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Abstract

In certified email (CEM) protocols, TTP transparency is an important security requirement which
helps to avoid bad publicity as well as protecting individual users’ privacy. Recently we have ex-
tended the CEM protocol of Cederquist et al. to satisfy TTP transparency. As a continuation,
in this paper, we formally verify the security requirement in the exteded protocol. The proper-
ties of fairness, effectiveness and timeliness are checked in the model checker Mocha, and TTP
transparency is analysed in the toolsets µCRL and CADP. The results confirm that our proposed
extension achieves our design goals.
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1 Introduction

Certified email (CEM) protocols, as an extension of regular email services,
require that both senders and receivers be responsible for their roles in the
email services. That means, as a protocol successfully runs to the end, neither
the sender can deny the dispatch of the email, nor can the receiver deny
the receipt. Such requirements are usually implemented by a non-repudiable
evidence of origin (EOO) that is to be acquired by the receiver, and a non-
repudiable evidence of receipt (EOR) that is to be acquired by the sender. Both
the EOO and the EOR may serve as evidences in case of a dispute.

As a special class of fair exchange protocols [20], a CEM protocol is sup-
posed to guarantee fairness with respect to non-repudiable evidences. Infor-
mally, at the end of a fair protocol run, either both parties acquire all the
evidences, or no party gets an evidence. A trusted third party (TTP) can be

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Liu, Pang and Zhang

introduced to take charge of the whole procedure and to provide undeniable
records of submission (of the sender) and delivery (of the receiver). However
in this way, a TTP may easily become a bottleneck, if she has to be involved in
a large number of CEM services. A better solution, so called optimistic proto-
cols [5], helps to release this burden from a TTP. In the optimistic protocols,
a TTP is only required to be involved in case of unexpected events, such as
a network failure or one party’s misbehaviour, to restore fairness. If both the
signer and the receiver behave correctly and there is no presence of significant
network delays, a CEM protocol terminates successfully without intervention
of the TTP. TTP transparency states that if a TTP has been contacted to
help in a protocol, the resulting evidences will be the same as those obtained
in the case where the TTP has not participated. In other words, by simply
looking at the evidences, it is impossible to detect whether the TTP has been
involved or not. Transparent TTPs are important and useful in practice, for
instance, to avoid bad publicity. Moreover, this property also ensures privacy
of the participants for asking for help from TTPs. In the context of CEM pro-
tocols, the use of a transparent TTP was first proposed by Micali [17], followed
by a number of works, e.g., [16,18,19,21,12], in which different cryptographic
schemes are used to achieve TTP transparency.

Recently, we have developed a CEM protocol with a transparent TTP [15],
based on the protocol of Cederquist et al. [9] that applies key chains to reduce
TTP’s storage requirement. We achieve TTP transparency by adopting the
verifiably encrypted signature scheme of [22]. We have shown that our exten-
sion is one of the most efficient CEM protocols satisfying TTP transparency,
in addition to the other important properties such as strong fairness, effec-
tiveness, and timeliness. The justifications to our claims are carried out on
a rather informal level [15]. In this paper, we intend to put our analysis one
step further, by incorporating formal verification techniques. The finite-state
model checker Mocha [4] is used to verify the properties of fairness, timeliness
and effectiveness, that are naturally interpreted in alternating-time temporal
logic (ATL) formulas with game semantics [3]. The verification of proper-
ties expressed in ATL corresponds to the computation of winning strategies.
Another toolset µCRL [7,6] is used for TTP transparency, which requires a
comparison of observable traces in various situations. The µCRL toolset has
the ability of generating state spaces that can be visualized and manipulated
by the toolbox CADP [11] which acts as a back-end of µCRL.

Structure of the paper. We explain our proposed extension of the CEM pro-
tocol [9] and discuss its desired properties in Sect. 2. The two verification
tools, Mocha and µCRL, are presented briefly in Sect. 3. In Sect. 4 we verify
fairness, timeliness and effectiveness in Mocha with a focus on the modelling,
and in Sect. 5 we verify TTP transparency in µCRL. Related work is discussed
in Sect. 6. We conclude the paper in Sect. 7.
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2 A Key Chain Based TTP Transparent CEM Protocol

Our protocol is developed on basis of the protocol [9], to support TTP trans-
parency. Key chains are used to reduce TTP’s storage requirement. Once a
key chain is initialized between Alice and Bob, Alice can use any key within it
to encrypt messages. Our approach requires the usage of a verifiably encrypted
signature scheme to encode a receiver’s commitment to receive the email.

