_in Knowledge_of_I] - �
B_Receive_A !Message_3;
Intruder[A_Send_B,A_Receive_B,

B_Send_A,B_Receive_A]
(Knowledge_of_I)

)
endproc.

2.4. Finite model

Model-based verification methods are inherently limited
in the sense that they are powerful at finding bugs in proto-
cols but fall short in proving full correctness. There are
several reasons for that. Even though some research work
is carried out to extend model-based methods to infinite-
state systems, practical methods are presently limited to
finite-state systems (of reasonable sizes), whereas most
protocols are not, because either their data space is not, or
their control structure is not (e.g. there may be an arbitrarily
large number of protocol instances running in parallel).
Therefore, these methods are only applicable if some
abstraction is used that keeps the model finite-state
and also of reasonable size. However, it is essential
that these abstractions be error preserving, in the sense
that an error found on the abstract model is a real error
of the actual protocol. Clearly, the absence of error in
the abstract model is no guarantee about the actual
protocol. Knowing that, our objective is to capture as
much as possible of the possible behaviours of the actual
protocol.

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1093

The LOTOS specification will be translated into a labelled
transition system (LTS) (a graph) where the nodes are the
states of the LOTOS specification and the transitions are
labelled by the LOTOS actions. This LTS must ideally
comprise all the possible executions of the protocol. But
this graph must also be kept finite to be generated.

Although some message fields like random numbers or
time stamps are specific to one run of the protocol, their
number is potentially infinite. This infinity must be
controlled by giving some well-chosen properties to these
specific message fields. Trusted principals will typically use
any but a single specific value in each run they perform, so
we give them a limited set of values that will be used during
their executions. We also give the intruder one such value
but which is different from those of the trusted principals.
When the intruder will use this value in a particular message
field, this will, in fact, model all the possible messages not
created by a trusted principal. This is an abstract interpreta-
tion which is often used when the protocol is independent
from a piece of data, i.e. when the behaviours of the entities
do not depend on the particular value used. This abstraction
still allows the processes to check for equality and inequal-
ity of message fields. Moreover, this reduction is error
preserving: the actual protocol can perform all the traces
of the abstract model, because the latter merely reduces
the possible values that can be used in the message fields.

The initial knowledge of principals is large enough to
allow them to participate in several runs of the protocol,
possibly in parallel. In addition, the intruder is given an
initial knowledge that allows him to act as other trusted
principals.

All in all, we believe we cover a large body of the possi-
ble behaviours of the actual system, but of course we are
never sure we do not preclude a subtle attack which has been
filtered out by our abstraction. As explained above, we do
not aim at proving full correctness, but more modestly to
prove very large parts of the real protocols.

Some researchers have complemented their model-based
verification by additional proofs, e.g. Ref. [24] where the
model-based verification based on two principals is further
generalized by induction to an arbitrary number of
principals. Another research direction is proposed in Ref.
[3] where an abstraction function automates the computa-
tion of a correct abstract model. All these methods can push
the limits of model-based verification further.

Now that we have presented the complete specification,
we will detail the verification process.

3. Verification process

3.1. Properties to be verified

Most security properties rely on the fact that the intruder
does not know some secret information or is not able to
construct the expected message. They can be characterized
as safety properties. Informally, safety properties are prop-
erties stating “nothing bad will happen”. Authentication,
access control, confidentiality, integrity and non-repudia-
tion are safety properties. Each of these security services
requires that a particular situation cannot occur.

The only liveness property is the non-denial of service,
which current cryptographic protocols do not guarantee.
Intuitively, liveness properties are properties stating
“something good will happen”. A denial of service
happens if an intruder succeeds to get a protocol stuck
or make it fail, by e.g. intercepting every message sent on
the channel. Thus when a denial of service arises, the
liveness property stating that the protocol will succeed
is not satisfied.

In order to provide these security services, protocols
implement particular mechanisms. The LOTOS specifica-
tion of trusted principals applies them while the intruder
process tries to defeat them. A way to verify the robustness

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031094

Fig. 3. The eucalyptus toolbox.

against intruder’s attacks during the execution of the speci-
fication is needed. Thus a formal translation of the proper-
ties to be achieved by security services is required in order
to perform the verification.

3.2. Formalizing the properties

During message exchanges of security protocols, critical
points are reached where certain security services are
assured. The reception of a well-formed message can trigger
a principal into a state where he trusts some facts. This
behaviour needs to be formalized. We must translate the
human idea that the required security service is satisfied
into a precise definition of principals state.

In order to determine these critical points in the specifi-
cation, we introduce some special events, called security
events. Each time a critical point is reached by a trusted
principal, he informs the environment by sending a specific
message that gives information about the internal state of
the principal. The environment of the LOTOS specification
is responsible for receiving these messages. By executing a
security event, a principal declares that he is confident of a
fact.

