
Model Checking a Cache Coherence Protocol

of a Java DSM Implementation⋆

Jun Pang1, Wan Fokkink2,3, Rutger Hofman2, Ronald Veldema4

1 Carl von Ossietzky Universität Oldenburg, Department für Informatik,
Ammerländer Heerstraße 114-118, 26111 Oldenburg, Germany

email: jun.pang@informatik.uni-oldenburg.de
2 Vrije Universiteit Amsterdam, Afdeling Informatica,

Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands
email: {wanf,rutger}@cs.vu.nl

3 CWI, Software Engineering Department,
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

4 Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Informatik,
Martensstr. 3, 91058 Erlangen, Germany

email: veldema@cs.fau.de

Abstract

Jackal is a fine-grained distributed shared memory implementation of the Java pro-
gramming language. It aims to implement Java’s memory model and allows mul-
tithreaded Java programs to run unmodified on a distributed memory system. It
employs a multiple-writer cache coherence protocol. In this paper, we report on
our analysis of this protocol. We present its formal specification in µCRL, and dis-
cuss the abstractions that were made to avoid state explosion. Requirements were
formulated and model checked with respect to several configurations. Our analysis
revealed two errors in the implementation.

Key words: formal specification, model checking, cache coherence protocols, Java
memory model, µCRL

⋆ This is the full version of an extended abstract that appeared in the Proceedings
of the 8th Workshop on Formal Methods for Parallel Programming: Theory and
Applications, IEEE Computer Society Press, 2003. The research is partly supported
by the Dutch Technology Foundation STW under the project CES5008.

Preprint submitted to Elsevier Science 14 March 2007

1 Introduction

Shared memory is an attractive programming model for interprocess com-
munication and synchronization in multiprocessor computations. In the past
decade, a popular research topic has been the design of systems to provide a
shared memory abstraction of physically distributed memory machines. This
abstraction, known as Distributed Shared Memory (DSM), has been imple-
mented both in software (e.g., to provide the shared memory programming
model on networks of workstations) and in hardware (e.g., using cache coher-
ence protocols to support shared memory across physically distributed main
memories).

Multithreading is a programming paradigm for implementing parallel appli-
cations on shared memory multiprocessors. It is widely used as a program
structuring mechanism and to support efficient parallel computations. It can
improve efficiency and performance in an application program by introduc-
ing concurrency or parallelism. Java is one of the few programming languages
supporting multithreaded programming at the language level.

The Java memory model (JMM) [11] prescribes certain abstract rules that
any implementation of Java multithreading must follow. Jackal [30] is a fine-
grained DSM implementation of the Java programming language. It aims to
implement the JMM and allows multithreaded Java programs to run unmod-
ified on DSM. It employs a self-invalidation based, multiple-writer cache co-
herence protocol, which allows processors to cache a region (i.e., a contiguous
block of memory) created on another processor (i.e., the region’s home). All
threads on one processor share one copy of a cached region. The region’s
home and the caching processors store this copy at the same virtual address.
A cached region copy remains valid for a particular thread until that thread
reaches a synchronization point. In Jackal, several optimizations [29,30] im-
prove both sequential and parallel application performance. Among them,
automatic home node migration reduces the amount of synchronization, by
automatically appointing as the region’s home a processor that is likely to
access this region often.

µCRL [13] is a formal language for specifying protocols and distributed sys-
tems in an algebraic style. To each µCRL specification there belongs a labeled

transition system (LTS), in which the edges between states are labeled with
actions. The µCRL tool set [3] can be used in combination with the Construc-
tion and Analysis of Distributed Processes toolbox (CADP) [10] to generate,
visualize and analyze this LTS. For example, one can detect deadlocks and
livelocks, or check the validity of temporal logic formulas [7].

In this paper, we present our formal analysis of a cache coherence protocol

2

for Jackal using the µCRL tool set and CADP. A µCRL specification of the
protocol (including automatic home node migration) was extracted from an in-
formal (C language-like) description of the protocol. To avoid state explosion,
we made certain abstractions with respect to the protocol’s implementation.
Requirements were verified by the µCRL tool set together with CADP. Our
analysis revealed many inconsistencies between the description and the imple-
mentation. We found two errors in the description (see Section 6.2). The devel-
opers of the protocol checked the two errors and found their way in the imple-
mentation. Both errors can happen when a thread is writing to a region from
remote (i.e., the thread does not run on the home of the region). During the
thread’s waiting for a lock or an up-to-date copy of the region, the home node
may migrate to the thread’s processor, so that the thread actually accesses the
region at home. The first error resulted into a deadlock. The second error was
found when model checking the property of only one home for each region.
After updating our formal specification, the requirements were successfully
checked on several configurations. Our solutions to the errors were adapted in
the implementation of the protocol. The interested readers can find the Jackal
distribution (version Beta 1.0) at http://www2.informatik.uni-erlangen.
de/Personen/veldema/privat/jackal_distribution.html.

We summarize our contributions as follows:

• We developed a formal specification of a cache coherence protocol for a Java
DSM implementation.

• We found errors both in the description and the implementation, which
helped to improve the design and implementation of this protocol.

• This is the most complicated cache coherence protocol to date that has been
formally specified and analyzed using model checking.

Outline of the paper. The remainder of this paper is structured as follows.
In Section 2, we discuss related work on analyzing the JMM or its replacement
proposal and verifying cache coherence protocols using formal techniques. An
informal description of the JMM is given in Section 3. Section 4 presents the
Jackal system and its cache coherence protocol. In Section 5, µCRL specifica-
tions for each component of the protocol are given. Section 6 focuses on our
model checking analysis in µCRL. Conclusions are presented in Section 7.

2 Related Work

The use of formal methods to analyze the JMM is an active research topic. In
[26], the authors developed a formal executable specification of the JMM [11].
Their specification is operational and uses guarded commands. This model

3

can be used to verify popular software construction idioms for multithreaded
Java. In [31], the Murφ verification system was applied to study the CRF
memory mode [20]. A suite of test programs was designed to reveal pivotal
properties of the model. This approach was also applied to Manson and Pugh’s
proposal [21] by the same authors [32]. Two proofs of the correctness for Ca-
chet [27], an adaptive cache coherence protocol, were presented in [28]. Each
proof demonstrates soundness (conformance to the CRF memory model) and
liveness. One proof is manual, based on a term-rewriting system definition;
the other is machine-assisted, based on a TLA formulation and using the the-
orem prover PVS. Similar to [31,32], we use formal specification and model
checking techniques. A major difference is that we analyzed a cache coher-
ence protocol within a Java DSM system that is already implemented and far
more complicated than the abstract memory models analyzed in [26,28,31,32].
Our analysis helped to improve the actual design and implementation of the
protocol.

Our work is also related to the verification of cache coherence protocols. Formal
methods have been successfully applied in the automated verification of cache
coherence on sequentially consistent systems [18], e.g. [6,8,16]. Coherence in
shared memory multiprocessors is much more difficult to verify. Recently, Pong
and Dubois [24] used their state-based tool for the verification of a delayed
protocol [9], which is an aggressive protocol for relaxed memory models. We
encountered the same difficulties as [24], such as that the hardware to model
is complex, and that the properties of the protocol are hard to formulate.
Differences between our work and [24] are: we analyzed a protocol designed for
distributed shared memory machines; and the protocol supports multithreaded

Java programs, which makes matters more complicated.

3 Java Memory Model

The Java language supports multithreaded programming, where threads can
interact among themselves via read/write of shared data. The JMM prescribes
certain abstract rules that any implementation of Java multithreading must
follow. We briefly present the JMM as given in [11].

We assume a multiprocessor setting, where each processor owns a collection
of regions, which are contiguous blocks of memory that contain either a single
object or a fixed-size partition of an array. Each thread runs on exactly one
processor, and can only access the regions that reside at its processor.