For the sake of readability, we write Alice for the sender and Bob for
the receiver. We assume the communication channels are resilient, in the
sense that every message is guaranteed to reach its destination eventually. We
write {M}k to denote a message m encrypted with a symmetric key k, and
(M)P to denote party P ’s signature on message M . 1 We write (M)B|T for
Bob’s verifiably encrypted (partial) signature on M , by using the public key
of TTP to encrypt Bob’s signature on M . Everyone can verify that (M)B|T is
authentic, but only TTP and Bob are able to extract the complete signature
(M)B out of (M)B|T .

2.1 The proposed protocol

The structure of our protocol consists of an exchange sub-protocol, an abort
sub-protocol and a recover sub-protocol. The exchange sub-protocol is exe-
cuted by the communicating parties to deliver an email as well as exchanging
undeniable evidences. The other sub-protocols are launched by a party to
contact a TTP to deal with awry situations. Each exchange that uses the
protocol is called a protocol round, and one initialisation phase followed by a
number of protocol rounds is called a protocol session. Each protocol session
belongs to a unique pair of communication parties.

Key chain generation. In optimistic CEM protocols, communicating parties
will request TTP for help if the exchange process is disrupted. To achieve
(strong) fairness, the TTP often needs to store sufficient amount of informa-
tion, to have the ability to decrypt, retrieve or send out information for the
protocol to finally reach a fair state. In most existing CEM protocols, the ini-
tiator uses either TTP’s public key [18] or a separate key [21] to encrypt the
email for each exchange. This first method normally requires asymmetric key
operations, which are more expensive than symmetric key operations. The
second method gives TTP burden of storing information of exchanges, such
as involved parties, a hash value of email content and so on.

To reduce the TTP’s burden of storing too much information, the proto-
col [9] uses key chains. A chain of keys is a sequence of keys K ′0, . . . , K

′
n, such

that K ′i := H(Gi(K0)) for each i ≥ 0, where K0 is the seed, H : κ → κ is
a publicly known one-way collision-resistant hash function and G : κ → κ is

1 In practice a signature is always applied on a hashed value.
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a publicly known acyclic function (κ is a key domain). H and G are non-
commutative, i.e., given an H(Ki) for which Ki is unknown, it is infeasible to
compute H(G(Ki)).

Initialisation. To initialise a session, the initiator Alice (A) sends the key
chain seed K0 and the identity of the potential responder Bob (B), together
with a nonce nc to the TTP (T ). TTP will check whether there already exists
an entry 〈A,B,K0, sid

′〉 in her database indicating whether the key chain has
been established. If yes, TTP just ignores this request. Otherwise, TTP will
choose a new session identity sid, and send the message cert := (A,B, sid)T

to Alice, and then store 〈A,B,K0, sid〉 in her database.

Exchange sub-protocol. The ith protocol round in a protocol session sid is
described below. The round number i is initially 0 and can arbitrarily grow,

Alice incrementing i after each round. For convenience, we use EOR
1
2
M to

denote (EOOM)B|T .

1ex. A→ B : A,B, T, i, sid, h(K ′i), {M}K′
i
,EOOM , cert

2ex. B → A : EOR
1
2
M

3ex. A→ B : K ′i

4ex. B → A : EORM

At first, Alice sends out message 1ex to Bob. After receiving EOOM , Bob
sends out his partial signature on EOOM to show his commitment to receive
the email. If Alice further sends Bob the key K ′i, Bob will deliver a full
signature back to Alice as the final evidence of receipt.

Abort sub-protocol. Only Alice can abort, provided that the protocol has not
yet been recovered. Typically, Alice aborts if she does not receive message
2ex. To abort an exchange, Alice sends TTP the following message:

1a. A→ T : fa, A,B, i, sid, h({M}K′
i
), abrt

where fa is a flag used to identify the abort request and abrt is Alice’s signature
on the abort request. After receiving this request, TTP checks several things
such as the correctness of signatures, identities, entries for the key chain, and
status(i) to make decisions. If status(i) has not been initialised, TTP will set
it as aborted (status(i) := a) and send back an abort token. If the current
round has been recovered, TTP checks whether status(i) = h({M}K′

i
). If yes,

TTP will send back a recovery token. Otherwise, an error message of the form
(error, (error, abrt)T ) is sent back.

