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Abstract. A new algorithm for reducing the state space of compositional finite 

state systems is introduced. Its goal is similar to compositional minimization al-

gorithms as it tries to preserve only the relevant information for checking prop-

erties. It works better than compositional minimization because it reduces com-

ponents individually and does not need to compose components. Hence it does 

not suffer from state explosion. Instead, it uses information about interactions 

with other components, and merges interactions that do not lead to different 

relevant behaviour. Experiments show that it reduces state spaces dramatically 

in the cases when only a part of the system’s behaviour is of interest 

1   Introduction 

Model-checking encounters the state-explosion problem. To keep the state space 
manageable for model-checkers, models of systems should only include features rele-
vant to the property being checked. Holzmann[12] showed it is possible check useful 
properties using very small models —less than 100 states. Unfortunately, it is often 
too expensive to manually create a separate model for each property to check. Thus, a 
single model of a system must be used to verify many different properties of the sys-
tem.  

In these situations, it is desirable to have an algorithm that can abstract away ir-
relevant features of the model, to create a reduced state space that preserves the prop-
erty being checked. 

A conceptual basis for this kind of abstraction is provided by equivalences of mo d-
els, such as observation equivalence. Efficient minimization algorithms exist for ob-
servation equivalence. Unfortunately, minimization algorithms require the global state 
space to be generated, which means the reduction requires more effort than checking 
the model directly.  



       

 

 

An approach to alleviate this problem is by compositional minimization, that is 
composing and minimizing subsets of the system components. Nevertheless, subsys-
tems of components must be composed before they can be reduced, and which may 
cause state explosion in intermediate state spaces. Another problem is ‘spurious be-
haviour’, where a subsystem may exhibit behaviour that is not possible when it is a 
part of the system as a whole. Interface processes[17,5] have been proposed to reduce 
spurious behaviour. However, small and effective interface processes are very diffi-
cult to find.  

Furthermore, removing spurious behaviour still leaves much ‘redundant’ behaviour 
in the reduced subsystems. Redundant interactions are interactions with the rest of the 
system that do not affect the property being checked.  

The interaction abstraction algorithm is a new algorithm that has similar goals to 
compositional minimization. However, it automatically uses information about inter-
actions with the rest of the system to remove redundant information from the model, 
while keeping information necessary to preserve the property being checked. 

2   Abstraction interaction algorithm 

2.1   Basic Notation 

The algorithm is based on labelled transition systems (LTS)[16]. 
DEFINITION: An LTS is defined as a tuple (Q, A, ∆, q0) where 
• Q is a set of states  

• A is a set of labels (or events) 
• ∆ is a set of transitions, p1 a→ q2, where p1, q2∈Q and a∈A 

• q0∈Q is the initial state 
DEFINITION: The composition of two LTSs, S = (P1, A1, ∆1, p10) and T = (P2, A2, ∆2, 
p20), is the LTS S || T, defined as (Q, A, ∆, q0) where 
• A = A1∪A2, 

• Q = P1×P2, 

• ∆ is the set of transitions of the form (p11, p21) a→ (p12, p22) where 
• if a∉A1∩A2 and p11 a→ p12, then (p11, p21) a→ (p12, p21)∈∆ 

• if a∉A1∩A2 and p21 a→ p22, then (p11, p21) a→ (p11, p22)∈∆ 

• and if a∈A1∩A2 and p11 a→ p12 and p21 a→ p22, then (p11, 
p21) a→ (p12, p22)∈∆ 

• the initial state is q0 = (p10, p20) 
The LTS formalism models abstraction through hiding of labels. Labels that are 

not of interest in the system (e.g. not mentioned in property to be checked, and not 
used to interact with other components) can be hidden by renaming them to the spe-



       

 

 

cial label, t . A sequence of 0 or more transitions with hidden labels is written as 

p1 t⇒ p2 if exist p1 t→  …  t→ pi, i≥0. The weak transition relation is defined 

as p1 a⇒ p2, if exists p1t⇒p3a→p4t⇒p2. The weak transition relation en-

ables any number of hidden actions to take place without affecting the observable 
properties of the system. A system S in which only labels in a set L are visible, and 
the rest are hidden, is denoted S<L>. 