The JMM allows each thread to cache regions in its working memory, which
keeps its own working copy of the regions. A thread can only manipulate the
regions in its working memory, which is inaccessible to other threads. The

4

Shared Main Memory

Thread#2

Buf Buf

Working Memory

Thread#n

Buf Buf

Working Memory

Thread#1

Buf Buf

Working Memory

Fig. 1. JMM memory system

working memories are caches of a single main memory, which is shared by
all threads. Main memory keeps the main copy of every region. This memory
structure is depicted in Fig. 1. A thread’s working memory must be flushed to
main memory at each synchronization point, which is a lock (unlock) operation
that corresponds to the entry (exit) of a synchronized block of code.

The JMM defines a set of actions that a thread may use to interact with
memory. Each thread invokes four actions: use, assign, lock and unlock. Four
more actions, read, load, store and write, are invoked in case of a multithreaded
implementation, following the temporal ordering constraints in the JMM ([11,
Chapter 17]). The meaning of each action is as follows:

(1) use: Read from the working memory of a region.
(2) assign: Write into the working memory of a region.
(3) read : Initiate reading from the main memory of a region.
(4) load : Complete reading from the main memory of a region.
(5) store: Initiate writing the working memory into the main memory of a

region.
(6) write: Complete writing the working memory into the main memory of a

region.
(7) lock : Get the values in the main memory transferred to a thread’s working

memory through read and load actions.
(8) unlock : Put the values a thread holds in its working memory back to the

main memory through store and write actions.

Since threads can access regions from different processors, a region’s home
acts as the region’s lock manager. To acquire a lock, a thread sends a lock
request message to the lock manager and waits. If the lock is available, the
lock manager replies with a notify message; otherwise, the thread needs to
wait for the lock to be released. To unlock, the lock holder sends an unlock
message to the lock manager.

5

There were several problems in the original JMM [11]. A detailed discus-
sion of the various problems in the original JMM can be found at http:

//www.cs.umd.edu/~pugh/java/memoryModel/. Two replacement semantics
for the JMM have been proposed, by Manson and Pugh [21] and by Maessen,
Arvind and Shen [20]. A revision of the JMM, called JSR 133, was released
in September 2004. Jackal, which will be described in the next section, imple-
ments the memory model in JSR 133.

4 Jackal DSM System

Jackal [30] is a fine-grained DSM implementation of the Java programming
language. It allows multithreaded Java programs to run unmodified on a dis-
tributed memory system. Its runtime system implements a self-invalidation
based, multiple-writer cache coherence protocol for regions.

The Jackal memory model allows processors to cache a region created on an-
other processor. All threads on one processor share one copy of a cached region.
The region’s home and the caching processors all store this copy at the same
virtual address. The protocol is based on self-invalidation, which means the
cached copy of a region remains valid until the thread itself invalidates the
copy, which occurs whenever it reaches a synchronization point. Jackal com-
bines features of HLRC [33] and TreadMarks [17]. As in HLRC, modifications
are flushed to a home node; as in TreadMarks, twinning and diffing is used
to allow concurrent writes to shared data. Unlike TreadMarks, Jackal uses
software access checks inserted before each object usage to detect non-local or
stable data. Several optimizations were made to improve both sequential and
parallel application performance [29,30].

Fig. 2 shows the various components and their interactions in Jackal’s cache
coherence protocol. P1,P2 are identities of processors, and T1,T2,T3,T4 identi-
ties of threads. This picture will be explained in the remainder of this section.

4.1 Address space management

Jackal stores all regions in a single, shared virtual address space. Each region
occupies the same virtual address range on all processors that store a copy
of the region. Regions are named and accessed through their virtual address.
Each processor owns part of the physical memory and creates objects and
arrays in its own part. In this way, each processor can allocate objects without
synchronizing with other processors. When a thread wishes to access a region
created by another processor, it must potentially allocate physical memory

6

T1

T2P1

Access Check

L
ock M

anagem
ent

List of visited regions

home_msg_buf

remote_msg_buf

Synchronous C
om

m
unications

Shared Virtual Address Space

P2

L
ock M

anagem
ent

home_msg_buf

remote_msg_buf

List of visited regions

Access Check

T3

T4

Fig. 2. Components in the Jackal architecture

for the virtual memory pages in which the object is stored, and retrieve an
up-to-date copy of the region from its home node. If a processor runs out of
free physical memory, it initiates a global garbage collection that frees both
Java objects and physical memory pages.

To implement self-invalidation, each thread keeps track of the regions it ac-
cessed and cached since its last synchronization point. The data structure
storing this information is called a flush list. At a synchronization point, all
regions in the thread’s flush list are invalidated for that thread, by writing
diffs back to their home nodes. A diff contains the difference between a re-
gion’s object data and its twin data.

Jackal performs a software access check for every use of a region. The access
check determines whether the region referenced by a given pointer contains a
valid local copy. Whenever an access check detects an invalid local copy, the
runtime system contacts the region’s home. It asks the home node for a copy
of the region and stores this copy at the same virtual address as at the home
node. The thread requesting the region receives a pointer to that region and
adds it to its flush list. This flush list is similar to the working memory in the
JMM.

4.2 Automatic home node migration

Java programs do not indicate which locks protect which data items. This
makes it difficult to combine data and synchronization traffic. Jackal may have
to communicate multiple times to acquire a lock, to access the data protected
by the lock and to release the lock. The home of a region acts as the manager
of the lock (see Section 4.5). To decrease synchronization traffic, automatic
home node migration has been implemented in Jackal. It means that Jackal

7

may automatically appoint as the region’s home a processor that is likely to
access this region often. This optimization is triggered during the following
two cases.

(1) A thread writes to a region, and an access check detects an invalid local
copy; the runtime system contacts the region’s home, and finds that the
thread’s processor is the only one from which threads are writing to this
region. Then the home of this region migrates to the thread’s processor.

(2) A thread flushes at a synchronization point, and there is only one proces-
sor left from which threads are writing to some region. Then the home
of this region migrates to this processor.

Jackal can detect these situations at runtime, and thus reduce synchronization
traffic. Automatic home node migration complicates meeting the requirements
in Section 6.1.

4.3 Regions

In Jackal, a region contains the following information.

(1) Location: A processor’s identity, denoting at which node the region (or a
copy) is.

(2) Home: A processor’s identity, denoting the home node for this region.
(3) State: A region can evolve into four kinds of states. When no thread uses

this region, the state of the region is Unused; if a region is only used by
threads on its home node, its state is Homeonly; when this region is only
read by threads, its state is Readonly; in all other cases, the state of a
region is Shared.

(4) WriterList: A list of processors’ identities containing threads that are
writing or recently wrote to this region. It is only maintained at the
home node.

(5) ReaderList: A list of processors’ identities containing threads that are
reading or recently read this region. It is only maintained at the home
node.

(6) Object data: An array of bytes.
(7) Twin data: An array of bytes. It is a copy of the object data for diffing

at non-home nodes; initially it is null.
(8) Localthreads: A natural number, the number of threads accessing this

region at the location of the region.

8

4.4 Messages

Four types of messages can be delivered to a processor.

(1) Data Request: This message is sent when a thread starts writing to a
region from remote. When a processor gets this message, and it is the
home of the region, it adds the thread’s processor into the WriterList of
the region and sends back an up-to-date copy of the region to the thread’s
processor by a Data Return message. If it is not the home of the region
(meaning that the region migrated its home in the meantime), it forwards
the Data Request message to the region’s new home.

(2) Data Return: This message is received by a processor when an up-to-
date copy of a region has arrived. The processor updates the object and
twin data of the region. Moreover, this message can also be a home node
migration message. If this is the case, then the processor becomes the
home of this region, and starts maintaining the WriterList and the state
of the region.

