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Abstract 
 
Growing safety, correctness, reliability and performance requirements for Wireless Sensor Networks (WSN) have increased 
demand for advanced design and development techniques. Formal methods provide basic means to achieve these goals. We 
propose a formal language PAWSN and an umbrella tool environment TEPAWSN that combines different formal techniques for 
modeling, analysis and development of power aware WSNs. 

 
 

1. Introduction 

 
A wireless sensor network (WSN) consists of spatially 
distributed devices that monitor their environment and 
communicate with each other wirelessly. Application areas of 
WSNs range from battlefield surveillance, industrial process 
monitoring and control, machine health monitoring, 
environment and habitat monitoring, healthcare applications, 
home automation and traffic control. Such working conditions 
set high requirements on the reliability, correctness and, 
especially, power consumption of the devices, as well as of the 
whole network. Formal methods can be used as methodological 
means for the development of such systems in an efficient way. 

Indeed, formal methods provide languages with strict 
semantics and syntax, corresponding techniques for the 
construction of models of systems under development, and 
verification (automatic or semi-automatic) of these models 
against selected requirements. As a consequence, quantitative 
and qualitative properties, such as required throughput or 
absence of deadlocks, can be checked. 

Different formal methods and tools were recently applied in 
modeling and analysis of WSNs [1], [2]. These examples show 
how to deal with non determinism, timed and probabilistic 
aspects of WSNs. However, these approaches only deal with 
selected aspects, while neglecting power consumption issues. 

Power consumption can be analyzed at several abstraction 
levels: instruction level [3], control algorithm level [4], 
hardware level [5], etc. However, currently, only simulation is 
applied for power consumption analysis [6], [7].  

TinyOS (www.tinyos.net) and nesC (nescc.sourceforge.net) 
are, respectively, a well-known operating system and a 

well-known programming language for WSN development. A 
software is developed as a highly concurrent collection of 
processes and tasks. Simulation of the TinyOS application can 
be performed using ns-2 (see www.isi.edu/nsnam/ns), 
TOSSIM, PowerTOSSIM [7] and VMNet [6].  

We propose a methodology for modeling, analysis and 
development of WSNs: a formal language PAWSN (Process 
Algebra for WSNs) and a corresponding tool environment 
TEPAWSN. PAWSN is the classical process algebra extended 
with time, probabilistic and, specifically, power consumption 
aspects. TEPAWSN is the related tool environment which 
facilitates the design, analysis and transformation of PAWSN 
specifications. It allows both qualitative and quantitative 
analysis by translating PAWSN specifications to other (formal) 
languages with tool support. 
 

2. Process Algebra for WSN and Tool Environment 

 
2.1 Process Algebra for Wireless Sensor Network 

 
We introduce process algebra for wireless sensor network 
modeling (PAWSN). It combines classical process algebra 
(e.g., CCS) features, such as parallel and sequential 
composition, with time, probabilistic and power consumption 
behaviors. Its semantics allows formal analysis and provides a 
solid basis for the tool development. The relevant rationales 
behind the development of PAWSN are as follow: 

• Orthogonality: timing, non deterministic, probabilistic 
and power aspects can easily be added or omitted from a 
specification when such aspects are unimportant. 
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• Usability: the syntax and language constructs of 
PAWSN have to be close to common languages used for 
WSNs (e.g. nesC), making PAWSN intuitive for the 
engineers. 

• Mapping to automata: Different extensions of automata 
are widely used for formal modeling, including the 
analysis of WSNs with power issues [5]. We aim at 
transforming PAWSN specifications to the equivalent 
Power Probabilistic Timed Automata (PPTA) (a type of 
timed automata embedded with probabilistic and power 
issues). That will allow us to describe a very large 
spectrum such as timed, stochastic, probabilistic and 
power features. PAWSN semantics should allow 
relevant properties of any PAWSN specification to be 
preserved through the translation/mapping to the 
corresponding PPTA. 

 
2.2 Tool Environment for PAWSN 

 
Instead of developing a new tool, our intention is to provide an 
umbrella tool that allows to specify the behavior of WSNs, 
including power issues, using PAWSN, and then to translate or to 
adapt the specification in such a manner that the analysis can be 
carried out by third party tools, e.g. PowerTOSSIM, VMNet, 
Prism (see www.prism modelchecker.org), MRMC, Bhave 
simulator [9], Uppaal (see www.uppaal.org) or CADP 
(www.inrialpes.fr/vasy/cadp/) according to the different purposes, 
e.g. simulation, verification or power analysis. This approach was 
inspired by MOTOR [10] that advocates the so-called single 
formalism and multi-solution approach. The usual practice is to 
build multiple models, one for each of the different aspect or 
group of aspects of the system, and then to analyze them. 
However, this usual approach does not guarantee any property 
consistency among the models. Indeed, it misses a formal 
semantics relating the models. Consequently, analysis results hold 
only for particular models, models which are not completely 
equivalent to the whole system. Our  approach allows the analyze 
of certain aspects/properties of the same model in such a way that 
the consistency of analysis/verification is guaranteed. The 
reference TESPAWN architecture is depicted in Figure 1. 

 
Figure 1. TEPAWSN architecture 

 

3 Application of TEPAWSN 

 
System development using TEPAWSN consists of several 
components, namely: visualization, simulation, verification and 
implementation. The procedure is clearly visible from the 
reference architecture depicted in Figure 1. Three groups of 
conversion tools are defined for the different purposes. 
 