Let us consider an authentication protocol between two
principals where a prover must be authenticated by a veri-
fier. There are two critical points in this protocol. The first
one is when the prover starts his authentication and the
second one is when the verifier is sure of the prover’s
identity. Thus we introduce two special events
PROVER_START_AUTHENTICATION and VERI-
FIER_AUTHENTICATION_SUCCESSFUL. A common
property required is that “the prover must have started an
authentication with the verifier before the verifier success-
fully authenticates the prover”. Otherwise, an intruder has
been able to be authenticated with the prover’s identity. This
property will be captured by our security events regardless
of the particular authentication mechanisms used. We
just state that “At least one PROVER_START_AUTHEN-
TICATION event must have occurred before any
VERIFIER_AUTHENTICATION_SUCCESSFUL event”.

This technique can be applied to a wide range of security
properties. In practice, the security events will have a finer
structure to better identify the protocol run to which they
refer. Parameters of security events can be a principal’s
identity, an authentication token, a particular key, nonce

or any other data relevant to the properties we want to
prove. So, the set of security events and their structure is
linked to the set of properties.

This method allows one to abstract away from all the
details of security mechanisms. We can only focus on the
security services achieved. As a matter of fact, these events
are some sort of service primitives exchanged with the
environment. Some of them request security services, others
indicate that a request has been issued by another principal,
or confirm that a security service is completed. One of the
difficulties is to gain the assurance that the security proper-
ties are translated correctly into properties on security
events. But this is inherent to any verification approach:
properties should be expressed in one way or another and
we cannot guarantee that the properties are expressed
correctly. This process could be made less error-prone by
providing guidelines to express the most common proper-
ties. In Ref. [1] for example, an approach is proposed to
model typical security properties in the framework of the
Spi-calculus.

3.3. The verification toolbox

When the LOTOS specification is written and the
properties are formalized, we can perform the verification
itself. We use the CADP package [11,12] included in the
Eucalyptus toolbox to carry out the verification of the proto-
col. As Fig. 3 shows, the LOTOS specification with datatype
language extensions is converted into ISO LOTOS with the
APERO tool. The next step consists of applying the Caesar
tool to generate a graph called LTS from the LOTOS speci-
fication. This graph contains exactly the possible execution
sequences of the studied protocol. Section 2.4 has addressed
the feasibility of the generation. To gain confidence into the
specification, it is first simulated with the XSimulator in
step-by-step execution mode.

The Aldebaran tool is the last stage of the processing. It
performs the comparison of two LTS. The verification
requires the comparison of the LTS of the protocol as
created by the Caesar tool with the graphs of our properties.
Thus a final step in the formalization is needed. The proper-
ties based on special events must appear like a finite-state
graph. The process can be automated using the Caesar tool:
each property is modelled as a reference LTS generated

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1095

Fig. 4. LTS of the authentication property.

from a simple LOTOS process containing special events
only.

The property discussed in Section 3.2 can be specified in
LOTOS as follows. The corresponding LTS generated by
the Caesar tool is shown in Fig. 4.

behaviour
System_State !PROVER_START_

AUTHENTICATION;
Property[System_State]

where
process Property[System_State] :noexit
U

System_State !PROVER_START_
AUTHENTICATION;

Property[System_State]
[]
System_State !VERIFIER_AUTHENTICATION_

SUCCESSFUL;
Property[System_State]

endproc.

3.4. The verification

Before any comparison between LTS’s is made, they
must be minimized to speed up the computations. The
Aldebaran tool can minimize a LTS modulo a particular
equivalence. The first minimization is always done modulo
the strong bisimulation equivalence, which preserves all the
(safety, liveness and fairness) properties of the graph.

Consider a LTS � �S�A�T � s0� where S is the set of states,
A the alphabet of actions (with i denoting the internal
action), T the set of transitions and s0 the initial state.

A relation R � S × S is a strong bisimulation iff:

If �P�Q� � R then� �a � A�

whenever P�a P � then � Q � � Q�a Q � and �P �
�Q �� � R�

whenever Q�a Q � then � P � � P�a P � and �P �
� Q �� � R�

Two LTS’s Sys1 � �S1�A� T1� s01� and Sys2 � �S2�A�T2� s02�
are related modulo the strong bisimulation denoted
Sys1�Sys2� iff there exists a strong bisimulation relation R �
S1 × S2 such that �s01� s02� � R�

Our security properties being all simple safety properties
obviously expressible in Branching time Safety Logic
(BSL) [5], the minimization can be further improved
modulo the safety equivalence (defined below), which
preserves all the properties expressible in BSL.

Not all the observable actions are relevant to verify the
properties. In particular, our properties only rely on security
events, so that other actions can be hidden. The minimized
LTS of our protocol can be checked against the LTS of a
property by verifying the safety preorder relation [5]
between them. Formally, the safety preorder (� s) is the

preorder that generates the safety equivalence (� s), and
is nothing else than the weak simulation preorder.