Recovery sub-protocol. Alice is allowed to launch the recovery sub-protocol
provided she has sent out message 3ex, but has not received message 4ex.
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Similarly, Bob can launch the recovery sub-protocol if he has sent out message
2ex, but has not received message 3ex. The first message of the recovery sub-
protocol for Alice is

1r
A. A→ T : fr, A,B, h(K ′i), h({M}K′

i
), i, sid,EOR

1
2
M ,EOOM

where fr is a flag used to identify the recovery request. The first message of
the recovery sub-protocol for Bob is

1r
B. B → T : fr, A,B, h(K ′i), h({M}K′

i
), i, sid,EORM ,EOOM

On receipt of a message for recovery, TTP needs to check (1) the correct-

ness of (verifiably encrypted) signatures on EOOM and EORM (EOR
1
2
M), (2) the

identity of TTP, and (3) whether there is an entry in its database matching
〈A,B, ?, sid〉. If all the above checks succeed, TTP will retrieve K0 and (4)
check whether h(H(Gi(K0))) matches h(K ′i). If yes, TTP will check status(i)
for round i.

• If status(i) has not been initialised, TTP will set status(i) := h({M}K′
i
).

Whenever necessary TTP converts EOR
1
2
M into EORM . After that, TTP

sends out the following messages.

2r. T → B : K ′i, (K
′
i)T

3r. T → A : EORM

• If status(i) = h({M}K′
i
), then TTP performs step 2r and step 3r (again).

• If status(i) = a, TTP sends out the abort token to the one that launched
the protocol.

2r. T → A(B) : abrt, (abrt)T

If any of the tests (1), (2), (3) and (4) fails, TTP ignores the recovery request
and sends back an error message.

2r. T → A(B) : error, (error,mr)T

where mr is the whole message received in step 1r
A or 1r

B.

Evidences and dispute resolution. When a disputation occurs, both parties are
required to provide evidences to an external judge. For each protocol round
i, EOO (evidence of origin) desired by Bob consists of

A,B, T,M, i, sid,K ′i,EOOM .
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EOR (evidence of receipt) desired by Alice consists of

A,B, T,M, i, sid,K ′i, cert,EORM .

2.2 Security requirements

The following properties are claimed to be satisfied by the proposed protocol.

Effectiveness. If no error occurs then the protocol successfully runs till the
end without any intervention from TTP.

Timeliness. Both Alice and Bob have the ability to eventually finish the
protocol anywhere during the protocol execution. This is to prevent endless
waiting of an honest party in case of unexpectancies.

Fairness. Honest Alice (Bob) will get her (his) evidences, provided that the
other party gets the evidence from her (him). 2 The evidences can be used
to convince an adjudicator that Bob has received the mail, in Alice’s case,
or that Alice is the true sender of the message, in Bob’s case. A protocol
satisfies fairness if every judgement on Bob’s (Alice’s) non-repudiation can be
made solely and independently from Alice’s (Bob’s) evidences, i.e., it does not
necessarily involve TTP, nor the participation of Bob (Alice).

TTP transparency. The evidence each participant obtains is of the same
format regardless of whether TTP is involved in the protocol execution or not.

3 A Brief Description of Mocha and µCRL

To formally analyse whether a security protocol achieves its design goals,
first we have to specify the protocol in a formal language, and then express
specifications for the desired properties. The model checker Mocha [4] allows
specification of models with concurrent game structures, and expression of
properties using ATL (Alternating-time Temporal Logic) [3] formulas with
game semantics, which is suitable for checking properties such as fairness,
effectiveness and timeliness. As to the analysis of TTP transparency, our
main idea is to compare traces of getting evidences from different situations. 3

Therefore, a process algebraic language µCRL and its toolset [7,6] are used.

3.1 Mocha and ATL

Mocha [4] is an interactive verification environment for the modular and hier-
archical verification of heterogeneous systems. Its model framework is in the
form of reactive modules. The states of a reactive module are determined by
variables and are changed in a sequence of rounds. Mocha can check ATL

2 Note that only honest participants need to be protected.
3 This cannot be done with Mocha.
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formulas, which express properties naturally as winning strategies with game
semantics. This is the main reason we choose Mocha as our model checker.
Mocha provides a guarded command language to model the protocols, which
uses the concurrent game structures as its formal semantics. The syntax and
semantics of this language can be found in [4].

The temporal logic ATL is defined with respect to a finite set Π of propo-
sitions and a finite set of players. An ATL formula is one of the following:

• p for propositions p ∈ Π.