Various notions of equivalence exist for LTS, including the well-known observa-
tion equivalence[16]. Observation equivalence is defined using a family of bisimula-
tion relations:  
• R0 ≡ Q×Q,  

• Rk+1 ≡ {(p1,p2) | ∀a∈A ∀p1'(p1 a⇒ p1'  ⇒ ∃p2'(p2 a⇒ p2'∧(p1',p2')∈Rk) ∧ 
∀p2'(p2 a⇒ p2' ⇒ ∃p1'(p1 a⇒ p1'∧(p1',p2')∈Rk)} 

The (observation) equivalence relation is defined as ~ ≡ ∪0
∞
 Rk. Thus, p1~p2 if 

(p1,p2)∈Rk for all k . Two systems are observation equivalent if their initial states are 
equivalent. 

Given a classification of the states of S, where [p] denotes the class of p, the quo-
tient of S, is the LTS [S ] = ([Q], A , [∆], [q0]) where 

• [Q] = {[q]} for all q∈Q 
• [∆] = {[p1] a→ [q2]} for all p1 a→ q2∈∆ 

2.2   Effect of interactions 

To get an intuition for how the algorithm works, consider the composition of two sys-
tems, S || T, in Figure 1. The goal is to find reduced versions, [S] and [T], so that 
(S || T)<a1, a2, a3> ~ ([S] || [T])< a1, a2, a3>. 

The component on the left can be thought of as a simple model of a telephone, and 
the component on the right can be thought of as a simple model of a phone directory. 
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Fig. 1. Example system with two components. 



       

 

 

Thus, the telephone can go offhook (a1), then a ‘1’ is dialed (b1), then the number is 
found to be incomplete (c1), in which case, a ‘2’ is dialed (b2), and it is found to be a 
complete, and valid number (c3). The telephone then connects to the other phone (a2), 
and so on. On the other hand, dialing a second ‘1’ would result in an invalid number 
(c2), and the telephone would give a busy tone (a3).  

Suppose we are interested only in the actions offhook, connect, or busy tone (a1, 
a2, a3). In particular, we are not interested in which numbers are dialed (b1, b2), nor 
the internal interactions between the components (c1, c2). Intuitively, the directory 
model can be reduced to just three states: from the initial state, it can move to a state 
with a valid phone number, or an invalid one. The telephone model can be reduced to 
move from state 2 directly to 5 or 4. 

The idea is to achieve the reduction is to record the effect of the interactions of the 
components, rather than the actual labels. As a first attempt, we can use this idea di-
rectly, and relabel the directory model as in Figure 2. For example, the transition 
1b1→2 is relabelled by the effect of the interaction on the phone model. The phone 
model makes the transition 2b1→3, so the directory model gets the transition 
123→2. 

This relabelling allows the merging of states {4,7}, {2,3} and {5,6}. However, the 
reduce graph is still unsatisfactory in that the merged state {2,3} is distinguished from 
state {1}. That means the model tracks how many numbers must be dialed to get a 
complete number. However, from the point of view of observational equivalence, it 
does not matter how many internal steps occur between externally visible steps. 

The approach to obtain full reduction is to label the model with the transitive clo-
sure of the effects of individual interactions. Part of the model labelled with the transi-
tive closure is shown in the left part of Figure 3. The labelling shows the source and 
destination of the other component, after a sequence of internal interactions. An extra 
transition between states 1 and 4 has been added. 
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Fig. 2. Component relabelled with effect of interactions. 



       

 

 

Unfortunately, the model still cannot be further reduced, as state 1 has a transition 
23→ that leads to state 2, while state 2 does not have a transition 23→ that leads 
to an equivalent state. The problem is the phone model’s states 2 and 3 are distinct. 
But they do not need to be, as they do not result in different external behaviour (as 
internal interactions are not observable). If states 2 and 3 of the phone model can be 
merged (labelled as ‘2’), then the portion of the directory model becomes the right 
side of Figure 3, where it can be seen that states 2 and 1 can be merged. 