Consider again a LTS � �S�A�T � s0� and let’s define L �
A � {i}� a relation R � S × Sis a weak simulation if:

If �P�Q� � R then� �a � L�

if P�i
�a

P �
� then � Q � � Q�i

�a
Q � and �P �

�Q �� � R�

A LTS Sys1 � �S1�A�T1� s01� can be simulated by Sys2 �
�S2�A� T2� s02�� denoted Sys1 �s Sys2� iff there exists a weak
simulation relation R � S1 × S2 such that �s01�s02� � R� Two
LTS’s Sys1 and Sys2 are safety equivalent iff Sys1 �s Sys2

and Sys2 �s Sys1� Informally, “behaviour � s property”
means that the behaviour (exhibited by the protocol) is
allowed (i.e. can be simulated) by the (safety) property.

When a property is not verified, meaning that Aldebaran
has not found a safety preorder between the LTS of protocol
and the LTS of the property, it produces a diagnostic
sequence of actions. However, this sequence is usually of
little help as such, because it only refers to the few
non-hidden actions that were kept for their relevance to
express the properties. We call it the abstract diagnostic
sequence.

To circumvent this difficulty and get a detailed sequence
with all actions visible, we have to encode this abstract
diagnostic sequence in a format suitable for input to the
Exhibitor tool. This tool is then instructed to find a detailed
sequence allowed by the specification and matching the
abstract one. This sequence always exists, but is not neces-
sarily unique. This does not matter. It suffices to have one
such trace as diagnostic to clearly identify the scenario that
leads to the undesirable state where the property is not veri-
fied. The Exhibitor tool can even be used to find the shortest
such trace, which helps understand the intruder’s attack.

The verification process of the properties is then
complete. If one or more of them are not satisfied, our
method gives diagnostics of enormous help to the redesign
of the protocol.

4. An example of verification

To illustrate our method, this section presents an example
of verification. We have chosen the registration part of the
Equicrypt protocol, a conditional access protocol under
design in the European ACTS OKAPI project [16]. It allows
a user to subscribe to multimedia services such as video on
demand. The user must first register with a trusted third
party (TTP) using a challenge-response exchange. After a
successful registration, this TTP issues a public-key certifi-
cate which allows the user to subscribe to a service offered
by a service provider.

We concentrate on the verification of the registration
protocol. This paper only presents an overview of the
process. Readers interested in more details can refer to [14].

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031096

4.1. The registration protocol

The registration protocol involves a user who wants to
access a multimedia service and a TTP that acts as a notary.
The mutual authentication of the user and the TTP must be
achieved by the protocol. The TTP must be sure that the
claimed identity of the user is the right one and the user must
be sure that he registers with the right TTP. The TTP must
also receive the right user’s public-key during the protocol
to issue a corresponding public-key certificate needed for
the subscription phase.

The authentication of the user by the TTP uses the
Guillou–Quisquater (GQ) zero-knowledge identification
scheme [15]. Before registering, the user has received secret
personal credentials derived from its real-life identity.
These credentials will help him to prove who he is to the
TTP but without revealing them. The authentication of the
TTP by the user uses a challenge based on a nonce (i.e. a
number used once). The user has also received the TTP’s
public-key to perform the required checks on the messages
and to authenticate the TTP. The transmission of the user’s
public-key to the TTP is possible with an improved version
of the GQ algorithm [21]. The registration protocol
presented in this paper is, in fact, an enhanced version of
the original one found in Ref. [21].

The GQ identification scheme is based on complex
mathematical relations derived from the user’s identity,
the user’s public-key and the secret credentials. It uses a
random number issued by the TTP to challenge the user
and a second random number issued by the user to
scramble the public-key and protect the credentials. To
specify the algorithm, we have designed an abstract
model which is particularly simple while still capturing
the essence of it. The key point of the authentication is
the secret credentials. If we consider them as a secret
encryption key and the user’s identity together with his
public key as a corresponding public decryption key, the
GQ algorithm looks like an authentication scheme based
on a nonce and works as follows. The user sends his
public decryption key to the TTP and receives back a
nonce as a challenge. Then he returns to the TTP the
nonce encrypted by his encryption key. The TTP can then
check that the nonce has been encrypted as expected. This
scheme resists to the “man-in-the-middle” attack because
the decryption key is mathematically linked to the user’s
identity.

In the remainder of this paper, we will present all the
messages with the following structure:

Nb � Source � Destination � Message Id�Message Fields�

A couple �KS
A�K

P
A � will denote the pair of private/public

keys of the principal A. Encryption of data will be written
{data} KP

A while signature will be written {data}KS
A� F(B, d)

will represent the special encryption of the GQ model where
B is the credentials.

The protocol works as follows:
The user generates a random nonce n and sends message 1.

1 � User � TTP � Register Request�UserID�KP
U � {n}KP

TTP�

When the TTP receives message 1, he decrypts the nonce n
and signs it, generates a random number d and sends them to
the user. The TTP can handle several registrations at a time.
So he maintains an internal table with one entry for each
user who has a registration in progress and he records the
tuple �UserID�KP

U � n� d��

2 � TTP � User � Register Challenge �d� {n}KS
TTP�

When the user receives message 2, he checks the signature.
If the signature is correct, he performs the GQ calculation
and sends the result to the TTP.

