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ABSTRACT

Plastic user interfaces have the capacity of adapting them-
selves to their context of use while preserving usability. This
property gives rise to several versions of the same UI. This
paper addresses the problem of verifying Ul adaptation by
means of formal methods. It proposes three approaches, all
of them supported by the CADP toolbox and LNT formal
language. The first approach permits the reasoning over the
adaptation output, i.e. the Ul versions: some properties are
verified over the Ul models thanks to model checking. The
second solution proposes to verify the plasticity engine. The
last approach compares Ul versions thanks to equivalence
checking. These approaches are discussed and compared on
an example of a system in the nuclear power plant domain.
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INTRODUCTION

The advent of ubiquitous computing and the increasing diver-
sity of platforms and devices change user expectations. Ac-
cording to Calvary et al. [6], there is a need for systems to
be able to adapt themselves to their context of use while pre-
serving their usability. This property, named plasticity, pro-
vides users with different versions of a user interface (UI).
The problem addressed in this paper is to verify to which ex-
tent these versions are consistent.

Given the large number of possible versions of a U, it is time-
consuming and error prone to check consistency by hand.
Some automation must be provided to verify plasticity. This
paper proposes the usage of formal methods to perform such
verification. It describes and compares three approaches, us-
ing different verification techniques. Two of them consist in
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verifying properties on the formal models, either by directly
checking the UI versions or by checking the plasticity engine
used to generate the Ul versions. The third approach is based
on the comparison of UI versions.

The reminder of this paper starts by presenting the state of
the art about verification of different UI versions, followed
by a description and comparison of the three verification ap-
proaches. Finally, a conclusion summarizes the approaches
and proposes perspectives.

RELATED WORK

In [14], the authors propose the automatic generation of con-
sistent user interfaces when the platform changes. They do
not consider, however, changes in the user nor in the environ-
ment. Besides, since their approach aims at generating Uls, it
can not be applied to verify consistency of existing Uls.

Several approaches to reasoning over Uls propose to verify
the satisfiability of properties over Ul models, using model
checking and/or theorem proving [11, 17, 18, 13, 15]. While
such approaches are powerful thanks to their reasoning tools,
none of them considers several versions of a Ul or plasticity.

In [5] a formal approach to verify if a Ul is a refinement of
another Ul is proposed, by verifying functional equivalence,
for instance. This approach verifies if a UI provides at least
as much functionalities as another UL. However, they do not
verify different levels of equivalence and they do not cover
UI appearance.

Other approaches addressing different versions of a Ul are
mainly based on regression testing. Some authors [1, 10, 9]
use the Capture-and-Replay technique. This technique allows
one to execute again (replay) test cases that had their execu-
tion recorded before (capture). However, the scripts gener-
ated in the capture part are vulnerable to GUI layout change,
which can render entire automated test suites inept [4]. In [4]
an approach based on image recognition for comparing Uls
using the Visual GUI Testing technique is proposed. This
technique is less based on hard coded tests, but it is very sen-
sitive to the GUI elements positioning. Alternatively, GUID-
IFF tool [3] performs regression testing of different versions
of a UI, providing a list of detected deviations. The draw-
back of testing approaches is that they are usually performed
late in the system development cycle. Besides, none of them
consider Ul versions generated thanks to plasticity, whereas
plasticity takes into account specific adaptation means [19],
such as the remolding of one interactor.
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Figure 1: Ul in Expert Mode on a large screen computer

APPROACHES FOR PLASTICITY VERIFICATION
We present three approaches to verifying Uls, illustrated on a
example of a system in the nuclear power plant domain.

A Non-Trivial Example

This example consists in a system prototype of a nuclear
power plant. The system provides an overview of the plant
state and notifies the control room operator about all unex-
pected events in the plant. The main Ul contains four zones:

o The top zone displays six tabs for selecting the plant status;

o The Default Signal (“Signaux de défaut”) zone synthesizes
signals triggered in reactor functions, according to unex-
pected events occurred in the reactor parameters;

e At the bottom, the Parameter (“Parameétres’) zone displays
various reactor parameters (e.g. the pressure), each one
represented by a widget containing: the parameter name,
its current value, a curve displaying the value evolution
over time, the minimum/maximum value bounds, the sen-
sor that monitors the parameter and its measurement unit;

e On the left, users can access other screens by a menu.
This paper uses only two versions of the UI:

e An expert version on a large screen computer (Fig. 1,
in French), which displays the four zones of the UI, but
some guidances (here labels) are removed, providing ex-
pert users with less loaded Uls. Label omission are high-
lighted with crosses in Fig. 1. For instance, the title of the
Default Signal and Parameter Ul zones are omitted;

e A training version on a smartphone (Fig. 2) where all la-
bels are displayed, but only reactor signals and parameters
currently affected by a failure are shown. The parameter
widgets are re-molded to fit on the size-reduced screen (i.e.
a text instead of a curved line). Moreover, the menu is ac-
cessible via a blue button at the top-left of the UL
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Figure 2: Ul in Training Mode on a smartphone

The system provides a meta Ul to choose the mode (expert
or training) and some element distribution over devices. For
instance, if two screens are available for displaying the UI, it
is possible to display parameters on one screen and signals on
the other one (UI redistribution [19]).