The idea is to track whether interactions cause the other model to move to equiva-
lent states, rather than just the same states. Unfortunately, which states can be consid-
ered equivalent in the other model also depends on which states can be considered 
equivalent in this model, and vice versa. Thus, the equivalence reduction needs to be 
computed iteratively. 

At the end, the interaction labels in the two reduced models must be matched in 
order to allow the models to compose. 

2.3   Algorithm 

The steps of the interaction abstraction algorithm for one component are as follows: 

1. Calculate transitive effect of interactions:  

• Store tuple (p, q, p', q') iff whenever the state (p,q) is reachable, there is a 

transition (p,q)t⇒(p',q') in (S || T)<L> 
2. For a given classification [T]0 of T, relabel S with assumed equivalent effects, to 

obtain S1: 

• Remove all transitions with labels not in L∪{t} 

• Add a transition pq[q']0→p' for each tuple (p, q, p', q') 

3. Classify S1 to obtain [S]1:  

• Set [p1]1=[p2]1 iff p1~p2 in S1 
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Fig. 3. Part of component relabelled with transitive effect of interactions. 



       

 

 

The iteration for two components is as follows: 

4. Repeat Steps 2 and 3 until [S ]k and [T]k are the same as [S]k-1 and [T]k-1: 

• Update [T]k using [S]k-1 if changed, and vice versa 

5. Finally, label interactions in [S ]=[S]k and [T]=[T]k: 

• Remove transitions with labels not in L 
• For each tuple (p, q, p', q') add transitions [p][p][q][p'][q']→[p'] in [S], and 

[q][p][q][p'][q']→[q'] in [T] 
After Step 5, [S] and [T] can be composed using the “interaction labels”. 

2.4   Proof of correctness 

We want to prove that, at the end of the algorithm, (S || T)<L> ~ ([S] || [T])<L> by 
proving that for all (p,q) reachable, (p,q ) ~ ([p],[q ]). And since the initial state (p0,q0) 
is reachable, then the two compositions are equivalent. First, we prove some proper-
ties of the algorithm. 
LEMMA 1: 
If [p1]k=[p2]k then all of the following are true: 
a) for all transitions p1t⇒p1' there exists a transition such that p2t⇒p2' where 

[p2']k=[p1']k 
b) for all transitions p2t⇒p2' there exists a transition such that p1t⇒p1' where 

[p2']k=[p1']k 
c) for all tuples (p1, q, p1', q1'), there exists a tuple (p2, q, p2', q2') where [p2']k=[p1']k and 

[q2']k=[q1']k 
d) for all tuples (p2, q, p2', q2'), there exists a tuple (p1, q, p1', q1') where [p1']k=[p2']k and 

[q1']k=[q2']k 
PROOF: 

[p1]k=[p2]k  
⇒ p1~p2 in Sk, by definition of [S]k 
⇒ for all transitions p1a⇒p1' there exists a transition  p2a⇒p2' where p2'~p1' in Sk, 
by corollary to the definition of ~ 
⇒ for all transitions p1t⇒p1' there exists a transition  p2t⇒p2' where [q2']k-1= 
[q1']k-1, by definition of [T]k-1, by which follows cases (a) and (b). 

For cases (c) and (d), if there exists a tuple (p1, q, p1', q1')  
⇒ there exists a transition p1q[q1']k-1→p1'  
⇒ there exists a transition p2q[q1']k-1 ⇒p2' where [p2']k-1=[p1']k-1 since p1~p2 
And since tuples contain transitive effects (Step 1), there exists a tuple (p2, q, p2', q2') 
where [q2']k-1=[q1']k-1. 

� 



       

 

 

LEMMA 2: 
a) If there exists a transition (p,q)t⇒(p',q') in (S || T)<L> then there exists a tran-

sition ([p],[q]) t⇒([p'],[q']) in ([S] || [T])<L> 

b) If there exists a transition pa⇒p' in S, where a∉L, then there exists a transition 

[p]a⇒[p'] in [S] 

PROOF: 
Proof of (a):  

(p,q)t⇒(p',q') in (S || T)<L> 
⇒ exist tuples (p, q, p', q') by Step 1 
⇒ exist transitions [p][p][q][p'][q']→[p'] in [S], and [q][p][q][p'][q']→[q'] in [T] 
by Step 5 
⇒ ([p],[q])t⇒([p'],[q']) in ([S] || [T])<L> by composition. 