3 � User � TTP � Register Response�F�B� d��
When the TTP receives message 3, he checks the GQ
authentication using this message and the data found in
his internal table. Then, he sends a response according to
the result. The response is signed and includes both the
user’s identity and the nonce n (as an identifier of the regis-
tration run). If the response is positive, the TTP registers the
tuple �UserID�KP

U�

4� � TTP � User � Register Ack�{Yes� UserID� n}KS
TTP�

4� � TTP � User � Register Ack�No� UserID� n�KS
TTP�

4.2. Protocol specification

Using the framework presented in previous sections, we
have specified the protocol in LOTOS. Abstract data types
were designed for all the cryptographic operations involved
including the abstract model of the GQ algorithm. The user
and the TTP are two trusted principals and the intruder is the
untrusted one. The user always tries to perform a valid
registration. The intruder’s initial knowledge is adjusted to
allow him to act as a second untrusted user and simul-
taneously as a second untrusted TTP. It includes:

• An identity: IntruderID
• Valid credentials: BI

• A pair of private/public keys: KS
I and KP

I

• The public key of the user KP
U and the public key of the

TTP KP
TTP

• The identity of the user: UserID
• Nonces and random numbers different from those of

trusted principals.

After the step-by-step simulation stage, the LTS of the
protocol has been generated. It is composed of 487 446
states and 2 944 856 transitions and has required one hour
of computation on a SUN Ultra-2 workstation running
Solaris 2.5.1 with 2 CPUs and 832 Mb of RAM. The
reduction factor of the minimization modulo the strong

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1097

bisimulation was very important. The minimized LTS of the
protocol is made of 3968 states and 37 161 transitions. The
reduction modulo the safety equivalence was not mandatory
because the graph was small enough to carry out the verifi-
cation.

4.3. Formalizing the properties

Among the five safety properties we have verified, we
only present one of a particular interest. More details can
be found in Ref. [14]. This property is necessary (but not
sufficient) to achieve the authentication of the TTP by the
user, and we will see later that the current protocol does not
satisfy it.

• P4: The verdict of the registration given by the TTP (i.e.
registered or failed) must always be correct and consis-
tent with the acknowledgement received by the user.

Four security events are required to formalize this prop-
erty. Two events are related to the verdict given by the TTP
and two other events to the verdict received by the user. A
critical point is reached when the TTP decides whether or
not the registration is successful. This decision depends on
the correctness of message 3. Before sending his positive or
negative acknowledgement, the TTP generates a security
event. The TTP_REG_SUCCEEDED event corresponds to
the positive acknowledgement and the TTP_REG_FAILED
event corresponds to the negative acknowledgement. When
the user receives the TTP’s response, he also reaches a
critical point. Thus, he generates a USER_REG_SUC-
CEEDED event or a USER_REG_FAILED according to
the response received.

Property P4 can be expressed by the graph shown on Fig.
5. It shows the temporal orderings that we authorize among

the TTP_REG_SUCCEEDED, TTP_REG_FAILED,
USER_REG_SUCCEEDED and USER_REG_FAILED
events. In particular, a USER_REG_SUCCEEDED must
always be preceded by one TTP_REG_SUCCEEDED
because, when the user learns that he has been successfully
registered, the TTP must have successfully registered him.
A USER_REG_FAILED must always be preceded by at
least one TTP_REG_FAILED and no TTP_REG_SUC-
CEEDED because, when the user learns that his registration
failed, the TTP must have refused to register him at least
once and the TTP must not have registered that user success-
fully. A USER_REG_FAILED must never follow a
TTP_REG_SUCCEEDED.

For clarity, Fig. 4 does not show the parameters of the
security events, but it should be clear that this picture
focuses on a single run of the protocol. The property should
be true for every run. The fact that several TTP_REG_-
FAILED are allowed (refer to the loops) by the property
means that we allow the intruder to try several fake regis-
trations during the considered run. Such a graph models an
upper bound on the possible behaviours which do not falsify
the intended property. Our model is supposed to generate a
subset of this graph, except if there is a security breach.

4.4. A flaw

Aldebaran has discovered that property P4 was not satisfied.
The behaviour of the registration protocol cannot be simulated
by the graph of the property regarding the relevant security
events. It has found a sequence where aUSER_REG_FAILED
occurs before a TTP_REG_SUCCEEDED. The TTP success-
fully registers the user after the user has learned that his
registration failed. We use the Exhibitor tool to produce a
diagnostic sequence that immediately shows us how the

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031098

Fig. 5. Labelled transition system modelling property P4.

intruder has built his attack. The scenario is exhibited in
Fig. 6

When the intruder receives a registration request message
from the user, he forwards it to the TTP and makes the first
challenge fail with a fake response to obtain a negative
acknowledgement from the TTP. Then the intruder follows
on by replaying the registration request message previously
recorded. Upon reception, the TTP starts a second registra-
tion with the user and sends a second challenge. This time,
the intruder forwards the challenge to the user who is still
waiting for his first challenge. The user replies with a valid
message and waits for an acknowledgement. The intruder
replays the negative one previously received. This
acknowledgement is valid and thus the user declares that
the registration failed. Meanwhile the intruder forwards the
valid response of the user to the TTP who declares the
registration successful. Both parties have finished their
exchange but they do not have the same point of view of
the situation.