3.1 PAWSN2Sim Converters and Simulation 

 
PAWSN2Sim converters translate PAWSN specifications to 
the corresponding models specified by several languages. 
These models allow simulating PAWSN specifications using 
different oriented simulators. For instance, PAWSN2nesC 
converts PAWSN specifications to nesC models in a way 
allowing simulation and implementation of such models within 
the TinyOS environment. Also, PAWSN2BHPC allows to 
employ the toolset  BHave (bhpc-simulator.sourceforge.net) 
for simulation and certain analysis of power consumptions 
aspects (as a part of simulation). 
 
3.2 PAWSN2Ver Converters and Verification 

 
For the purpose of simulation, verification and implementation 
of WSNs described in PAWSN, the PAWSN2PPTA, 
PAWSN2nesC and PAWSN2PRISM tools will be developed. 
Any  PAWSN  specification will be  mapped  to  the  
corresponding  PPTA  by  means  of PAWSN2PPTA. The 
translator PAWSN2nesC converts PAWSN specifications into 
the corresponding models in nesC for simulation and 
implementation in TinyOS. 

For verification of WSNs, we focus on Model Checking, 
which is a formal verification technique. The basic idea is to 
create a mathematical model for the system under scrutiny. The 
model typically abstracts from everything that is not relevant for 
the proof of its correctness. Verifying correctness of the model, 
and thereby of the system, is reduced to a set of requirements 
that are translated into system properties. These properties are 
then formalized by expressing them in a property specification 
language, e.g. temporal logics. Model checking is the (often 
automated) analysis of whether the constructed model satisfies 
all formalized properties. 

Probabilistic model checking concerns systems with 
behavior is subject to chance. All events or actions occur with a 
certain probability. This feature is formalized by constructing a 
probabilistic model. Properties can refer to the probabilities and 
are formalized in probabilistic property specification 
languages. The added value of probabilistic model checking is 
that it can be used to do quantitative analysis of systems. 

PRISM is a probabilistic model checker, that is, a tool for 
probabilistic modeling and analysis. Models are formulated in 
the PRISM language that contains three types of models based 
on discrete Markov chains (DTMC), Markov decision 
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processes (MDP), and continuous-time Markov chains 
(CTMC). Properties are formulated in the PRISM property 
specification language containing: probabilistic computation 
tree logic (for DTMCs and MDPs) and continuous stochastic 
logic (for CTMCs). The tool itself can be used for automated 
analysis by discrete event simulation or formal verification 
based on numeric computation. 

Extreme resource constraints and unreliability are inherent 
to WSNs, leading to different trade-offs. For instance, power 
consumption versus sensor detection reliability. We typically 
want to explore different solutions which may have very 
different power consumption characteristics and different 
probabilities of detecting a new sensor. Comparing solutions 
taking into account both the detection reliability and power 
consumption requires quantitative analysis. Probabilistic model 
checking allows us to perform this analysis. To this end we 
create a requirement on the detection probability of a solution. 
We are interested in all solutions with a detection probability of 
at least 50%. We construct probabilistic models of WSNs for 
each solution and analyze whether each model satisfies this 
property. The models that satisfy the property can be ranked 
according to power consumption; from which we can choose 
the best solution. 

Similarly, for verification purpose, PAWSN2PRISM 
translates PAWSN specifications into the equivalent reactive 
modules which are the input format of the probabilistic model 
checker PRISM. Also, it is evident that popular automaton 
based model checkers (e.g. UPPAAL) can be used, with some 
adaptation on PPTA, to verify properties of WSNs described in 
PAWSN via the translations to PPTA. 
 
3.3 PAWSN2Pow and Power Consumption Visualization 

 
In addition to simulation tools, we aim to establish a visual 
connection between a WSN design and its power consumption. 
This will be achieved by annotating power consumption 
information from simulation as TinyOS applications (e.g. using 
PowerTOSSIM/VMNet) onto a PPTA of the WSN design. This 
visual connection helps: 

• to address power consumption and to identify possible 
design flaws at an earlier stage; 

• to  uncover more opportunities for application of 
existing low-power design techniques; 

• to find such opportunities more quickly than in 
traditional manual/iterative approaches. 

The completing part of the full environment is a visualization 
tool for power analysis. The main goal of involving a 
visualization tool is to provide a visual connection between a 
WSN design and its power consumption. The large amount of 
nodes in WSN and the invisible communication topology ask 
inherently for a graphical interpretation of the design algorithm. 
Such a tool provides quick overview of the simulation results 
and speeds up the evaluation phase. Further, a visual 
presentation allows designers to have more opportunities to 

uncover existing low-power designs. Last, but not least, it offers 
an elegant way to compare individual designs among them. 

We propose to use a WSN Simulator and Visualize 
NetTopo in order to visualize power consumption. This will be 
achieved by annotating power consumption information from 
simulation as TinyOS applications (e.g. using 
PowerTOSSIM/VMNet) onto a PPTA of the WSN design. 
 

4. Conclusions 

 
The TEPAWSN tool environment for WSNs has been 
presented. We expect that TEPAWSN will make a relevant 
contribution to the WSN research and development by 
facilitating the design and analysis of power aware WSNs. The 
development will be performed step-wise, i.e. selected 
converters will be implemented and tested with simple case 
studies. Depending on the results further actions will be taken. 

The development of TEPAWSN will be funded by Solari, 
Hong-Kong (official sales agent of Sanyo LCD camera modules 
- http://www.solari-hk.com) starting from September 2009; and 
in cooperation with engineers from industrial entities as well as 
researchers from academic research institutes. 
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