Proof of (b): True since the quotient keeps transitions of elements of a class, and 
the algorithm does not relabel transitions with label a in L. 

� 
LEMMA 3 (inverse of Lemma 2): 
a) If there exists a transition ([p],[q])t⇒([p'],[q']) in ([S] || [T])<L> and (p,q) is 

reachable, then there exists a transition (p,q)t⇒(p1',q1') in (S || T)<L> where 

[p1']=[p'], [q1']=[q']. 

b) If there exists a transition [p]a⇒[p'] in [S], where a∉L, then there exists a tran-

sition pa⇒p1' in S where [p1']=[p']. 

PROOF: 
Proof of (a): 

([p],[q]) t⇒( [p'],[q']) 
Since the only interactions are through the interaction labels, then by composition and 
hiding, 
⇒ exist transitions [p][p][q][p'][q']⇒[p'] in [S] and [q][p][q][p'][q']⇒[q'] in [T]  
⇒ exist transitions [p]t⇒[p2][p][q][p'][q']→[p2']t⇒[p'] in [S], and [p2]=[p], 
[p2']=[p'] (by Step 5) 
Since [S ]k=[S]k-1 and [T]k=[T]k-1, 
⇒ exist transitions p1q1[q']k→p1' in Sk where [p2]k=[p1]k=[p]k , [p2']k=[p']k 
⇒ exist tuples (p1, q1, p1', q1'), where [q1]k=[q]k, [p1']k=[p']k 
⇒ exist tuples (p, q1, p1', q1'), where [q1]k=[q]k (By Lemma 1(c) and (d), since 
[p1]k=[p]k)  
⇒ exist tuples (p, q, p1', q1') (By Lemma 1 applied to [T]k) 
⇒ if (p,q) is reachable, then there exists a transition (p,q)t⇒(p1',q1') in (S || T)<L> 
where  [q1']=[q'] and [p1']=[p'] 

Proof of (b): True by definition of quotient and by Lemma 1(a) and (b). 
� 



       

 

 

THEOREM: If (p,q) reachable in (S || T)<L>, then (p,q) ~ ([p],[q ]) in ([S] || [T])<L>. 
PROOF: 

The proof is a simple application of the definitions. It only uses the properties of 
the algorithm given in Lemmas 2 and 3. 

Obviously for all (p,q) reachable, ((p,q), ([p],[q])) in R0. 
Assume for all (p,q) reachable, ((p,q ), ([p],[q])) in Rk-1. 
(p,q)a⇒(p',q') where a in L 

⇒ (p,q)t⇒(p1',p1')a→(p2',q2')t⇒(p',q') by definition of a⇒ 
⇒ ([p],[q])t⇒([p1'],[p1'])a⇒([p2'],[q2'])t⇒([p'],[q']) by lemma 1 (a) and (b) 
⇒ ([p],[q])a⇒([p'],[q']) by definition of a⇒ 
And by induction hypothesis, ( (p',q'), ([p'],[q']) ) in Rk-1 

For the other direction: 
([p],[q])a⇒([p'],[q']) 
⇒ ([p],[q])t⇒([p1'],[p1'])a→([p2'],[q2'])t⇒([p'],[q']) by definition of a⇒ 
⇒ (p,q)t ⇒(p3',q3')a⇒(p4',q4')t⇒(p5',q5') where [p3']=[p1'], [q3']=[p1'], [p4']=[p2'], 
[q4']=[q2'], [p5']=[p'], and [q5']=[q'] by lemma 2 (a) and (b) 
⇒ (p,q)a⇒(p5',q5') where [p5']=[p'], and [q5']=[q'] 
And by induction hypothesis, ( (p5',q5'), ([p'],[q']) ) in Rk-1. 
Thus, ( (p,q), ([p],[q]) ) in Rk for all k  

� 
Next, it is necessary to show the algorithm always terminates, which can be done 

using the following lemma.  
LEMMA: Let the classification [T]k be a refinement of the classification [T]k-1. Then 
[S]k+1 computed using [T]k is a refinement of [S]k computed using the labelling [T]k-1. 
PROOF: 

Suppose [p1]k=[p2]k. We want to show that [p1]k+1=[p2]k+1, that is, if p1 ~ p2 in Sk, 
then p1 ~ p2 in Sk+1. 