For this attack to succeed, the intruder only needs to
create a fake response to the first challenge. The strength
of our technique is that the analysis of the diagnostic
sequence immediately brings us the reason of the failure.
Despite the presence of the nonce n, the acknowledgement
of the TTP is too general because it can be considered valid
in two distinct registrations.

4.5. Corrected protocol

A way to prevent the attack is to add to the acknowl-
edgement a unique identifier of the registration. The
random number used in the GQ verification is the right
candidate. This number is meant to be different at each
registration. Its integration into the signature of the
fourth message will allow the user to check its
freshness. Here is the corrected version of our registration

protocol:

1 � User � TTP � Register Request�UserID� KP
U � {n}KP

TTP�

2 � TTP � User � Register Challenge�d� {n}KS
TTP�

3 � User � TTP � Register Response�F�B� d��

4� � TTP � User � Register Ack�{Yes�UserID� n� d}KS
TTP�

4� � TTP � User � Register Ack�{No�UserID� n� d}�KS
TTP�

Aldebaran states that all the properties, including P4, are
fulfilled with this version. Hence, the mutual authentication
and the transmission of the public key succeed despite the
attempts of the intruder.

4.6. Enhancements of the protocol

This section deals with two improvements of the proto-
col. Firstly, we will try to obtain the simplest protocol.
Encryptions and signatures were used to have the assurance
that the intruder could not alter messages or parts of them.
The formal description we made will help us to establish
which cryptographic operations are really essential. Our
guideline is to minimize cryptographic operations because
public key cryptography has a very high computational cost.

Secondly, we will modify the protocol to help the proto-
col entities to make the distinction between a normal regis-
tration failure due to bad credentials and a registration
failure due to a protocol error (caused in fact by an intru-
der’s interference). We call the former a failure and the
latter an error. When an entity receives a message, it
performs several checks. If one of them fails, a message
indicating the reason of the error is sent to the environment.
It is very important to understand the difference between the

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1099

Fig. 6. Scenario of the intruder’s attack.

two kinds of interruptions a registration can encounter. The
registration can fail because the TTP has decided that the
user does not own good credentials. That is what we will call
a failure. The other cases are errors. An error occurs when
the registration protocol stops due to a badly formed
message: wrong signature, wrong nonce,…. We obviously
focus on failures because we want to defeat the intruder
when he generates good messages. An intruder can always
create errors by sending garbage in the transmission
channel. This separation between failures and errors helps
to determine whether an intruder is disturbing the registra-
tion or not.

4.6.1. The simplest protocol
We have found that the addition of the random number d

in the signature of the fourth message makes the nonce n
useless. It was used at first for the user to authenticate the
TTP. The TTP’s signature of the acknowledgement is suffi-
cient to perform this authentication. The user knows the
TTP’s public key so that he can verify that this message
originates from the TTP. The random number d ensures
that it belongs to the current registration and has not been
replayed by the intruder. Thus, the user has the guarantee
that he is talking to the TTP for the registration presently in
progress.

Section 4.5 demonstrates that the signature of the regis-
tration acknowledgement message is very important. It can
certainly not be removed as it performs the authentication of
the whole registration. Therefore it seems unnecessary to
authenticate the TTP already in the registration challenge
(message 2). This suggests to remove the nonce n from the
whole protocol.

These two simplifications lead to a very simple protocol
with only one signature (and the GQ calculation):

1 � User � TTP � Register Request�UserID�KP
U�

2 � TTP � User � Register Challenge�d�

3 � User � TTP � Register Response�F�B� d��

4� � TTP � User � Register Ack �{Yes�UserID� d}KS
TTP�

4� � TTP � User � Register Ack�{No�UserID� d}KS
TTP�

All the five properties are satisfied. This version is as robust
as the previous one from the point of view of the mutual
authentication. Obviously, the intruder can more easily
disturb the registration. The only difference is that the intru-
der’s actions will be discovered later during the protocol
run. Regarding the security events only, a safety preorder
exists between the corrected version of the protocol and this
simplified version. Hence, all safety properties, expressible
with the security events and verified on the latter are
necessarily verified on the former.

4.6.2. Distinction between failures and errors
With this second improvement, we want to give the enti-

ties the ability to know exactly why a registration does not
complete, either because the user has used bad credentials or
because of an intruder’s attack. This additional requirement
will introduce complexity in the protocol. The simplifica-
tion described in 4.6.1 led us in the opposite direction, but
now we can build our design strategy on solid bases. Before
going further, we define an authentication failure as the
occurrence of a USER_REG_FAILED event, and a protocol
error as any other unsuccessful termination of the protocol
due to any sort of invalid message reception (due to an
intruder’s interference). When the user or the TTP receive
such an invalid message, they will just raise an error and
stop the protocol. Ideally a USER_REG_FAILED event can
only occur when the user owns invalid credentials.