• ¬φ or φ1 ∨ φ2, where φ, φ1, and φ2 are ATL formulas.

• 〈〈A〉〉# φ, 〈〈A〉〉2φ, or 〈〈A〉〉φ1Uφ2, where A⊆ Σ is a set of players, and φ, φ1

and φ2 are ATL formulas.

ATL formulas are interpreted over the states of a concurrent game structure
that has the same propositions and players [3]. The labeling of the states of
a concurrent game structure with propositions is used to evaluate the atomic
formulas of ATL. The logical connectives ¬ and ∨ have the standard meaning.
Intuitively, the operator 〈〈A〉〉 acts as a selective quantification over those paths
that the agents in A can enforce. The path quantifiers # (next), 2 (globally)
and U (until) carry their usual meanings as in the logic CTL, and3φ is defined
as true Uφ.

3.2 µCRL and CADP

µCRL is a language for specifying distributed systems and protocols in an
algebraic style. A µCRL specification consists of two parts: one part specifies
the data types, the other part specifies the processes.

The data part contains equational specifications; one can declare sorts
and functions working upon these sorts, and describe the meaning of these
functions by equations. Processes are represented by process terms. Process
terms consist of action names and recursion variables with zero or more data
parameters, combined with process-algebraic operators. Actions and recur-
sion variables carry zero or more data parameters. Intuitively, an action can
execute itself, after which it terminates successfully. There are two predefined
actions: δ represents deadlock, τ the internal action. p.q denotes sequential
composition, it first executes p and then q. p+q denotes non-deterministic
choice, meaning that it can behave as p or q. Summation

∑
d:D p(d) provides

the possibly infinite choice over a data type D. The conditional construct p �
b � q, with b a boolean data term, behaves as p if b and as q if not b. Parallel
composition p‖q interleaves the actions of p and q; moreover, actions from p
and q may synchronise into a communication action, if explicitly allowed by
a predefined communication function. Two actions can only synchronise if
their data parameters are the same, which means that communication can be
used to capture data transfer from one process to another. If two actions are
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able to synchronise, then in general we only want these actions to occur in
communication with each other, and not on their own. This can be enforced
by the encapsulation operator ∂H(p), which renames all occurrences in p of
actions from the set H into δ. Additionally, the hiding operator τI(p) turns
all occurrences in p of actions from the set I into τ .

The µCRL tool set [7] is a collection of tools for analysing and manipulat-
ing µCRL specifications. The µCRL tool set, together with the CADP tool
set [11], which acts as a back-end for the µCRL tool set, features visualisa-
tion, simulation, LTS generation and minimisation, model checking, theorem
proving and state-bit hashing capabilities.

4 Verification of the Protocol in Mocha

We give a sketch of our modeling approach and discuss the built models for the
extended CEM protocol. Detailed models and analysis can be found in [14].

4.1 Modeling the protocol in Mocha

At first, each participant is modelled as a player (in a game), with the de-
scription of its behaviours using the guarded command language of Mocha.
Models for honest participants can be easily specified strictly in accordance
with the protocol. As to the dishonest models, we mainly consider the dis-
honest participant’s behaviours, since the security of CEM protocol can be
hazarded by dishonest participants instead of outside intruders. Therefore,
we build models for both honest and dishonest participants. For each par-
ticipant, we write Pi and PiH to represent the dishonest and honest models,
respectively. Intuitively, dishonest model Pi allows the player to cheat, while
PiH just follows the protocol honestly. Dishonest behaviours include sending
messages derivable from his knowledge at any time, stopping at any time;
therefore, a dishonest model may not stop at a point where its role in the
protocol is required to stop.

Communication is modelled using shared variables. Evidences (EOO and
EOR), key and emails are modelled as boolean variables which are initialised
as false and updated by its sender. We model the action of sending out an
evidence, or other messages as a guarded command in which the sender resets
the corresponding variables as true. In the model for honest participant PiH,
the guard consists of all the conditions to be satisfied strictly according to
the protocol, and the command consists of all the corresponding actions to be
executed. However, for the dishonest Pi, the guard just consists of necessary
messages to generate the message to be sent.