Considering these two UI versions, we can either check if
they are somehow equivalent in terms of appearance and in-
teraction capabilities, or verify common properties in both of
them. For instance, all versions must always display the re-
actor parameters whatever their form are. Such verifications
can be performed thanks to different formal approaches we
describe now.

Common Approach

The common part of the three proposed approach consists in
specifying formal models for the UI versions, in order to per-
form formal verification (Fig. 3). The formal model covers
not only the user interfaces, but also some aspects of the sys-
tem core. Therefore, the entry point of the approach is the
interactive system that needs to be verified. The formal spec-
ification is written in LNT formal language [7]. LNT was
chosen for its expressiveness and its tool support, CADP [8].
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Figure 3: Global approach

CADP generates a Labeled Transition System (LTS) from
LNT models, in which the UI behavior and appearance, user
interactions, UI context of use, etc., are expressed as tran-
sition labels. This LTS representation allows the usage of
several formal techniques. For instance, model checking can
be used to verify that all Ul versions display reactor signals,



and equivalence checking can compare the smartphone and
the large screen versions to check consistence in the display
of signals (either both of them display it or none of them do).

In order to obtain more reusable results, interactive system
models are represented following the ARCH architecture [2].
In ARCH, systems are decomposed in three main parts: the
user interfaces, the functional core and a dialog controller
which ensures the consistency between the functional core
and the Uls. We took into account this separation of concerns
when we wrote the formal models the interactive system. In
Fig. 4, each box represents one or more LNT modules. In our
example, the Ul LNT modules contain the four zones of the
Ul i.e., the plant status, the default signals, the parameters
and the menu. In addition, we created a user LNT module,
which represents the expected user behavior defined by nu-
clear power plant procedures.

_ Ul [&——] Dialog Controller L:" Functional Core |

Figure 4: Arch architecture usage in formal verification

This global structure is used in the three approaches for plas-
ticity verification, presented in the following.

Three Proposed Approaches

Verification of Ul Versions

Considering the ARCH architecture, the first approach con-
tains modules for the functional core, the dialog controller
and the UL Plasticity can generate several versions of a Ul
In our example of nuclear power plant control system, there
are two Ul versions: one for the expert mode on a large screen
device and one for training mode on a smartphone. They are
both described in the UI modules. The goal of this approach
is to directly verify the different UI versions.
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Figure 5: Modeling UI versions

In addition, the formal model describes the context of use,
in terms of platform, user and environment. The concept of
context is not explicitly described in the formal model. How-
ever, platform, user and environment are formally described
by one or more LNT modules. In our example, the environ-
ment is not taken into account. The platform can be a large
screen device or a smartphone. For users, the module de-
scribes the expected user behavior when interacting with the

UI (arrows for and to the UI) and the user profile. Changes
in the context of use are communicated to the Ul, which will
adapt accordingly.

The user can also interact with a meta UI, which allows to
configure Uls and to choose the UI mode (i.e. expert or train-
ing). A communication between the meta UI and UI modules
permits the Ul versions to modify according to the user’s se-
lection in this meta UI, allowing the UI to adapt according to
the mode, for instance.

The UI modules receive all the information concerning the
user (i.e. behavior and profile), the platform, the choices in
terms of interaction through the meta UI and possibly the
environment. From these information, the Ul modules can
choose the appropriate representation of the Ul This means
that the UI modules contain the UI adaptation logic. The Ul
adaptation rules in our example represent all the adaptation
effects in the corresponding Ul zones. For instance, in the
UI parameter (resp. signal) zone, there are two cases: the
displaying of only the problematic parameter (resp. signal)
on a smartphone and the displaying of all parameters (resp.
signals) on large screens (Fig.6).

PARAMETERS . LNT

case platform 1in
Smartphone ->
dispTlay_failure_param();
PC ->
display_all_params();
end case;

SIGNALS.LNT

case platform 1in
Smartphone ->
display_failure_signal();
PC ->
dispTlay_all_signals();
end case;

Figure 6: Pseudo code of UI LNT modules

The UI modules send the generated Ul version to the user.
The LTS generated from such formal model contains all cases
of the adaptation rules, meaning that all UI versions are rep-
resented in the LTS.
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Figure 7: Verification of properties by model checking

Once the formal model is created, model checking formal
technique can be used to verify properties over the model
Fig. 7. Due to the exhaustive reasoning provided by model
checking, the verification of properties cover all the Uls that
are generated by the adaptation.