In our model, the user owns valid credentials and always
initiates a correct registration. So normally the user should
never face a registration failure; which means that the user’s
registration must always terminate with a positive answer
from the TTP or possibly with a protocol error. Neverthe-
less, the verification shows that USER_REG_FAILED
events occur in some scenarios. This behaviour can only
result from intruder’s actions and shows that the user cannot
completely distinguish protocol errors from authentication
failures. In other words, some errors are interpreted as fail-
ures. Fig. 7 exhibits a scenario that leads to such a failure
with the simplified version of the protocol.

The user starts his registration and the protocol progresses
normally until the intruder replaces the register response
message of the user with another one. This new message
is wrong because the intruder does not own credentials the
TTP is waiting for and thus, a failure is declared and the

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031100

Fig. 7. A failure of the user generated by the intruder.

TTP sends a negative acknowledgement. The user also
declares a failure upon its reception.

This scenario is not related to the authentication
properties we have previously verified. The TTP refuses
to authenticate the user due to an intruder’s action but
is not authenticating the user incorrectly. The reason for
the failure is related to the integrity of the messages
transmitted during the protocol. In this particular case,
the register response message has been changed by the
intruder.

To achieve the user’s distinction between protocol errors
and authentication failures, we will strengthen the require-
ments on the protocol and add a new property.

P6: The user must never learn that his registration has
been refused by the TTP.

or expressed with special events:

P6: No USER_REG_FAILED event is allowed in the
LTS of the system.

The same reasoning is valid from the point of view of the
TTP: he would make a complete distinction between fail-
ures and errors if he never declared a failure of the user,
since the user always tries to perform a valid registration.
All disturbing elements must come from the intruder and
must lead to errors (or possibly to a TTP_REG_-
FAILED with the intruder’s identity). We model this
case with another new property called P7 that does
not allow the TTP to refuse the registration of the
user. Formally, no TTP_REG_FAILED event with the
user’s identity (TTP_REG_FAILED !USERID_A) is
permitted in the LTS of the system.

We check for the presence of USER_REG_FAILED and
TTP_REG_FAILED !USERID_A events using the
Exhibitor tool. If the verification does not find any of
these events, our new properties are satisfied. The simplest
protocol cannot guarantee P6 or P7 because the parameters
used in the GQ algorithm are not checked before the GQ
verification (see the previous scenario). So we propose a
new solution with two new signatures.

1 � User � TTP � Register Request�UserID�KP
U�

2 � TTP � User

� Register Challenge�{UserID�KP
U � d}KS

TTP�

3 � User � TTP

� Register Response �{UserID�F�B� d�}KS
U�

4� � TTP � User � Register Ack�{Yes�UserID� d}KS
TTP�

4� � TTP � User � Register Ack�{No�UserID� d}KS
TTP�

The main difficulty to solve comes from the GQ verification.

The protocol must provide a way to find why the GQ calcu-
lation is not correct. If the problem is due to the use of bad
credentials, the TTP must declare a failure, otherwise he
must declare an error.

The signature of the register challenge message allows
the user to verify that the data transmitted in the first
message were correctly received. This could not be
achieved by signing the register request because the TTP
does not know the user’s public key yet. If and only if the
user agrees with the register challenge, he generates a
response F(B,d), signed with his private key. When the
TTP receives this third message, he can use the recently
received public key to check the signature. If the signature
is incorrect, the TTP declares an error. Otherwise, and if
the result of the GQ computation is correct, that means
that the user has received a valid register challenge
message and thus agrees with the public key used in
this message. Hence the TTP owns the real public key
of the user. Both the GQ computation and the signature
must be correct. One of them is not enough to make a
good verification.

From the TTP’s point of view, nothing distinguishes the
received result of the function F from a random number
before the GQ verification. So we have added the user’s
identity in the register response message to allow the TTP
to check the user’s signature.

With this version of the protocol the transmission of the
user’s public key no longer needs to be associated with the
computations of the GQ verification. Our model of the GQ
identification scheme states that the function F acts as a
signature verified by the user’s identity and the user’s public
key. In fact, this new version of the registration protocol can
be used with a GQ algorithm in which B is only linked to the
user’s identity and not to its public key. This is because the
two new signatures in messages 2 and 3 allow the certifi-
cation of the user’s public key. This simplified GQ is in fact
the original one [15].

Property P6 is satisfied with this version. There is no
possible USER_REG_FAILED event. All the intruder’s
actions are detected by the various checks involved in the
cryptographic operations. Nevertheless, it was not possible
to suppress all the TTP_REG_FAILED events. Property P7
is thus not satisfied. Indeed, the complete removal of these
events would imply a kind of authentication before the

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1101

Fig. 8. A failure of the TTP generated by the intruder.

authentication itself, and therefore constitutes an unreach-
able goal. Fig. 8 will further clarify this. It exhibits a possi-
ble attack where the intruder replaces the user’s public key
with his own in the first message. Without knowing the right
user’s public key before the beginning of the registration (as
one of the purposes of the registration is to transfer the
public key), the TTP cannot detect the falsification. This
means that from the TTP’s viewpoint we have to accept
that some intruder’s interference will be indistinguish-
able from tentative registrations of users with invalid
credentials.