(3) Flush Request: This message is sent when a thread flushes from remote.
When a processor gets this request, and it is the home of the region, it
mat remove the thread’s processor from the WriterList of the region, if
the thread was the only one on its processor that was writing to this
region. Moreover, it may send a home node migration message to a new
home of this region (by a Region Sponmigrate message); this happens
when there is only one processor left in the region’s WriterList. When
it is not the home of the region, it simply forwards the Flush Request

message to the region’s new home.
(4) Region Sponmigrate: When a processor gets this message, it becomes the

home of the region in question.

Each processor maintains two message queues to store incoming messages.
The HomeQueue is designed to buffer messages containing a request, while
the RemoteQueue buffers messages containing a reply.

4.5 Locks

Locks guarantee exclusivity when threads write to or flush a region. A proces-
sor acts as the lock manager of its regions and region copies. There are five
types of locks for each processor: homequeue, remotequeue, server, fault and
flush.

The homequeue lock and remotequeue lock are needed to make sure that the
handling of a popped message from a HomeQueue or a RemoteQueue by its
processor is completed before the next message is popped from the queue.

9

Jackal’s cache coherence protocol allows writes to a region at home and from
remote to happen concurrently. The server lock, fault lock and flush lock ensure
exclusivity between threads at a processor. The server lock and flush lock must
be mutually exclusive for the home of a region, to protect the integrity of region
data values and other region information; likewise, the fault lock and flush lock
must be mutually exclusive for non-home nodes of a region. When a thread
writes at home or from remote, the server lock or fault lock of the thread’s
processor is needed, respectively. When a thread flushes, the flush lock of its
processor is needed. When a lock is released, the lock manager notifies a thread
according to the following rules. They are applied in the given order.

• If both the flush and the homequeue lock are available, and there are threads
waiting for the homequeue lock or the server lock, one of those threads is
notified.

• If both the flush and the remotequeue lock are available, and there are
threads waiting for the remotequeue lock, one of those threads is notified.

• If the flush, homequeue and remotequeue lock are available, no threads wait-
ing for either homequeue lock or remotequeue lock, and there are threads
waiting for the flush lock, one of those threads is notified.

• If both the flush and the homequeue lock are available, and no threads are
waiting for either the homequeue or the remotequeue lock, and there are
threads waiting for the fault lock, one of those threads is notified.

• In all other cases, no waiting thread is notified.

4.6 Other features

To improve performance, a source-level global optimization object-graph ag-

gregation, and runtime optimization adaptive lazy flushing, are implemented in
Jackal. These features are not included in our µCRL specification of Jackal’s
cache coherence protocol, which will be described in Section 5.

The Jackal compiler can detect situations where an access to some object
(called root object) is always followed by accesses to subobjects. In that case,
the system views the root object and the subobjects as an object graph. Jackal
attempts to aggregate all access checks on objects in such a graph into a single
access check on the graph’s root object. If this check fails, the entire object
graph is fetched, which can reduce the number of network round-trips. We did
not model object-graph aggregation, because we modeled memory at a rather
abstract level.

The Jackal cache coherence protocol invalidates all data in a thread’s working
memory at each synchronization point. That is, the protocol exactly follows
the specification of the JMM, which potentially leads to much interprocessor

10

communication. Due to adaptive lazy flushing, it is not necessary to invalidate
and flush a region that is accessed by only a single processor or that is only
read by its accessing threads. We did not model adaptive lazy flushing, since
it is not relevant for the requirements that we formulated.

5 µCRL Specification of the Protocol

In this section, we present a formal specification of Jackal’s cache coherence
protocol in µCRL and verify some general requirements at the behavioral level.

5.1 µCRL

µCRL is a language for specifying distributed systems and protocols in an
algebraic style. It is based on the process algebra ACP [1] extended with equa-
tional abstract data types [19]. The syntax and semantics of µCRL are given
in [13,15]. A µCRL specification consists of two parts: one part specifies the
data types, the other part specifies the processes.

The data part contains equational specifications; one can declare sorts and
functions working upon these sorts, and describe the meaning of these func-
tions by equations. Since booleans are used in the conditional construct of
process descriptions, the sort Bool must be included in every µCRL specifi-
cation. Besides the declaration of the sort Bool , it is also obligatory that T
(true) and F (false) are declared in every specification and that T 6= F.

Processes are represented by process terms. Process terms consist of action
names and recursion variables with zero or more data parameters, combined
with process-algebraic operators. Actions and recursion variables carry zero or
more data parameters. Intuitively, an action can execute itself, after which it
terminates successfully. There are two predefined actions: δ represents dead-
lock, τ the internal action. p.q denotes sequential composition, it first executes
p and then q. p+q denotes non-deterministic choice, meaning that it can be-
have as p or q. Summation

∑
d:D p(d) provides the possibly infinite choice over

a data type D. The conditional construct p � b � q, with b a boolean data
term, behaves as p if b and as q if not b.

For example, let S :Natural→Natural be the successor function on natural
numbers. Given the recursive equation X(n:Natural)=a(n).X(S(n)), the process
X(0) performs the sequence of actions a(0).a(S(0)).a(S(S(0))).· · ·. And given
the recursive equation Y=

∑
n:Natural a(n).Y, the process Y can perform any

action a(n) and return to the process Y.

11

Parallel composition p‖q interleaves the actions of p and q; moreover, actions
from p and q may synchronize into a communication action, when this is
explicitly allowed by a predefined communication function. In this paper we
take as naming convention that for each send action s name there is a receive
action r name, and that they communicate to the action c name. Two actions
can only synchronize if their data parameters are the same, which means
that communication can be used to capture data transfer from one process
to another. If two actions are able to synchronize, then in general we only
want these actions to occur in communication with each other, and not on
their own. This can be enforced by the encapsulation operator ∂H(p), which
renames all occurrences in p of actions from the set H into δ. Additionally,
the hiding operator τI(p) turns all occurrences in p of actions from the set I

into τ .

The µCRL tool set [3] is a collection of tools for analyzing and manipulating
µCRL specifications, based on term rewriting and linearization techniques
[14]. The µCRL tool set, together with the CADP tool set [10], which acts
as a back-end for the µCRL tool set, features visualization, simulation, LTS
generation, model checking, theorem proving and statebit hashing capabilities.
µCRL and its tool set have been successfully used to analyze a wide range of
protocols and distributed systems (e.g., [2,12,23]).

5.2 Specification of the protocol

The starting point of verifying a system with µCRL is to give an algebraic spec-
ification. This generally involves identifying the key behaviors of the protocol
components and understanding the way how each component communicates
with others.

The cache coherence protocol in Jackal is more complex than an interleaved
execution of the threads, where each thread executes in program order. The
permitted set of execution traces is a superset of the simple interleaved exe-
cution of the individual threads. Furthermore, the µCRL specification is an
exhaustive nondeterministic description of the cache coherence protocol. This
may lead to state explosion. To deal with this problem, we made some abstrac-
tions of each component. In the following discussion, we present the µCRL
specification of each component, together with the abstractions we made. For
the sake of presentation, we only give parts of the specification to illuminate
the crucial points, and omit the specification of data types. The complete spec-
ification can be found in Appendix A, which already includes our solutions to
the found problems in Section 6 and the additional actions for checking the
requirements.

12

Our model of the cache coherence protocol is a parallel composition of the
threads, processors, regions, lock managers and message queues. The complete
µCRL specification of this protocol consists of around 1000 lines.

5.2.1 Assertions from the developers

The developers added many assertions into the description and required that
the protocol should not violate any of them. The assertions are modeled as a
part of the µCRL specification. They can be divided into two classes: order

assertions and preconditions.