List. 1 gives the Mocha code describing the behaviours of honest Alice. At
first, Alice can do idle actions after she initiates a protocol round by sending
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out EOOM . For honest Alice, she mainly performs two kinds of actions in
the exchange sub-protocol, which includes sending evidence of origin and the
key. They are described in step (1) and (2). Step (1) models the action of
sending EOOM , in which we use boolean variables hk and pa eoo to represent
the hashed value of K ′i and the message (B, T, i, sid, h(K ′i), {M}K′

i
)A signed

by Alice, respectively. Setting hk and pa eoo to true means Alice has initi-
ated a communication with Bob by sending out her EOOM . Step (2) says
that if Alice has received the correct verifiably encrypted message, namely
pb halfeorm has become true, she can set k as true, which represents the
action of sending out key K ′i. Except for the exchange sub-protocol, Alice is
also able to initiate the abort protocol if she does not receive the verifiably
encrypted signature pb halfeorm from Bob. This abort request A abort req
is described in step (4), in which the guard represents the requirements for
asking for abort from TTP, and the commands represent the behaviour of con-
tacting TTP for abort. Besides the abort sub-protocol, Alice can also initiate
the recovery sub-protocol which is modelled in step (6). Recovery request is
modelled as a boolean variable A recovery req, and it will be set to be true if
the guard is satisfied, in which the k and pb halfeorm are true while pb eorm
is false. Note that once honest Alice initiates a recovery or abort sub-protocol
with TTP, she will not continue the exchange sub-protocol. This mechanism
is realized by modeling a boolean variable A contacted T . Finally, Alice can
stop if she receives final EORM from Bob (step (3)) or recovery token from
TTP (step (7)). Abort token (step (5)) can also make Alice stop the protocol
round. In a similar way, we can model the honest behaviours of Bob.

Listing 1: Extracted honest model of Alice for the extended CEM protocol
-- idle actin while not stopped

[] ~pa_stop & pa_eoo ->
-- (1) Alice sends EOO to Bob

[] ~pa_stop & ~A_contacted_T & ~pa_eoo
-> pa_eoo ’:= true; hk ’:= true

-- (2) Alice sends out key while receiving half EOR_M
[] ~pa_stop & ~A_contacted_T & pb_halferom & ~k

-> k’:= true
-- (3) Alice can stop when she receives Bob ’s EOR

[] ~pb_stop & ~A_contacted_T & pb_eorm & ~pa_rece_eorm
-> pa_rece_erom ’:= true

-- (4) Alice can send out abort request to TTP
if she hasn ’t received half EOR_M from Bob

[] ~pa_stop & ~A_contacted_T & pa_eoo & ~pb_halfeorm
-> A_contacted_T ’:= true; A_abort_req ’:= true

-- (5) Alice stops after receiving abort token from TTP
[] ~pa_stop & A_contacted_T & T_abort_send_A

-> T_abort_token_A ’:= true; pa_stop ’:= true
-- (6) Alice can send recovery request

while she possesses pb_halfeorm
[] ~pa_stop & ~A_contacted_T & k & pb_halfeorm & ~pb_eorm

-> A_contacted_T ’:= true; A_recovery_req ’:= true
-- (7) Alice stops after receiving recovery token from TTP

[] ~pa_stop & T_recovery_send_A ->
pa_rece_eorm ’ := true; pa_stop ’:= true
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List. 2 describes the behaviours of dishonest Alice, her malicious behaviours
are described as follows. At first Alice is allowed not only to idle, but also
to stop and to quit the protocol at any time she wants. The behaviours of
sending EOOM and the key are specified in step (1) and (2). Step (1) models
that Alice can send out her evidence of origin by setting variable pa eoo to
true at any time she wants, even if she has already contacted TTP and is
supposed to stop. Together with pa eoo, malicious Alice still has the choice
of sending out correct hashed key hk or incorrect hashed key hke. Similarly,
step (2) specifies that Alice can send out her key at any time she wants. If the
variable k is true, it means that the correct key has been sent out. Otherwise,
it represents that Alice has not sent out any key or the key that has been
sent out is wrong. Moreover, step (3) and (4) models that Alice can contact
TTP for abort or recovery as long as she has received enough messages, but
she does not set the A contact T as true. The last two steps describe the
situations when Alice has received EORM or an abort token from TTP.