5. Conclusion and related work

This paper presents a formal verification process for
security protocols using LOTOS. We have shown how to
specify a protocol with the concept of trusted and untrusted
principals. The flexibility of abstract data types allows the
description of a wide range of cryptographic operations. We
have shown the modelling of the classical public-key
scheme but also a more complex one: the Guillou–Quis-
quater algorithm. Our approach thus relies on classical
formalisms and tools and contrasts with works that use a
dedicated modal logic such as the BAN logic [6].

We have shown how intrusion can be taken into account
by adding an intruder process replacing the communication
channels. Our model of this intruder is very simple and
powerful. He can mimic very easily real-world non-crypto-
graphic and non-repetitive attacks on the behaviour of the
protocol. The idea of explicitly introducing an intruder was
first proposed in Refs. [8,9] in another setting. This idea
was then used in the Interrogator system [28], where the
participants are modelled as communicating state-machines
and the network is assumed to be under the control of an
intruder, which can intercept messages, destroy or modify
them, or pass them through unmodified. The NRL Protocol
Analyser [20,27] is similar to the Interrogator, but the goal is
here to prove the unreachability of some undesirable states.
It can deal with infinite-state systems but the search is less
automated than in the Interrogator. The difference between
our approach and these methods is that we do not have to
define some pathological target states to be searched for by
the tool. We just give safety properties as reference graphs.

We have explained the validation process and the formal-
ization of security properties as safety properties. These
properties are similar to the correspondence properties,
used in Ref. [34], which require that certain events can
take place only if others have taken place previously.
Basically, all properties that are expressible with security
events can be checked with our approach. Our tool verifies
that the safety preorder (i.e. the weak simulation) relation
holds between the system and the property. We can check
liveness properties is a similar way, but this is not very
useful in practice because they are never satisfied as intru-
ders can always intercept all messages in transit.

Our method is illustrated on a registration protocol. We
have found a flaw that could probably not have been discov-
ered, at least so early, by a human being. The verification is
quite automatic and allows one to make efficient corrections
and improvements. However, as with any model-checking
methods, we have had to simplify the model to keep it finite-
state. There exist ways to extend the method to infinite-state
systems. In a simpler case [24], an additional induction
proof has been provided to extend the correctness guarantee
to an arbitrary number of involved entities. Another possible
approach, proposed in Ref. [3], is based on an abstraction
function and automates the computation of a correct (finite)
abstract model of the system.

Another approach which circumvents the problem of
adding an explicit intruder process is proposed in Ref. [1]
where the Spi-calculus is used to describe security proto-
cols. The idea is to verify that the protocol specification
placed in any Spi-calculus context is equivalent to the
expected ideal behaviour (i.e. without intruder). Threads
expressible in the Spi-calculus are thus implicitly consid-
ered among the possible contexts. However, this approach is
not so easy to use in practice because the equivalence is
sometimes too strong. For example, some intruder’s actions
may be such that the equivalence is not fulfilled, while the
security of the system is not in danger, because the non-
equivalence simply results from the falsification of an
irrelevant property.

Acknowledgements

This work has been partially supported by the Commis-
sion of the European Union (DG XIII) under the ACTS
AC051 project OKAPI: “Open Kernel for Access to
Protected Interoperable Interactive Services”.

References

[1] M. Abadi, A.D. Gordon, A calculus for cryptographic protocols—the
spi calculus, in: Proceedings of the Fourth ACM Conference on
Computer and Communication Security, 1997.

[2] D. Bolignano, Formal verification of cryptographic protocols, in:
Proceedings of the Third ACM Conference on Computer and
Communication Security, 1996.

[3] D. Bolignano, Towards a Mechanization of Cryptographic Protocol
Verification, Proceedings of CAV 97, LNCS, vol. 1254, Springer,
Berlin, 1997.

[4] T. Bolognesi, E. Brinksma, Introduction to the ISO specification
language LOTOS, Computer Networks and ISDN Systems 14
(1987) 25–59.

[5] A. Bouajjani, J.-C. Fernandez, S. Graf, C. Rodriguez, J. Sifakis,
Safety for branching time semantics, Proceedings of the 18th
ICALP, LNCS, Springer, Berlin, 1991.

[6] M. Burrows, M. Abadi, R. Needham, A logic of authentication, ACM
Transactions on Computer Systems 8 (1) (1990) 18–36.

[7] P. Chen, V. Gligor, On the formal specification and verification of a
multiparty session protocol, in: Proceedings of the IEEE Symposium
on Research in Security and Privacy, 1990.

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–11031102

[8] D. Dolev, S. Even, R. Karp, On the security of ping-pong protocols,
Information and Control 55 (1982) 57–68.

[9] D. Dolev, A. Yao, On the security of public key protocols, IEEE
Transactions on Information Theory 29 (2) (1983) 198–208.