• Order assertions: This class of assertions imposes a certain order on the
usage of the system resources. For example, when a thread performs an
action on a region, the corresponding lock should already be held by the
thread. Order assertions are modeled in the µCRL specification by imposing
a certain order on the execution of actions. For example, the behavior of a
thread is modeled like this: only after a thread has taken the server lock of
the thread’s processor (either immediately by an action r nodelay serverwait,
or after a delay by an action r delay serverwait), the thread can access a
region at home.

• Preconditions: This class of assertions requires that only when a certain pre-
condition is satisfied, the description after it can be executed. For example,
only under certain conditions (see Section 4.2) the home of the region au-
tomatically migrates. Preconditions are modeled in the µCRL specification
as boolean terms in conditional expressions.

5.2.2 Regions

In µCRL, each region is modeled as a separate component. It consists of an
identity rid, a processor identity pid indicating where the region is, and its
information r meaning its home, state, WriterList, and the number of local
threads that are writing to this region.

We did not model object and twin data, since they are not relevant to our
requirements for the protocol (see Section 6.1). So in our model a thread
cannot write any value to a region. Still, when a thread flushes a region from
remote, a message (without a diff) is sent back to the home of this region to
release the obtained lock (see Section 5.2.3).

The behavior of reading from a region is part of the behavior of writing to a
region, in the sense that if needed an up-to-date copy of the region has to be
obtained. On top of this, in case of writing, coherence of the region’s data is at
stake, and at a synchronization point the adapted region must be flushed back
to main memory. Thus writing is far more critical for the correctness of the

13

Table 1
Specification of a region

% pid indicates where the region is; rid is the region’s identity;
% r contains the region’s information.
Region(pid:ProcessorId, rid: RegionId, r:RegionInfo) =
% Communication with threads.
∑

tid:ThreadId r threadrequestinfo(tid,pid,rid,r).
(r threadnorefresh(tid,pid,rid).Region(pid,rid,r)
+

∑
r′:RegionInfo r threadrefresh(tid,pid,rid,r’).Region(pid,rid,r’))

% Communication with processors.
+ r processorrequestinfo(pid,rid,r).
(r processornorefresh(pid,rid).Region(pid,rid,r)
+

∑
r′:RegionInfo r processorrefresh(pid,rid,r’).Region(pid,rid,r’))

protocol than reading. Therefore we abstracted away from the read action of
threads. So a region has only two states; we kept the Unused state, while the
other three states are covered by a single state Used. Furthermore, a region
only needs to maintain the WriterList.

The µCRL specification of a region is presented in Table 1. We use synchro-
nized actions to ensure that during an access of a thread to a region, no other
threads can change the information of this region. This can ensure that a
thread or a processor gets the latest status of the region. For instance, in Ta-
ble 3, a thread gets the information of a region by performing a send action
s threadrequestinfo, and no access to this region by another thread is allowed
until the thread executes a send action s threadnorefresh (if it changed noth-
ing) or s threadrefresh (if it updated some information of the region). The
corresponding actions, which synchronize with the three aforementioned ac-
tions (i.e., r threadrequestinfo, r threadnorefresh and r threadrefresh) occur in
Table 1. Likewise for processors; see Tables 7 and 8 for occurrences of the
actions that synchronize with r processorrequestinfo, r processornorefresh and
r processorrefresh in Table 1.

5.2.3 Threads

In the µCRL specification, each thread is modeled as a separate process with
a unique identity tid (see Table 2). It contains a parameter pid to indicate
on which processor the thread executes. Each thread maintains a FlushList of
identities of regions that it is writing or recently wrote to, to remember that
they need to be flushed in the future. It can perform actions write(tid,rid) to
start writing to a region with identity rid, and flush(tid) to start invalidating
all the regions in its FlushList, if its FlushList is not empty.

14

Table 2
Specification of a thread starting to write or flush

Thread(tid:ThreadId, pid:ProcessorId, FlushList:RegionIdSet) =
∑

rid:RegionIdwrite(tid,rid).ThreadWrite(tid,pid,rid,FlushList)

+
flush(tid).ThreadInvalidate(tid,pid,FlushList) � not(empty(FlushList)) � δ

Table 3
Specification of a thread starting to write to a region

ThreadWrite(tid:ThreadId, pid:ProcessorId, rid:RegionId, FlushList:RegionIdSet) =
% The thread is already writing to the region.
% writeover(tid, rid) will be added here for our verification purpose.
Thread(tid,pid,FlushList)
� test(rid,FlushList) �

% The thread must obtain an up-to-date copy of the region.
∑

r:RegionInfo s threadrequestinfo(tid,pid,rid,r).

% Write to the region at home if pid is the home of the region.
(s threadnorefresh(tid,pid,rid).WriteHome(tid,pid,rid,insert(rid,FlushList))
� eq(gethome(r),pid) �

% Otherwise, write to the region from remote.
s threadnorefresh(tid,pid,rid).WriteRemote(tid,pid,rid,insert(rid,FlushList)))

When a thread starts writing to a region (see Table 3), the corresponding
access check determines whether the thread is already writing to the region
(test(rid,FlushList)). If not, then first an up-to-date copy of the region must
be obtained from the region’s home. This access check will also determine
whether the thread writes to this region at home or from remote, depending
on whether the region’s home is the thread’s processor (eq(gethome(r),pid)). In
the first case the server lock is needed if the thread runs on the region’s home;
in the second case the fault lock of the thread’s processor must be acquired.

Table 4 specifies a thread starting to write to a region from remote. The fault
lock is acquired (s require faultlock) from the thread’s processor. When the
fault lock is granted, either immediately (r nodelay faultwait) or after the lock
has been released (r delay faultwait) by some other thread, the thread sends
a Data Request message (s thread datarequest) to the home of the region (by
s threadrequestinfo it gets to know the home). The thread waits until it re-
ceives a message (r signal), which means that the region (local copy, located
at the thread’s processor) has become consistent with the region at the re-
gion’s home. Then the thread gets the information of the up-to-date copy
of the region (s threadrequestinfo), it continues writing to/updating the region
(s threadrefresh), increases the local thread number by one, and finally releases

15

Table 4
Specification of a thread writing to a region from remote

WriteRemote(tid:ThreadId, pid:ProcessorId, rid:RegionId, FlushList:RegionIdSet) =
% Thread writes from remote, requires a fault lock,
% and asks for a fresh copy of the region.
s require faultlock(pid).
(r nodelay faultwait(pid)+r delay faultwait(pid)).
% Ask for a fresh copy of the region.
∑

r:RegionInfo s threadrequestinfo(tid,pid,rid,r).

s thread datarequest(tid,pid,gethome(r),rid).
s threadnorefresh(tid,pid,rid).
% Copy arrives, the thread is notified.
∑

pid′:ProcessorId r signal(tid,pid′,rid).
∑

r′:RegionInfo s threadrequestinfo(tid,pid,rid,r’).

s threadrefresh(tid,pid,rid,increaselocalthreads(r’)).
s free faultlock(pid).

% writeover(tid, rid) will be added here for our verification purpose.
Thread(tid,pid,FlushList)

the lock by sending an unlock message (s free faultlock) to the lock manager
(see Table 11).

The specification of a thread writing to a region at home, which is omitted
here, is similar to the one for a thread writing to a region from remote. Instead
of a fault lock, the thread needs to acquire a server lock (s require serverlock).
Once a server lock is granted, either immediately (r nodelay serverwait) or after
the lock has been released (r delay serverwait), the thread gets the information
of the region, and updates the region. Finally it releases the server lock by
sending an unlock message (s free serverlock) to the lock manager.