Since [T]k is a refinement of [T]k-1, if labels q1[q1']k-1
 = q1[q2']k-1, then labels q1[q1']k

 = 
q1[q2']k. Thus, if two transitions in Sk have the same labels using the labelling q1[q1']k-

1⇒, the transitions in Sk+1  will still have the same labels using the labelling 
q1[q2]k⇒. 

Supose p1 ~ p2 in Sk 
⇔ for any transition p1 a1⇒ p1', there is a corresponding transition p2 a1⇒ p2', and 

p1' ~ p2' in Sk 
Since the labels a1 of the two transitions p1 a1⇒ p1' and p2 a1⇒ p2' are guaranteed 
to be the same in Sk+1 as in Sk, 
⇒ for any transition p1 a1⇒ p1', there is a corresponding transition p2 a1⇒ p2', and 
p1' ~ p2' in Sk+1  
⇔ p1' ~ p2' in Sk+1 

� 



       

 

 

The lemma shows that the algorithm is monotonic, that is, each iteration computes 
a refinement of the classification of the previous iteration. Since the number of re-
finements is finite, the number of iterations is finite and the algorithm must terminate. 

2.5   Multiple components, and multi-way interactions 

It has been shown how to compute the reduction for two components. For multiple 
components with 2-way interactions, the interactions between each pair of comp o-
nents are collected and labelled separately.  

For Step 1, we can simply store SiSj:(pi, pj, pi', pj') if there is a transition (pi, pj) 
t⇒ (pi', pj') in (Si || Sj)<L>. This satisfies the condition that SiSj:(pi, pj, pi', pj') is 
stored iff whenever the state (…pi,…, pj,…) is reachable, there is a transition (…pi,…, 
pj,…) t⇒ (…pi',…, pj',…) in (S1 || … || Sn)<L> (only the i and j components 
change). For Step 2, the labels are added as pipj[pj']0→pi for all tuples SiSj:(pi, pj, pi', 
pj'). For the iteration Step 4, update all [Si]k if any [Sj]k-1 with which it interacts has 
changed. For Step 5, for all tuples SiSj:(pi, pj, pi', pj'), add transitions 
[pi]SiSj:[pi][pj][pi'][pj']→[pi'] in [Si] and [pi]SiSj:[pi][pj][pi'][pj']→[pi'] in [Sj]. 

Lemma 1 is changed to  
a) for all tuples (pi1, pj, pi1', pj1'), there exists a tuple (pi2, pj, pi2', pj2') where [pi2']k=[pi1']k 

and [pj2']k=[pj1']k 
b) for all tuples (pi2, pj, pi2', pj2'), there exists a tuple (pi1, pj, pi1', pj1') where [pi1']k=[pi2']k 

and [pj1']k=[pj2']k 
Lemma 2 is changed to 

a) If there exists a transition (…pi,…, pj,…) t⇒ (…pi',…, pj',…) in 
(S1 || … || Sn)<L> then there exists a transition (…[pi],…, [pj],…) t⇒  

(…[pi'],…, [pj'],…) in ([S1] || … || [Sn])<L> 

b) If there exists a transition pi
a⇒pi' in Si, where a∉L, then there exists a transition 

[pi]a⇒[pi'] in [Si] 

Similarly, change Lemma 3 and all the proofs. That is, p, q is replaced with 
…pi,…, pj,… and S || T is replaced with S1 || … || Sn.  The proof of the theorem is 
changed so that a t -transition (p1,…, pn) t⇒  (p1',…, pn') in (S1 || … || Sn)<L> must be 
broken down into a sequence of constituent t -transitions with pair-wise interactions, 
such as (…pi,…, pj,…) t⇒ (…pi',…, pj',…). Then, the lemmas are applied to each 
constituent t -transition. 