Listing 2: Extracted dishonest model of Alice for the extended CEM protocol
-- idle actin while not stopped

[] ~pa_stop & pa_eoo ->
-- Alice can stop at any time

[] ~pa_stop & pa_eoo -> pa_stop ’:= true
-- (1) Alice can send EOO at any time

--send correct hashed key
[] ~pa_stop & ~pa_eoo & ~hk & ~hke

-> pa_eoo ’:= true; hk ’:= true
--send incorrect hashed key

[] ~pa_stop & ~pa_eoo & ~hk & ~hke
-> pa_eoo ’:= true; hke ’:= true

-- (2) Alice can send out key at any time
[] ~pa_stop & ~k -> k’:= true

-- (3) Alice can send abort request
[] ~pa_stop & pa_eoo -> A_abort_req ’:= true

-- (4) Alice can send recovery request
[] ~pa_stop & pb_halfeorm -> A_reovery_req ’:= true

-- (5) Alice receives abort token
[] ~pa_stop & T_abort_send_A -> T_abort_token_A ’:= true

-- (6) Alice receives recovery token
[] ~pa_stop & T_recovery_send_A -> pa_rece_eorm ’:= true

In a similar way, we can model the dishonest behaviours of Bob.

List. 3 models the corresponding behaviours of TTP. TTP is a special
player that has to be modelled in a particular way. It must be objective, and
cannot act in collusion with protocol participants. We build the model for
TTP that strictly follow the protocol. For each protocol round, we use a vari-
able T stateAB to record the status of protocol. T stateAB has three possible
values, which are abrt, recov and empty representing aborted, recovered and
empty states, respectively. After receiving recovery or abort request, TTP
will behave according to the values of T stateAB. The first part describes
how TTP deals with abort request from initiator Alice. TTP sends out abort
token to both Alice and Bob if the status is empty or abrt, and the T stateAB
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is also needed to be set as abrt if the original status is empty. However, if
T stateAB is recov, which means the corresponding round has already been
recovered, then the corresponding EORM and key must be sent to Alice and
Bob respectively. Part two and three models the behaviours of dealing with
recovery requests from Alice and Bob. If the TTP receives a recovery request
and its status is empty or recov, then the required evidences or key must be
sent to Alice and Bob respectively. Otherwise, abort token will be sent out.

Listing 3: Extracted model of TTP for the extended CEM protocol
-- (1) If TTP receives abort request from Alice

[] A_abort_req & (T_stateAB=abrt) & ~T_response_A
-> T_abort_send_A ’:= true; T_abort_send_B ’:= true;

T_response_A ’:= true
[] A_abort_req & (T_stateAB=empty) & ~T_response_A

-> T_abort_send_A ’:= true; T_abort_send_B ’:= true;
T_response_A ’:= true; T_stateAB ’:= abrt

[] A_abort_req & (T_stateAB=recov) & ~T_response_A
-> T_recovery_send_A ’:= true; T_recovery_send_B ’:= true;

T_response_A ’:= true
-- (2) If TTP receives recovery request from Alice

[] A_recovery_req & (T_state=empty) & ~T_response_A ->
-> T_stateAB ’:= recov; T_recovery_send_A ’:= true;

T_recovery_send_B ’:= true; T_response_A ’:= true
[] A_recovery_req & (T_state=recov) & ~T_response_A ->

-> T_recovery_send_A ’:= true;T_recovery_send_B ’:= true;
T_response_A ’:= true

[] A_recovery_req & (T_state=abrt) & ~T_response_A ->
-> T_abort_send_A ’:= true;T_abort_send_B ’:= true;

T_response_A ’:= true
-- (3) If TTP receives recovery request from Bob

[] B_recovery_req & (T_state=empty) & ~T_response_B ->
-> T_stateAB ’:= recov; T_recovery_send_A ’:= true;

T_recovery_send_B ’:= true; T_response_B ’:= true
[] B_recovery_req & (T_state=recov) & ~T_response_B ->

-> T_recovery_send_A ’:= true;T_recovery_send_B ’:= true;
T_response_B ’:= true

[] B_recovery_req & (T_state=abrt) & ~T_response_B ->
-> T_abort_send_A :=true;T_abort_send_B ’:= true;

T_response_B ’:= true

4.2 Expressing properties of the protocol in ATL

Given a CEM protocol with just two participants Alice and Bob, the following
expressions are suitable for honest participant even if the other is dishonest.
Actually, we only care about fairness and timeliness for honest participant.
As to effectiveness, it requires that both participants must behave honestly.