When a thread invalidates (see Table 5), it empties its FlushList by flush-
ing and removing each region’s identity in its FlushList. Similar to the case
when a thread writes to a region, a thread can flush a region at home or
from remote, depending on whether the region’s home is the thread’s pro-
cessor. The flush lock of the thread’s processor is acquired before invali-
dating (s require flushlock). If the thread invalidates a region from remote
(see Table 6), it sends a Flush Request message to the home of the region
(s thread flushrequest). If the thread is the only local thread which was ac-
cessing the region, the home of the region will need to remove the thread’s
processor from the region’s WriterList. This information is forwarded to the
home of the region by setting the last boolean variable in the Flush Request

message to true. Otherwise, the boolean variable is set to false. The thread
updates the information of the local copy of the region by decreasing the pa-
rameter Localthreads for this region by one. The thread releases the flush lock

16

Table 5
Specification of a thread invalidating

ThreadInvalidate(tid:ThreadId, pid:ProcessorId, FlushList:RegionIdSet) =
% If FlushList is empty, do nothing.
% flushover(tid) will be added here for our verification purpose.
Thread(tid,pid,FlushList)
� empty(FlushList) �

% Thread requires a flush lock.
s require flushlock(pid).
(r nodelay flushwait(pid)+r delay flushwait(pid)).
% The thread gets the status of the first region in the FlushList.
∑

r:RegionInfo s threadrequestinfo(tid,pid,head(FlushList),r).

% Invalidate at home.
(FlushHome(tid,pid,head(FlushList),tail(FlushList),r)
� eq(gethome(r),pid) �

% Otherwise, invalidate from remote.
FlushRemote(tid,pid,head(FlushList),tail(FlushList),r))

(s free flushlock), and waits until it gets a message (r signal) indicating that
the home of the region has finished with the Flush Request message. Then the
thread continues to flush other regions in its FlushList, if this list is not yet
empty. In the actual protocol, the Flush Request message also contains a diff
with the difference between the region’s object and twin data; we recall that
the µCRL specification abstracts away from object and twin data.

The specification of a thread flushing a region at home, which is omitted
here, is similar to the one for a thread flushing a region from remote. The
difference is that the home of the region also takes charge of automatic home
node migration (see Section 4.2). The thread updates the information of the
region by decreasing Localthreads for this region by one. If the thread is the
only local thread which was accessing the region (i.e., if Localthreads for this
region becomes zero), then the thread’s processor is removed from the region’s
WriterList. If there is only one other processor left in the region’s WriterList,
the home of the region will migrate to that processor.

Note that the corresponding parts of ThreadWrite, WriteRemote and ThreadIn-
validate in the appendix have extra actions writeover(tid,rid) and flushover(tid).
These two actions were added to indicate that a thread has completed its
action, in order to verify some interested properties. Also note that the corre-
sponding part of WriteRemote in the appendix has already contained a solution
to a deadlock found during our analysis of the protocol. The solution requires
the thread to perform one extra access check after it receives a notification
message r signal. More explanation can be found in Section 6.2.

17

Table 6
Specification of a thread flushing a region from remote

FlushRemote(tid:ThreadId,pid:ProcessorId,rid:RegionId,
FlushList:RegionIdSet,r:RegionInfo) =

% Decrease Localthreads for rid. If no other thread is using this region,
% this is remembered by setting the last boolean parameter to true,
% the region state is set to Unused.

(s thread flushrequest(tid,pid,gethome(r),rid,r,T).
s threadrefresh(tid,pid,rid,setstate(decreaselocalthreads(r),Unused))
� eq(getlocalthreads(r),1) �

s thread flushrequest(tid,pid,gethome(r),rid,r,F).
s threadrefresh(tid,pid,rid,decreaselocalthreads(r))).

% Thread releases the flush lock.
s free flushlock(pid).
% This invalidation is finished, the thread is notified.
∑

pid′:ProcessorId r signal(tid,pid’,rid).

ThreadInvalidate(tid,pid,FlushList)

5.2.4 Processors

Each processor is modeled as a separate component (with a unique iden-
tity pid). Processors get and update the information of a region in a sim-
ilar way as threads by using a set of send actions: s processorrequestinfo,
s processornorefresh and s processorrefresh. How a processor reacts when it re-
ceives a Data Return message (modeled by r queue datareturn) is specified in
Table 7. It first checks the last boolean parameter b in the message to find
out whether this message is also a home node migration message. If that is
the case, it will set itself as the home of the region. Otherwise, it updates the
region’s information according to the information contained in the message.
How a processor reacts when it receives a a Data Request message (mod-
eled by r queue datarequest) or a Region Sponmigrate message (modeled by
r queue regionsponmigrate) is specified in Table 8. Processors deal with the
Flush Request messages in a similar way.

Note the specification in Table 7 is slightly different from its corresponding
part in the appendix, which has already contained a solution to a problem
found during our analysis of the protocol. More explanation can be found in
Section 6.2.

We recall that each processor maintains two message queues to store incoming
messages. The HomeQueue is designed to buffer messages containing a request,
while the RemoteQueue buffers messages containing a reply. To put a message
into a queue, a homequeue lock or a remotequeue lock has to be obtained. The
specifications of a HomeQueue and of a RemoteQueue are presented in Tables

18

Table 7
Specification of a processor dealing with a Data Return message

Processor(pid:ProcessorId) =
% The processor gets a Data Request message.
% If it is not a home node migration message by checking not(b),
% then update the information of the region according to r’
% and set its home by the home of r’.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r′:RegionInfo

∑
b:Bool

r queue datareturn(tid,pid,pid’,rid,r’,b).
(
∑

r:RegionInfo s processorrequestinfo(pid,rid,r).

s signal(tid,pid,rid).
s processorrefresh(pid,rid,sethome(setstate(r,getstate(r’)),gethome(r’))).
s free remotequeuelock(pid).Processor(pid)
� not(b) �

% Otherwise, update the writerlist of the region according to r’,
% set the its state as USED, and set its home by pid.

∑
r:RegionInfo s processorrequestinfo(pid,rid,r).

s signal(tid,pid,rid).
s processorrefresh(pid,rid,

sethome(setstate(setwriterlist(r,getwriterlist(r’)),USED),pid)).
s free remotequeuelock(pid).Processor(pid))

9 and 10, respectively.

For example, when a thread tries to get an up-to-date data copy from a
region’s home, first a Data Request message is put into the home’s Home-
Queue (r thread datarequest). This HomeQueue acquires a homequeue lock
(s require homequeuelock, see Table 9). The homequeue lock is released after-
wards by the processor (s free homequeuelock, see Table 8). When the Data

Return message with the fresh copy of the region arrives at the thread’s proces-
sor, it is put into its RemoteQueue (r thread datareturn). This RemoteQueue
acquires a remotequeue lock (s require remotequeuelock, see Table 10). The re-
motequeue lock is released afterwards by the processor (s free remotequeuelock,
see Table 7). A processor receives messages from its queues by actions like
r queue datarequest and r queue datareturn, which synchronize with the actions
s queue datarequest and s queue datareturn.

5.2.5 Lock management

To acquire a lock, a lock request message should be sent to the region’s home
(s require locktype, where the locktype is homequeue, remotequeue, server,
fault or flush). If the lock is available, the manager replies with a grant mes-
sage (s nodelay locktypewait). Otherwise, the requester needs to wait for the
lock to be released, and the lock manager adds the requester into the lock’s
waiting list. To unlock, the current lock owner sends an unlock message to the

19

Table 8
Specification of a processor dealing with a Data Request and a Region Sponmigrate
message

Processor(pid:ProcessorId) =
% The processor gets a Data Request message.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId r queue datarequest(tid,pid’,pid,rid).

% If the processor is not the home of the region,
% then the message is forwarded to the real home.
∑

r:RegionInfos processorrequestinfo(pid,rid,r).