For instance, we can verify that all Ul versions display reactor
signals, which is expressed by the following property: “From
every reachable state, there exists a sequence of steps leading
to the display of signals”. Using Model Checking Language
(MCL [12]) to formalize this property, we have this temporal
formula:

[true*](true* ."DISPLAY _. x _SIGNAL.x")true

In this MCL formula, the first “.*” is a regular expres-
sion that will match in the LTS transitions labeled ei-
ther with “DISPLAY _FAILURE_SIGNAL” or with “DIS-
PLAY_ALL_SIGNAL”.

In this first approach, the Ul versions are modeled in the Ul
modules, which contains the description, the behavior of the
Uls and the adaptation logic. The adaptation logic is embed-
ded into the description of the Ul and is specific to the mod-
eled example. However, model checking permits to perform
verification of properties over all the Ul versions.

Verification of the Plasticity Engine

In the second approach, we consider that a plasticity engine
is formally described in the model (Fig. 8). The goal is to
explicitly verify the adaption logic of the engine.
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Figure 8: Modeling a plasticity engine

Following the common approach, the formal model is con-
sistent with the ARCH architecture. In this case, the dialog
controller also contains the description of the adaptation en-
gine. The engine receives information directly from the con-
text modules and from the meta UI. From this information, it
can calculate the most appropriate UI version.

The plasticity engine implements all the transformation rules
for adaptation (e.g. pseudo code in Fig.9). In this approach,
the UI, the context of use, the meta Ul and the functional
core are specified to give the appropriate information to the
plasticity engine (i.e. which UI is currently displayed, the
context of use, the Ul mode and which information should
be displayed). The idea is to verify that the plasticity engine
correctly answers to these information: it must perform all
transformations in the UI, leaving the Ul modules in charge
of displaying such UI and managing user interactions.

PLASTICITY_ENGINE.LNT

case platform 1in
smartphone ->
display_failure_param();
display_failure_signal();
PC ->
display_all_params();
display_all_signals();
end case;

Figure 9: Pseudo code of adaptation rules

In order to verify the plasticity engine, attention should be
paid to the transformation rules. One kind of verification that
can be done is to verify to which extent the transformations
have an effect on the behavior of the UI versions. This can
be verified by checking if the same interaction capabilities
are present in all Ul versions generated by the transforma-
tions. Such verification attests the quality of the transforma-
tion rules by reasoning over the output of the transformations:
the generated UI versions.

For instance, in the example described in this paper, the large-
screen UI (Fig. 1) displays all reactor signals in the Default
Signal zone (i.e. failure and non-failure signals), while the
smartphone Ul displays in the same zone only the failure sig-
nals (Fig. 2). In any case, once a failure signal occurs, the
Ul is always expected to display it. We can verify that the UI
transformation preserves such requirement by the following
property: “From every reachable state, once a failure signal
occurs, there exists a sequence of steps leading to the display
of this signal”. In MCL temporal logics, this is expressed as:

[true* .' FAILURE_SIGNAL\(. ¥ \)']
(true* ."DISPLAY _FAILURE _SIGNAL\1')true

where \(RE\) is a regular expression that matches what-
ever the unadorned RE matches (here, RE is any charac-
ter, represented by “.*”), and the expression \n matches
the same string of characters that was matched by an ex-
pression enclosed by “\(” and “\)” earlier. Here, n is
a digit representing the n-th occurrence of “\(” counting
from the left. Intuitively, the first regular expression will
match a failure in a given reactor signal (i.e. “FAIL-
URE_SIGNAL _signalname”) and the reactor signal name
will be matched in the second regular expression (i.e. “DIS-
PLAY _FAILURE_SIGNAL _signalname”), expressing the re-
quirement that once a failure signal occurs, such signal will
always be displayed in the UL

Going further, we propose to verify the plasticity engine itself
by verifying, for instance, the coverage of the transformation
rules. The transformations rules are expected to cope with
changes in the context of use and correspondingly adapt the
UI version. In this case, we could verify whether the engine
takes into account all possible changes in the context of use
or not.



For instance, in the nuclear power plant system, two changes
in the context of use are described: the platform (i.e. PC
or smartphone) and the user (i.e. expert or training). If we
consider the platform, we can verify if the plasticity engine
has transformation rules to cover all changes in the platform
of the considered scope (i.e. PC and smartphone), which is
expressed by the property: “Starting from the initial state,
there exists a sequence of steps leading to the display of the
smartphone version of the user interface”. The same property
can be written to verify the display of the PC version of the
UL In MCL, this is expressed by the following formula:

(true* .'DISPLAY SMARTPHONE_UI .¥")true

This second approach enables to explicitly specify and to ver-
ify the plasticity engine. Once the engine is formally verified,
its specification can be used, for example, to suggest appro-
priate transformation rules to automatically generate the code
of the engine.