[10] H. Ehrig, B. Mahr, Fundamentals of Algebraic Specification 1, Equa-
tions and Initial Semantics, in: W. Brauer, B. Rozenberg, A. Salomaa
(Eds.), EATCS, Monographs on Theorical Computer Science,
Springer, Berlin, 1985.

[11] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, M.
Sighireanu, in: R. Alur, T. Henzinger (Eds.), CAESAR/ALDE-
BARAN Development Package: a protocol validation and verification
toolbox, Proceedings of the Eighth Conference on Computer-Aided
Verification, LNCS, Springer, Berlin, 1996.

[12] H. Garavel, An overview of the Eucalyptus toolbox, in: Proceedings
of COST247 workshop, June 1996.

[13] F. Germeau, G. Leduc, Model-based design and verification of secur-
ity protocols using LOTOS, in: Proceedings of the DIMACS Work-
shop on Design and Formal Verification of Security Protocols,
Rutgers University, Sept. 1997.

[14] F. Germeau, G. Leduc, A computer-aided design of a secure registra-
tion protocol, in: T. Mizuno, N. Shiratori, T. Higashino, A. Togashi
(Eds.), Formal Description Techniques and Protocol Specification,
Testing and Verification, Chapman & Hall, London, 1997, pp. 145–
160.

[15] L. Guillou, J.-J. Quisquater, A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and
memory, Proceedings of Eurocrypt 88, Springer, Berlin, 1988
(pp. 123–128).

[16] J. Guimaraes, J.-M. Boucqueau, B. Macq, OKAPI: a kernel for access
control to multimedia services based on trusted third parties, in:
Proceedings of ECMAST 96, Louvain-la-Neuve, Belgium, May
1996, pp. 783–798.

[17] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[18] ISO/IEC: Information Processing Systems-Open Systems Intercon-
nection, LOTOS, a formal description technique based on the
temporal ordering of observational behaviour, IS 8807, February
1989.

[19] R. Kemmerer, Using formal methods to analyse encryption protocols,
IEEE Journal on Selected Areas in Communications 7 (4) (1989)
448–457.

[20] R. Kemmerer, C. Meadows, J. Millen, Three systems for crypto-
graphic protocol analysis, Journal of Cryptology 7 (2) (1989) 14–18.

[21] S. Lacroix, J.-M. Boucqueau, J.-J. Quisquater, B. Macq, Providing
equitable conditional access by use of trusted third parties, in:
Proceedings of ECMAST 96, Louvain-la-Neuve, Belgium, May
1996, pp. 763–782.

[22] G. Leduc, O. Bonaventure, E. Koerner, L. Léonard, C. Pecheur,
D. Zanetti, Specification and verification of a TTP protocol for the
conditional access to services, in: Proceedings of 12th J. Cartier
Workshop on Formal Methods and their Applications: Telecommu-
nications, VLSI and Real-time Computerized Control System,
Montreal, Canada, October 1996.

[23] G. Leduc, O. Bonaventure, L. Léonard, E. Koerner, C. Pecheur,
Model-based verification of a security protocol for conditional access
to services, Formal Methods in System Design 14 (2) (1999) 171–
191.

[24] G. Lowe, Breaking and fixing the Needham-Schroeder public-key
authentication protocol using FDR, in: T. Margaria, B. Steffen
(Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, LNCS, vol. 1055, Springer, Berlin, 1996.

[25] G. Lowe, B. Roscoe, Using CSP to detect errors in the TMN protocol,
IEEE Transactions on Software Engineering 23 (10) (1997) 659–669.

[26] W. Marrero, E. Clarke, S. Jha, A model checker for authentication
protocols, in: Proceedings of the DIMACS Workshop on Design and
Formal Verification of Security Protocols, Rutgers University,
September 1997.

[27] C. Meadows, The NRL protocol analyser: an overview, Journal of
Logic Programming 26 (8) (1996) 113–131.

[28] J. Millen, S. Clark, S. Freedman, The Interrogator: protocol security
analysis, IEEE Transactions on Software Engineering SE-13 (2)
(1987) 274–288.

[29] R. Milner, Communication and Concurrency, Prentice-Hall, Engle-
wood Cliffs, NJ, 1989.

[30] J. Mitchell, V. Shmatikov, U. Stern, Finite-state analysis of SSL 3.0
and related protocols, in: Proceedings of the DIMACS Workshop on
Design and Formal Verification of Security Protocols, Rutgers
University, September 1997.

[31] C. Pecheur, Improving the specification of data types in LOTOS
(Doctoral dissertation, nr. 171, University of Liège, Nov. 1996).

[32] S. Schneider, Verifying authentication protocols in CSP, IEEE Trans-
actions on Software Engineering 24 (9) (1998) 751–758.

[33] B. Schneier, Applied Cryptography, ed. 2, Wiley, New York, 1996.
[34] T. Woo, S. Lam, A semantic model for authentication protocols, in:

Proceedings of IEEE Symposium on research in security and privacy,
1993.

G. Leduc, F. Germeau / Computer Communications 23 (2000) 1089–1103 1103