(s thread datarequest(tid,pid’,gethome(r),rid).
s processornorefresh(pid).s free homequeuelock(pid).Processor(pid)
� not(eq(gethome(r),pid)) �

% Refresh the region’s information, and send the region back.
% If the region is unused, then the Data Return message is also
% a home node migration message, so the last parameter b is set to true.
% *new-information-of-the-region* denotes the update of the region’s information.

((s thread datareturn(tid,pid’,pid,rid,
sethome(setstate(setwriterlist(r,insert(pid’,getwriterlist(r))),Used),pid’),T).
s processorrefresh(pid,rid,*new-information-of-the-region*).
s free homequeuelock(pid).Processor(pid)
� eq(getstate(r),Unused) �

% It is not a home node migration message. Set the last parameter to false.
s thread datareturn(tid,pid’,pid,rid,
sethome(setstate(setwriterlist(r,insert(pid’,getwriterlist(r))),Used),pid’),F).
s processorrefresh(pid,rid,*new-information-of-the-region*).
s free homequeuelock(pid).Processor(pid))

% If the processor gets a request forwarded from itself,
% then there is no need to send a Data Return message back.

� not(eq(pid,pid’)) �

s signal(tid,pid,rid).
s processorrefresh(pid,rid,*new-information-of-the-region*).
s free homequeuelock(pid).Processor(pid))

)
+
% The processor gets a Region Sponmigrate message.
% It becomes the region’s home by refreshing the region’s parameters.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r′:RegionInfo

r queue regionsponmigrate(tid,pid’,pid,rid,r’).
(
∑

r:RegionInfos processorrequestinfo(pid,rid,r).

% Set the home by itself; maintain the state and WriterList.
s processorrefresh(pid,rid,*new-information-of-the-region*).
s free homequeuelock(pid).Processor(pid))

+
% The processor gets a Flush Request message.
% denotes a part of the specification that is excluded here.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r′:RegionInfo

∑
b:Bool

r queue flushrequest(tid,pid’,pid,rid,r’,b).

20

Table 9
Specification of a HomeQueue

HomeQueue(pid:ProcessorId) =
% HomeQueue gets a Data Request message.
% To deal with it, the homequeue lock is needed.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

% Put a message into the queue.
r thread datarequest(tid,pid’,pid,rid).s require homequeuelock(pid).
(r nodelay homequeuewait(pid)+r delay homequeuewait(pid)).

% The processor takes this message.
s queue datarequest(tid,pid’,pid,rid).HomeQueue(pid)

+
% HomeQueue gets a Region Sponmigrate message.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r:RegionInfo

% Put a message into the queue.
r thread regionsponmigrate(tid,pid’,pid,rid,r).s require homequeuelock(pid).
(r nodelay homequeuewait(pid)+r delay homequeuewait(pid)).

% The processor takes this message.
s queue regionsponmigrate(tid,pid’,pid,rid,r).HomeQueue(pid)

+
% HomeQueue gets a Flush Request message.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r:RegionInfo

∑
b:Bool

% Put a message into the queue.
r thread flushrequest(tid,pid’,pid,rid,r,b).s require homequeuelock(pid).
(r nodelay homequeuewait(pid)+r delay homequeuewait(pid)).

% The processor takes this message.
s queue flushrequest(tid,pid’,pid,rid,r,b).HomeQueue(pid)

Table 10
Specification of a RemoteQueue

RemoteQueue(pid:ProcessorId) =
% RemoteQueue gets a Data Return message.
% To deal with it, the remotequeue lock is needed.
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r:RegionInfo

∑
b:Bool

% Put a message into the queue.
r thread datareturn(tid,pid’,pid,rid,r,b).s require remotequeuelock(pid).
(r nodelay remotequeuewait(pid)+r delay remotequeuewait(pid)).

% The processor takes this message.
s queue datareturn(tid,pid’,pid,rid,r,b).RemoteQueue(pid)

21

lock manager (s free locktype). When the manager gets an unlock message, it
checks whether a thread waiting for some lock can be notified following some
rules, and sends the thread a notification (s delay locktypewait).

In the µCRL specification, lock management of a processor is modeled as a
separate component. Each lock is modeled as a natural variable with value
either 1 or 0, since a lock can be held by at most one thread at a time. The
waiting list for each lock is modeled as a natural number, representing the
number of threads in the waiting list. In the µCRL specification, waiting lists
do not need to contain thread identities, since waiting and notification are
specified by means of a pair of synchronized actions. When a lock is available,
the lock manager selects a waiting thread to notify.

Table 11 describes the management of the fault lock of a processor pid. The
other four types of locks are managed in a similar way. When a thread re-
quires the fault lock (s require faultlock), it may get the lock immediately
(s nodelay faultwait) if both the fault lock and the flush lock of the processor
are not held by any other threads. Otherwise the thread waits for the locks
to be freed by other threads. When the lock manager notices that a fault lock
has been freed by a thread (r free faultlock), it notifies a thread waiting for
a lock (s delay locktypewait) according to the rules given in Section 4.5. We
present only the first rule, as the conditions at the bottom of Table 11.

5.2.6 Initial state

Table 12 contains the initial state of a configuration of the protocol with
one region, two processors and three threads: one processor with one thread
executing on itself, the other with two threads. Initially, each region’s state is
Unused, the WriterList of each region is empty, the FlushList of each thread is
empty, all queues are empty, and all locks are available. The set H contains all
send and receive actions, which are renamed into the deadlock δ by means of
the encapsulation operator ∂H . So send and receive actions can only occur in
synchronization. The set I contains communication actions (see Appendix A),
which are turned into the internal action τ by means of the hiding operator
τI .

6 Model Checking the Protocol

In this section we present the results of our analysis of the µCRL specification
of the cache coherence protocol using a model checker. We analyzed various
configurations of processors and threads. The largest configuration we have
checked consists of three processors, three threads and one region. In the

22

Table 11
Part of specification of management of fault locks

% We only present those parameters whose values are changed.
Locker(pid:ProcessorId, fault:Natural, flush:Natural, homequeue:Natural,

remotequeue:Bool, wait fault:Natural, wait flush:Natural,
wait homequeue:Natural,wait remotequeue:Natural) =

% Receiving a request for the fault lock.
% If this lock can be granted, send a nodelay message.
r require faultlock(pid).
s nodelay faultwait(pid).Locker(1/fault)
� and(eq(fault,0),eq(flush,0)) �

% Otherwise, increase the number of threads waiting for this lock.
% Later on, the thread waiting on fault lock will be notified.
r require faultlock(pid).
Locker(S(wait fault)/wait fault))
% The fault lock is released. If a thread can be notified,
% send a delay message, and decrease the waiting number.
+ r free faultlock(pid).

(s delay serverwait(pid).
Locker(0/fault,1/homequeue,sub1(wait homequeue)/wait homequeue)
+ s delay homequeuewait(pid).
Locker(0/fault,1/homequeue,sub1(wait homequeue)/wait homequeue))
� and(not(eq(wait homequeue,0)),eq(homequeue,0)) �)

� and(not(and(eq(wait homequeue,0),eq(wait remotequeue,0))),eq(flush,0))�)

Table 12
Initialization of a protocol with two processors, three threads, one region.

τI ∂H(
Thread(tid1,pid1,ridema) ‖ Thread(tid2,pid2,ridema) ‖ Thread(tid3,pid1,ridema) ‖
Locker(pid1,0,0,0,0,0,0,0,0) ‖ Locker(pid2,0,0,0,0,0,0,0,0) ‖
HomeQueue(pid1) ‖ HomeQueue(pid2) ‖
RemoteQueue(pid1) ‖ RemoteQueue(pid2) ‖
Processor(pid1) ‖ Processor(pid2) ‖
Region(pid1,rid1,reg(pid1,Unused,ema,0)) ‖
Region(pid2,rid1,reg(pid1,Unused,ema,0)))

µCRL specification, the message queues of the processors can contain only
one message.