Formal Model Comparison

In this last approach, there is no explicit representation of
plasticity in the formal model. We simply make a compar-
ison over two Uls, with no considerations about how they
have been obtained. Before creating the formal models, de-
signers must have the rendering of the UI versions adapted to
each context of use, allowing the specification of one formal
model for each UI version. For instance, in the example of
the nuclear power plant control room, the combination of the
two platforms and the two expertise modes can give rise to
four formal models. Then, the formal models are compared
to each other. This approach requires as many formal models
as the number of contexts of use to cope with.

In this approach, the formal models also follow the ARCH
architecture. However, no module for the context of use nor
for the meta Ul is included. All the specificities brought from
the context of use is included in the corresponding UI version
formal model. The UI formal models reflect their context of
use by describing the UI generated for such context.

These formal models are then compared, two by two, using
the equivalence checking formal method (Fig. 10). In [16],
we describe how we can measure to which extent the user
interfaces are the same with respect to their interaction ca-
pabilities and appearance. In case they are not equivalent,
the UI divergences are highlighted, and the possibility of
leaving these divergences out of the analysis is provided, re-
interacting the equivalence verification. Furthermore, the ap-
proach can demonstrate that one UI contains at least all inter-
action capabilities of another (inclusion).

For instance, in the nuclear power plant example, the two
UI versions are considered as equivalent: in a first step, the
equivalence checker considers that their appearance diverges
because of the missing labels, the remolding of the parameter
widget and the accessibility of the menu; then some abstrac-
tions are made [16] to reason about the interaction capabilities
and not their appearance. After these abstractions, the two Ul
versions are shown equivalent.
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Figure 10: Equivalence checking of plastic user interfaces
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The comparison approach enables the verification on Ul ver-
sions without having to specify how they were obtained. It
requires to completely describe each Ul version. While con-
sidering the multiplicity of context of use, it is quite difficult
to imagine all possible Uls. However, the comparison can be
performed for some identified and well-defined contexts of
use. This is relevant for safety critical systems, allowing one
to verify that critical features are present in all Ul versions.

Comparison of the Proposed Approaches

Each approach has its strengths and drawbacks. To compare
them, we focused on the following criteria: the number and
complexity of the Ul versions to be modeled, the number and
complexity of adaptation rules, and which kind of verification
can be performed.

In the first approach, which represents all the UI versions and
the adaptation logic inside the UI modules, all the complex-
ity is embedded into these modules. If the UI complexity is
below a certain threshold and the number of adaptation rules
for the Ul is low, it can be a good and simple solution. Once
adaptation representation becomes too onerous in the formal
model, prejudicing its readability, it is recommended to sep-
arate it into another module. In terms of verification to be
performed, this approach allows the verification of the same
properties on all UI versions. In addition, it can also be used
to check different properties over Ul versions. For instance,
in the smartphone version, the menu options must always be
accessible while in the large screen version, they must always
be visible. However, Ul remolding [19] cannot be verified in
this approach: only properties related to interactions can be
checked using model checking.

The novelty of the second approach is the representation and
verification of a plasticity engine. One can imagine to develop
an engine from a proven specification. However, according to
the number and the combination of rules, the description of
the engine can become too complex. The limit here is not
related to the UI modules but to the formalization of numer-
ous transformation rules and their combination. Moreover, as
in the previous approach, model checking restricts verifica-
tion only to interaction capabilities (i.e. remolding cannot be
verified).

Comparison of formal models bypasses the difficulties of
modeling the adaptation logic, and it ensures remolding ver-
ification. It is based on the existing versions of the UI, and
there is no need to represent the plasticity engine in the for-
mal model. The formal models focus on representing the



UI versions, without knowing how they have been produced.
Thanks to equivalence checking, it is possible to compare ap-
pearance and interaction. However, it requires to create one
model for each Ul version and to compare Ul versions two by
two. It can be time-consuming if the number of UI versions
is significant. Finally, with this approach, designers do not
verify some properties, but rather than, they check the consis-
tency between two Ul versions.

CONCLUSION

This paper presents three possible approaches to verify plas-
ticity. Each of them permits to reason about different aspects:
the first one allow designers to verify some properties com-
mon to all the Ul versions; the second one aims at verifying
the plasticity engine; the third one is based on UI comparison
regardless the way they have been produced. For the moment,
we have mainly explored the third solution [16]. We have
shown its usefulness, in particular in a critical domain such
as the nuclear power plant one. Deeper investigation must
be performed for the two first approaches to broadly iden-
tify their limits, in particular in terms of the description of
the adaptation engine logic. More globally, these approaches
must be analyzed on other case studies to observe its scala-
bility and to identify other potentials and drawbacks.
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