Effectiveness. If honest participants are willing to exchange emails for re-
ceipts, then the protocol will terminate in a state that Alice has obtained EOR
and Bob has received EOO and M without the involvement of TTP.

effectiveness ≡ (〈〈PaH,PbH〉〉3 (EOO ∧M ∧ EOR))

where PaH and PbH represent honest participants Alice and Bob, and EOR
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represents the evidence of receipt from receiver Bob. In addition, the EOO
and M represents the evidence of origin and the email content from Alice.

Timeliness. At any time, an honest participant has a strategy to stop the
protocol and thus to prevent endless waiting. Timeliness for Alice and Bob is
formulated as:

timelinessPa ≡ ∀2 (〈〈PaH〉〉3Pa stop) timelinessPb ≡ ∀2 (〈〈PbH〉〉3Pb stop).

where PaH and PbH represent the honest Alice and Bob, and Pa stop (Pb stop)
represents that Alice (Bob) has already terminated the protocol.

Fairness. A protocol is fair for honest Alice Pa if the following is satisfied:
whenever Bob obtains Pa’s non-repudiation evidence of origin (EOO) and email
content M , PaH has a strategy to obtain Bob’s non-repudiable evidence of
receipt (EOR). In ATL, fairness for honest Alice can be formulated as:

fairnessPaH ≡ ∀2 ((EOO ∧M) ⇒ 〈〈PaH〉〉3 (EOR)).

Similarly, fairness for Bob is formulated as below. If Alice obtains PbH’s EOR,
honest Bob PbH has a strategy to get Alice’s EOR and email content M .

fairnessPbH ≡ ∀2 ((EOR) ⇒ 〈〈PbH〉〉3 (EOO ∧M)).

4.3 Analysis

We have built three Mocha models, PaH ‖ PbH ‖ TTP , Pa ‖ PbH ‖ TTP ,
and PaH ‖ Pb ‖ TTP , combining the aforementioned formulas, to verify
fairness, timeliness and effectiveness of our CEM protocol. These properties
were successfully checked in Mocha.

5 Verification of the Protocol in µCRL

In this section, we only give a sketch on how we model the protocol in µCRL,
and focus on how to check TTP transparency of the protocol in µCRL. The
detailed models and analysis can be found in [14].

5.1 Modeling the protocol in µCRL

As stated in Sect. 5, each µCRL specification consists of two parts, which are
abstract data type definitions and behavioural specifications for participants.
Since the execution of protocol mainly depends on the exchange of messages,
the contents of the data are not treated in details, instead the data type
used and corresponding operations on it are captured. Therefore, we can
simplify the complex cryptographic primitives, such as encryption, decryption
and verifiably encryption of messages.

12
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TTP transparency states that the final evidences do not reveal whether
TTP has intervened in the protocol or not. The main idea of checking TTP
transparency is to compare traces obtained from three different models after
hiding all unnecessary actions, such as messages between TTP and the users,
as well as minimising the generated state space modulo weak trace equiva-
lence. The three models are combinations of honest Alice and honest Bob,
honest Alice and malicious Bob and TTP, and malicious Alice and honest Bob
and TTP.

Participants are hooked up by communication channels. According to
our assumption, the communications channels are resilient, in the sense that
every message is guaranteed to reach its destination eventually. Therefore,
by using the encapsulation and communication operators in µCRL, we are
able enforce the actions of participants Alice, Bob and TTP to synchronise.
Each participant is defined as a process. The communications between them
are composed by actions of sending and receiving messages. The honest and
dishonest behaviours of the participants resemble those in the Mocha models.

For instance, the behaviours of the initiator Alice are modelled in a process
with a parameter key, which initiates the CEM protocol by sending evidence
of origin EOO to receiver Bob. The action init Alice(x,y,i,A,B) shows that
Alice initiates a protocol round i for delivering an email y to Bob using a key
x. Then after receiving the verifiably encrypted message from Bob, honest
Alice will send out her key. If Bob’s final reply EOR is correct, Alice will be
sure that she has completed one email delivery and successfully obtained the
evidence of receipt. Action evidence Alice(x,y,i,halfeorm,eorm,A,B) reports that
she has already obtained the evidence for protocol round i which sends email
y with key x. The sketch of Alice’s behaviour is described as follows.

Alice(x : Key) =
∑

y:Item

∑
i:Number initSend(A, eoo,B).init A(A, y, x, i,B)

recv(B, halfeorm,A).send(A, k,B).

recv(B, eorm,A).evidence A(A, y, x, i, eorm,B)

where eoo represents the the first message 1ex for protocol round i. The
halfeorm and eorm represents Bob’s verifiably encrypted signature and final
signature. We need to extend the above process when taking TTP into account
to cover when Alice can contact TTP and receive replies from TTP. Similarly,
honest Bod, dishonest Alice, dishonest Bob, and TTP can be modelled in
µCRL as well, by specifying their behaviours as discussed before.