For multi-way interactions, interactions for each subset of interacting components 
is collected and labelled separately. For example, for a 3-way interaction, the stored 
vectors are S1S2S3(p1, p2, p3, p1', p2', p3') if there is a transition (p1, p2, p3) t⇒ (p1', p2', 
p3') in (S1 || S2 || S3 || … || Sn)<L>. The conditions, the other steps, and the proof pro-
ceed similarly. 



       

 

 

2.6   Algorithm complexity 

A bound for the algorithm complexity can be obtained by adding up the cost of basic 
operations. 

Since interactions with each pair of components are collected separately, the stored 
interactions (for 2-way interactions) is SiSj(pi, pj, pi', pj'). Thus, the maximum number 
of interactions of Si is at worst nm4 for a system of n components, all with m states. 
For multi-way interactions, the number of interactions is at worst nm2k if there are at 
most k-way interactions. 

Minimization of each component by observational equivalence can be performed 
in O(ne) time, where e is the number of transitions of the relabelled components. The 
number of transitions is the number of interactions plus the number of visible transi-
tions. At worst, this is lm2+nm4, where l is the number of externally visible labels. 
Assuming l is unrelated to m and n, then the number of transitions is O(nm4). (Typi-
cally, l should be small.) Thus, the minimization has complexity O(n2m4). (For k-way 
interactions, the minimization has complexity O(n2m2k)). 

During one iteration, at most n minimizations is required. The number of iterations 
is at most the sum of the states of the components, nm, since the size of one reduced 
component must increase or else the algorithm terminates. Thus, the number of mini-
mizations is at most O(n2m), and the overall complexity is O(n4m5). (For k-way inter-
actions, complexity is O(n4m2k+1)). 

2.7   Algorithm notes 

Collecting interactions with each pair of components separately means reductions can 
be computed without composing the rest of the system. However, the disadvantage is 
that interactions with different components are being distinguished from each other, 
thus lessening the amount of reduction possible. For example, interactions of Si with 
two different components would still be distinguished even if the interactions do not 
change the states of either of the other components. In particular, a system with all 
labels hidden would not reduce to a set of 1-state abstractions! 

An optimization can be made in the number of edges added to components. In 
many cases, the same edges in S (labelled p1[p2]) may cause many different edges in T 
(labelled q1[q2]). But, for the purpose of reducing the components, many of the labels 
q1[q2] are redundant. Two labels q1[q2] are redundant if they always appear together in 
all transitions labelled p1[p2], since they can never be used to distinguish any states in 
S. 

Formally, it is safe to merge the labels a and b if, whenever there is a transition la-
belled with p1 a⇒ p2, then there is also a transition labelled with p1 b⇒ p2, and 
vice versa. Experiments show this optimization greatly reduces the number of transi-
tions, and significantly speeds up the minimization of components. 



       

 

 

2.8   Scalability of algorithm 

In theory, the abstraction algorithm avoids state explosion by avoiding composition of 
components and abstracting each component individually. Nevertheless, the theoreti-
cal complexity of O(n4m5) looks quite daunting for practical use. However, the actual 
situation is much better in experiments. 

The major factor in the cost is the set of interactions between two components. 
This set has a theoretical size complexity of O(m4). This level of complexity can oc-
cur in practice with components that are basically data structures. It is important to 
realize, however, that this complexity simply results from interactions between two 
components. Any type of model-checking that takes into account interactions between 
components must face at least this level of complexity.  

Let us assume that individual components are small, so that the tools built are able 
to handle compositions of two components in a reasonable (i.e. constant) time. This 
assumption eliminates the powers of m. Also at the mo st four iterations of reductions 
were required for each component in experiments. That is much better than the worst 
case of O(n2) minimizations of each component. Further, assume that components 
only interact with a limited (i.e. bounded) number of other components. This elimi-
nates one power of n. 

Thus, the actual observed complexity under these assumptions is proportional to 
O(n) and the effort depends linearly on the number of components. 

3   Implementation and results 

The algorithm has been implemented in a prototype tool as part of the Component 
Interaction Testing project. One of the goals of the project is to generate test cases 
from formal design models of software. The other parts of the project include  
• the ObjectState formal object-oriented modelling language with features similar 

to UML for Real-Time[15] 
• formal interaction coverage criteria for generating test requirements from models 

of component (Event-flow[14]) 

• tools to translate design models and test requirements to the LTS formalism (or 
Promela[10]), and generate test cases, exploiting the abstraction algorithm. 

The tool uses the Caesar-Aldebaran Development Package (CADP)[6]. The CADP 
toolbox provides facilities to generate LTS files, compute compositions and minimi-
zations. It does not have facilities to compute hook compositions. 

The performance of the algorithm was tested using a model of a private branch ex-
change (PBX) software. The design model is 1000 lines of ObjectState code, while 
the implementation of the PBX is 16 000 lines of C code.  

The following model-checking tools and algorithms were compared: 



       

 

 

• SPIN[10], using depth-first, partial-order reduction, supertrace  
• Exhibitor, part of CADP, using simple on-the-fly breadth-first search 

• Araprod[19] using on-the-fly breadth-first search with partial-order reduction 

• Aldebaran, part of CADP, using minimal model generation[3], BDDs 
• new analyzer using incremental test generation (observational minimization) 

• new analyzer with incremental test generation, and interaction abstraction. 
The tools were chosen because they implement advanced and successful model-

checking algorithms. All the tools are freely obtainable for research purposes.  

3.1   Test results 

Beginning with only one component and the test requirement, the tools were given 
more components to analyze until they exceeded available memory or failed to give 
an answer in a reasonable amount of time (i.e. 24 hours).  

The test results are shown in Table 1. The components of the PBX model as listed 
as CH (call handler), DB (database), CM (call manager), LS (line scan), and REQ (the 
test requirement).  

The interaction abstraction algorithm allows much larger models to be analyzed 
than possible with the other tools. Even for the simplest case of finding a path for a 
single component, the Aldebaran and Araprod tools failed. SPIN failed for the inter-
action of two components. The simple breadth-first search in Exhibitor performed 
better than the more complex algorithms, but it eventually failed to compute a path for 
three components. With incremental test generation (observational minimization), an 

Component subset PROD 
Alde-
baran 

SPIN 
Exhib i-

tor 
Increment 

test gen 
Interact 
abstract 

REQ +CH Memory 
out 

Time 
out 

554 790 365 4113 

REQ +CH +DB - - Not 
found 

7644 534 6158 

REQ +CH +DB 
+CM 

- - - Memory 
out 

677 6311 

REQ +2×CH +DB 
+CM 

- - - - Time out 8436 

REQ +3×CH +DB 
+CM 

- - - - - 10431 

REQ +2×CH +DB 
+CM +LS 

- - - - - Memory 
out 

Table 1 Times (seconds) for generating paths by each tool 



       

 

 

additional component can be analyzed. Adding interaction abstraction, five comp o-
nents can be analyzed. However, it also fails when the sixth component was included. 

The reason the interaction abstraction failed was the large number of interactions 
with the sixth component (LS). Recall that there are worst O(m4) interactions, and this 
seems to occur in this case. This number of interactions overwhelms the available 
memory. 

The sizes of the models and the impressive reductions achieved by interaction ab-
straction are shown in Table 2. Each table shows a subset of components that was 
analyzed. Note that the number of states of a component can be different in different 
subsets because the component may have to interact with different numbers of other 
components, and hence require more states. Also the test generation procedure is in-
cremental, and makes several passes. Thus, the actual number of states for each pass 
is usually much smaller than the maximum shown. 