5.2 Analysis

Our way to check TTP transparency is by comparing traces of getting ev-
idences between system of only honest participants and systems containing
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(a)

initCom(A,m,eoo,one,k1,B)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

initCom(A,m,eoo,k1,B)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

(b)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

initCom(A,m,eoo,k1,B)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

(c)

evidence_B(B,m,eoo,k1,A)

evidence_A(A,m,eorm,k1,B)

initCom(A,m,eoo,k2,B)

evidence_B(B,m,eoo,k2,A)

evidence_A(A,m,eorm,k2,B)

Fig. 1. The obtained traces.

dishonest participants. After hiding some actions and reducing the model, we
obtain a trace from the honest system that is depicted in Fig. 1(a), which
shows the situation of getting evidences without TTP. Fig. 1(b) describes
traces obtained from the model containing honest Alice, dishonest Bob, and
TTP. We can find that Fig. 1(b) has one more trace. Evidences for both
traces are of the same form, but the sequence of getting them are different.
However, this difference does not affect the correctness of TTP transparency.
When checking the evidences possessed Bob and Alice, the only thing that
matters is the content of the evidences, and the number of transitions (which
might reflect the execution time) is irrelevant due to the asynchrony of the
protocol model. Fig. 1(c) depicts the traces obtained from the model contain-
ing dishonest Alice, honest Bob and TTP. We can find that this figure has
one more trace than Fig. 1(b). This extra trace describes Alice’s malicious
behaviours of using the key (k2) that does not match the protocol round (i1).
However, the occurrence of this trace manifests that both Alice and Bob get
their expected evidences without the intervene of TTP. As if Alice or Bob
tries to contact TTP for recovery, they will just obtain error message instead
of evidences. Therefore, this trace does not reveal the involvement of TTP. By
the above analysis, we can draw a conclusion that our extended CEM protocol
satisfies TTP transparency.

6 Related Work

It has been acknowledged that formal verification is important for security pro-
tocols, because of the seriousness of security flaws. In this paper, we use the
technology of model checking to check automatically whether a given model
of CEM protocols satisfy some given specifications. To our knowledge, the lit-
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erature of formal verifications of CEM protocols includes the works of Kremer
et al. [13], Cederquist et al. [8] and Abadi and Blanchet [1].

Kremer et al. [13] propose an approach for modeling and analysis of CEM
protocols using model checker Mocha. The advantage of using Mocha is that it
allows to model CEM protocols with concurrent game structures, and specify
properties in ATL, a temporal logic with game semantics. Therefore, Mocha is
well suited for checking properties such as fairness, timeliness and effectiveness
that can be naturally interpreted with game semantics. For similar reasons,
Mocha has been used for other fair exchange protocols [10,23]. Besides Mocha,
the µCRL toolset, together with CADP which acts as an back-end, has also
used to analyse CEM protocols automatically. Cederquist et al. [8] design an
optimistic CEM protocol and check both safety and liveness properties using
µCRL toolset. The desired properties are specified using µ-calculus. There
exists another way to check CEM protocols, which is proposed by Abadi and
Blanchet [1]. Their protocol is specified using the applied pi calculus. Tak-
ing the protocol specification as input language, the verifier ProVerif auto-
matically checks the property secrecy. As to fairness, it is not checked fully
automatically, but with some manual proofs.

7 Conclusion

We have formally verified the protocol [15], an extension of the key chain based
CEM protocol [9] by Cederquist et al. to cover an additional requirement TTP
transparency. The verification was taken in two steps. First, we checked fair-
ness, effectiveness and timeliness properties, using the model checker Mocha.
Then we have modelled the protocol in a process algebraic language µCRL
and used its toolsets together with CADP to check TTP transparency. Our
analysis showed that the protocol achieves the design goals.

The way to formalize TTP transparency in this paper abstracts a lot from
the underlying cryptographic techniques and the ability of the adversary. In
the future, we would like to investigate a more appropriate approach, for
example, it is interesting to see whether we can interpret TTP transparency
using static equivalence in the applied pi calculus [2]. Another direction is to
extend the protocol furthermore, to cover other design goals such as stateless
TTP and accountability.
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