Note that the implementation currently has an error in it that causes it to over-

 REQ CH1 
RAW 7 85956 
MIN 5 12790 
ABS 5 315 

 REQ DB CH1 
RAW 7 291 85956 
MIN 5 4 12390 
ABS 5 2 383 

 REQ DB CM CH1 
RAW 7 291 146 85956 
MIN 5 4 125 12790 
ABS 5 2 37 392 

 REQ DB CM CH1 CH2 
RAW 7 579 390 85956 85956 
MIN 5 7 223 12790 12790 
ABS 5 2 18 63 156 

 REQ DB CM CH1 CH2 CH3 
RAW 7 579 390 85956 85956 85956 
MIN 5 7 223 12790 12790 12790 
ABS 5 2 172 102 174 81 

 REQ DB CM LS CH1 CH2 
RAW 7 579 390 41371 85956 85956 
MIN 5 7 223 1665 12790 12790 
ABS 5 2 166 861 326 408 

Table 2: number of states of components, after observation minimization. after interaction 

abstraction (maximum over all test generation passes) 



       

 

 

reduce components in some cases, and hence generate incorrect test cases. However, 
all the test cases generated in the examp les shown are correct. Thus, it is likely that 
the reductions are correct for these examples. 

4   Related work 

There are many state space reduction algorithms, and they target different kinds of 
redundancy in the state space representation. Many redundancies exist as some type 
of shared state space structure, such as symmetry[13], partial-order equivalence[9], 
hierarchical state machines[1], shared state representation (using BDDs[4], state com-
pression[8]), and so on. Interaction abstraction, on the other hand, exploits redun-
dancy in model interactions that do not lead to different relevant behaviour. For ex-
ample, models of systems may deal with many aspects, but only one aspect is of in-
terest at a time.  

Interaction abstraction can be used as a preprocessing step for other reduction 
techniques. After abstraction, other techniques can be applied, including composi-
tional minimization, on-the-fly search, or partial-order reduction. This approach ex-
ploits the greatest amount of redundancy in models. 

The most closely related algorithms are compositional minimization algorithms. 
Interaction abstraction differs compositional minimization in that it does not need to 
compose components of a subsystem, but reduces each component by itself using 
information about interactions with other components. Thus it avoids the state-
explosion problem. Also, it takes into account context of components (its interactions 
with the rest of the system). Unlike methods using interface processes[5][17], it is 
completely automatic, and multiple contexts are taken into account without needing to 
compose the contexts. In addition, interaction abstraction merges redundant interac-
tions, and only preserves behaviour that is relevant to the property being checked, 
allowing for greater reduction.  

While compositional minimization typically tries to construct a single minimal 
global model on which many different properties can be evaluated, interaction ab-
straction is much more effective when few behaviours are observable. Therefore, it is 
more effective to create a specific abstraction for each property to be checked.  

5   Conclusions  

A new algorithm has been presented to reduce the state space of a model for model 
checking by abstracting component interactions that are not relevant to the property 
being checked. It is proved that the algorithm preserves behaviour of interest. Ab-



       

 

 

straction is performed without composing components, thus avoiding the state space 
explosion problem. 

The algorithm is most useful when models of systems may deal with many aspects, 
but only one aspect is of interest at a time. It is not useful for properties that depend 
on all behaviours of a system, such as absence of deadlock.  

The complexity of the algorithm is O(n4m5) for a system with n components that 
have m states maximum. (For systems where k components interact simultaenously, 
complexity is O(n4m2k+1)). However, for systems that are made up of many small, 
loosely-coupled components, and each component communicates with a limited num-
ber of other components, the algorithm performs well. 

Interaction abstraction can be used in conjunction with other reduction techniques, 
such as compositional minimization, on-the-fly search, or partial-order reduction. By 
combining different methods, the greatest amount of redundancy in models is ex-
ploited. 

Experiments show the algorithm is very effective in reducing state spaces, and al-
lowing much larger models to be analyzed than previously possible. 

Research is needed to achieve greater reduction. Especially, the algorithm should 
handle multiple components better. Rather than distinguishing interactions with dif-
ferent components, it is desirable to only consider the final result of interactions with 
all other components. The problem is how to achieve this without an explosion in the 
number of interactions that must be stored. In addition, the algorithm should be ex-
tended to preserve coarser equivalence relations, such as safety equivalence[2] or 
trace equivalence. Finally, the algorithm should be incorporated into industrial-
strength tools in order to be used for practical applications. 
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