6.1 Requirements

We formulated three requirements for the cache coherence protocol.

23

(1) Deadlock absence: The protocol never ends up in a state where it cannot
perform any action.

(2) Unique home: For each region, at any time there only exists one home.
(3) Bounded forwarding: Requests for writing to or flushing a region cannot

be forwarded forever.

We did not verify the order assertions and preconditions imposed on the im-
plementation of the protocol by the developers (see Section 5.2.1). These order
assertions and preconditions were taken into account while writing the µCRL
specification, and are satisfied trivially.

6.2 Validation of the requirements

The µCRL tool set was used to check the syntax and the static semantics of
the specification, and also to transform it into a linear form. The linear form
was used to generate LTSs, against which we validated the three requirements.

The temporal logic used as input language for Evaluator, which is a model
checker within CADP, is called the regular alternation-free µ-calculus [22].
It is an extension of the alternation-free fragment of the µ-calculus with ac-
tion predicates and regular expressions over action sequences. The regular
alternation-free µ-calculus is built from three types of formulas, according to
the following BNF grammar:

(1) Action formulae α ::= T | a | ¬α | α1 ∧ α2

(2) Regular formulae β ::= α | β1·β2 | β1|β2 | β∗

(3) State formulae ϕ ::= F | T | ϕ1∨ϕ2 | ϕ1∧ϕ2 | 〈a〉ϕ | [a]ϕ | Y | µY.ϕ | νY.ϕ

Action formulas α represent a set of actions: T denotes all actions, a the set
{a}, ¬α the complement of α, and α1 ∧ α2 the intersection of α1 and α2.
Regular expressions β represent a set of traces: β1·β2 denotes the traces that
can be obtained by concatenating a trace from β1 and a trace from β2, β1|β2

the union of β1 and β2, and β∗ the transitive-reflexive closure of β (i.e., the
traces that can be obtained by concatenating finitely many traces from β).
〈β〉φ means that φ holds after some trace from β, and [β] φ means that φ

holds after all traces from β. The boolean operators have the usual meaning:
a state of an LTS always satisfies T; it never satisfies F; it satisfies ϕ1∨ϕ2 if it
satisfies ϕ1 or ϕ2; it satisfies ϕ1∧ϕ2 if it satisfies both ϕ1 and ϕ2. The formulas
µY.ϕ and νY.ϕ represent minimal and maximal fixpoints, respectively. See [22]
for more information on the regular alternation-free µ-calculus.

24

Table 13
Modified specification of a thread writing to a region from remote

% ... represents the parts shown earlier in the paper.
WriteRemote(tid:ThreadId, pid:ProcessorId, rid:RegionId, FlushList:RegionIdSet) =
s require faultlock(pid).
(r nodelay faultwait(pid)+r delay faultwait(pid)).
% Ask for a fresh copy of the region.
∑

r:RegionInfo s threadrequestinfo(tid,pid,rid,r).

(...
� not(eq(gethome(r),pid)) �

s threadnorefresh(tid,pid,rid).
s free faultlock(pid).
WriteHome(tid,pid,rid,FlushList))

6.2.1 Requirement 1

We used the µCRL tool set with respect to the linearized version of our µCRL
specification to check for deadlocks. This deadlock checking exercise led to
the detection of many mistakes both in the informal description and in the
µCRL specification of the protocol. For the first case, when the developers
extracted a C-like description of the protocol from its implementation, they
abstracted away from certain implementation details; some of these details
were actually crucial for the correctness of the µCRL specification. For the
second case, at some points we understood the description differently from
what the developers really meant. Whenever a deadlock trace was found, it
was simulated to understand the reason for the deadlock. This analysis took
us a lot of time, since many of the traces were quite long (typically more than
100 transitions) and difficult to comprehend. Whenever a mistake was found,
the µCRL specification was adapted and checked for deadlocks again.

One deadlock, found on a configuration of two processors each containing one
thread, was a real problem in the implementation. When a thread wants to
write to a region from remote, it acquires the fault lock of its home by sending
a lock message. If the lock is unavailable, the thread waits for the lock to be
released. Whenever it is notified, it continues with its access to the region and
holds the fault lock until it sends an unlock message. In the deadlock trace,
we found that while a thread is waiting for a fault lock, the home of the region
may migrate to the thread’s processor. In fact the thread writes to the region
at home, so that it needs to acquire the server lock instead of the fault lock.
This error resulted in a deadlock in the implementation. The chosen solution
is that after a thread obtains a fault lock, it checks whether it still writes from
remote (see Table 13). If this is not the case, it sends an unlock message to
release the held fault lock (s free faultlock), and then behaves as writing to
the region at home (WriteHome). After fixing this problem, no more deadlocks
were found.

25

Table 14
Modified specification of a region

% ... represents the parts shown earlier in the paper.
Region(pid:ProcessorId, rid:RegionId, r:RegionInfo) = ... +
% s home, r home indicate pid is the home of the region rid.
% s copy, r copy indicate pid has a copy of the region rid.
((s home(rid)+r home(rid)) � eq(pid,gethome(r)) � (s copy(rid)+r copy(rid))).
Region(pid,rid,r)

6.2.2 Requirement 2

In the cache coherence protocol, when a region is created on one processor, a
copy of this region is also created on every other processor. Due to automatic
home node migration, it needs to be checked that:

2.1 At any time, each region has at most one home node.
2.2 If no home node migration is taking place, each region has no more than

n − 1 copies, where n is the number of processors.

To verify requirement 2.1, actions s home and r home were added to the speci-
fication of a region, when a region finds that its location equals its home node
(see Table 14). The idea is that if two different copies of a region rid find that
their location is the region’s home, then s home(rid) of one of the copies can
communicate with r home(rid) of the other copy, resulting in an occurrence of
c home(rid).

We verified requirement 2.1 by checking the absence of c home in the generated
LTSs. This is formulated in the regular alternation-free µ-calculus as follows:

2.1 [T∗·c home(rid)] F

Here, we use rid to indicate an identity of a region. It says that if an execution
sequence contains c home, then in the resulting state false holds.

To verify requirement 2.2 in case of two processors, actions s copy and r copy
were added to the specification of a region, when a region finds that its location
does not equal its home node (see Table 14). The idea is that if there are two
processors, then there are two different copies of a region rid if and only if
c copy(rid) occurs, because in that case s copy(rid) of one of the copies can
communicate with r copy(rid) of the other copy.

For requirement 2.2, we needed to identify the states where no home node
migration is taking place. We formulated a sufficient condition: when no lock
is being held and the message queues are empty, there can be no home node
migration. We added two actions homequeue empty and remotequeue empty

26

Table 15
Modified specification of HomeQueue, RemoteQueue, and Locker

% ... represents the parts shown earlier in the paper.
HomeQueue(pid:ProcessorId) = ... + homequeue empty(pid).HomeQueue(pid)

RemoteQueue(pid:ProcessorId)= ... + remotequeue empty(pid).RemoteQueue(pid)

Locker(pid:ProcessorId, fault:Natural, flush:Natural, homequeue:Natural,
remotequeue:Bool, wait fault:Natural, wait flush:Natural,
wait homequeue:Natural,wait remotequeue:Natural) = ... +

lock empty(pid).Locker(*no update*)
� and(and(and(and(and(and(and(

eq(fault,0),eq(flush,0)),eq(homequeue,0)),eq(remotequeue,0)),eq(wait fault,0)),
eq(wait flush,0)),eq(wait homequeue,0)),eq(wait remotequeue,0)) � δ

to the µCRL specification of queues to indicate that queues are empty, and
added another action lock empty to the specification of the lock manager to
indicate that no lock is being held (see Table 15). Then we need to check
whether the generated LTS does not contain a state which can perform the
actions c copy, lock empty, homequeue empty and remotequeue empty. This re-
quirement is presented in the regular alternation-free µ-calculus as follows:

2.2 ¬(〈T∗〉 (〈c copy(rid)〉 T ∧ 〈lock empty〉 T
∧ 〈homequeue empty〉 T ∧ 〈remotequeue empty〉 T))

A second error in the implementation of the protocol was found while model
checking this property on a configuration of two processors, with two threads
running on one processor and a third thread on the other processor. The error
can happen when a thread is writing to a region from remote. During its
waiting for an up-to-date copy of the region from the region’s home (pid’), the
home node may migrate (by a Region Sponmigrate message) to the processor
(pid) where the thread resides. When the Data Return message with an up-to-
date copy of the region arrives, the thread refreshes the region’s home by the
sender of this message (pid’). In the resulting state of the protocol, neither of
the two processors is the home of the region. As a result c copy may take place
in a state where no lock is being held and the message queues are empty. The
chosen solution is given in Table 16. When a processor gets a Data Return

message containing region information r’, and this message is not a home
node migration message (the boolean variable b is false), the processor checks
whether it is already the home of the region. If that is the case, the processor
will not update the region’s home by the home of r’. After fixing this problem
as proposed, property 2.2 was successfully model checked.

27

Table 16
Modified specification of a processor dealing with a Data Return message

% ... represents the parts shown earlier in the paper.
Processor(pid:ProcessorId) =
∑

tid:ThreadId

∑
pid′:ProcessorId

∑
rid:RegionId

∑
r′:RegionInfo

∑
b:Bool

r queue datareturn(tid,pid,pid’,rid,r’,b).
(
∑

r:RegionInfo s processorrequestinfo(pid,rid,r).

(... � not(eq(gethome(r),pid)) �

s signal(tid,pid,rid).
s processorrefresh(pid,rid,sethome(setstate(r,USED),pid)).
s free remotequeuelock(pid).Processor(pid))

� not(b) � ...)

6.2.3 Requirement 3

The third requirement expresses a liveness property of the protocol. It says
that requests of writing to or flushing a region cannot be bounced around the
network forever. This requirement can only be satisfied under some fairness
condition. For example, consider a configuration with two threads. One thread
can write and flush a region repeatedly forever, so that the other thread will
have no chance to finish a write operation. An execution sequence is fair if it
does not infinitely often enable the execution of a certain transition without
executing it infinitely often (see, e.g., [25]). Actions writeover and flushover
were added to the µCRL specification of a thread to indicate that a thread
completed its pending actions. The following shows the code in the regular
alternation-free µ-calculus for this requirement.

3.1 A thread eventually finishes writing to a region:

[T∗·write(tid, rid)·(¬writeover(tid, rid))∗]
〈(¬writeover(tid, rid) ∧ ¬write(tid, rid))∗·writeover(tid, rid)〉 T

3.2 A thread eventually finishes its flush of a region:

[T∗·flush(tid)·(¬flushover(tid))∗]
〈(¬flushover(tid) ∧ ¬flush(tid))∗·flushover(tid)〉 T

We use tid to indicate an identity of a thread and rid to indicate an iden-
tity of a region. These two formulas express that after a thread initiates its
action (write(tid,rid) or flush(tid)), the end of this action (writeover(tid,rid) or
flushover(tid)) is inevitable under the fairness assumption. This requirement
was successfully model checked.

28

6.3 Verification results

We applied advanced techniques for generating LTSs on a cluster at CWI,
consisting of eight nodes. Each node is a dual AMD Athlon MP 1600+ system,
with 1.4Ghz processors 2GB RAM and 40GB disk. The nodes are connected
by a private ethernet network (100baseT switch) and by a public fast ethernet
network (1000baseT switch). Our case study benefited a lot from the µCRL
distributed LTS generation tool [4], and also pushed forward its development.

The sizes of the generated LTSs and the verification results are summarized in
Table 17. Due to the complexity of this protocol, the size of the LTS grows very
rapidly with respect to the number of threads and processors. With the current
µCRL tool set, we could generate LTSs for the following configurations:

(1) ccp111: one processor with one thread, one region;
(2) ccp112: one processor with one thread, two regions;
(3) ccp121: one processor with two threads, one region;
(4) ccp122: one processor with two threads, two regions;
(5) ccp221: two processors, each with one thread, one region;
(6) ccp222: two processors, each with one thread, two regions;
(7) ccp231: two processors, one with one thread, the other with two threads,

one region;
(8) ccp331: three processors, each with one thread, one region.

For the last configuration, we could only check deadlock absence on the gener-
ated LTS, which was too large to serve as input to CADP to model check re-
quirements 2 and 3. The (distributed) µCRL toolset also supports reduction of
LTSs modulo branching bisimulation [5]. Requirements 2.1 and 3 were success-
fully checked on the reduced LTS (8,992,109 states and 88,374,686 transitions).
The shortest error traces for the two flaws in the original implementation of
the protocol (see Section 6.2) consisted of more than 300 transitions.

7 Conclusions

We used formal specification and model checking techniques to analyze a cache
coherence protocol for a Java DSM implementation. We specified the protocol
in the process algebraic language µCRL, and analyzed it using the CADP
model checker. Three general requirements were formulated and verified. Our
analysis uncovered many inconsistencies between the protocol description and
its implementation. Two flaws were detected in the design of the protocol,
which were then repaired in its implementation. Using the model checker we
showed that the improved design does satisfy all requirements, at least for

29

Table 17
Verification results

Configuration States Transitions Requirements Checked

ccp111 26 98 1, 2, 3

ccp112 97 375 1, 2, 3

ccp121 400 1,814 1, 2, 3

ccp122 5,368 25,278 1, 2, 3

ccp221 65,234 453,568 1, 2, 3

ccp222 2,227,404 16,443,768 1, 2, 3

ccp231 5,424,848 39,603,188 1, 2, 3

ccp331 76,893,921 823,448,619 1, 2.1, 3

configurations of up to three processors and three threads.

During the specification and analysis phase, we encountered quite a few dif-
ficulties. First, it took a relatively long time to obtain a µCRL specification
of the protocol. During this period, the developers made important changes
to the protocol, so that the µCRL specification had to be updated a number
of times. Such gaps between an implementation and its formal model could
be avoided if formal methods had been used at an earlier design phase. Sec-
ond, both the developers and analyzers made mistakes in their work. In our
analysis, many deadlocks were due to inconsistencies and misunderstandings.
Third, advanced techniques for distributed state space generation, reduction,
and model checking were essential for this verification effort.

Although model checking itself is fully automated, using model checking to
prove the correctness of distributed protocols or algorithms from real life is
hard labour. In order to achieve the final verification results, we went through
the following steps:

• first, make a model from an informal description and/or its source code;
understanding the communication relation among components is crucial in
this presented case study;

• second, obtain requirements (from the developers) that can be formalized
in modal logic;

• third, use abstraction to scale down the model to a feasible size for verifi-
cation tools by ignoring the details irrelevant to those requirements;

• fourth, choose an appropriate tool to deal with the state explosion problem,
in our case the distributed version of the µCRL tools;

• fifth, once counter-examples are found, they must be traced back to the
model and then the real system, to reveal whether it is a bug in the system
or a flaw during the modeling phase.

30

Acknowledgments

We thank Stefan Blom, Jan Friso Groote, Bert Lisser, Radu Mateescu, Jaco
van de Pol and Judi Romijn for valuable discussions and technical support.
We also thank the anonymous referees, whose remarks have helped us improve
our presentation a lot.

References

[1] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1990.

[2] B. Badban, W.J. Fokkink, J.F. Groote, J. Pang, and J.C. van de Pol.
Verification of a sliding window protocol in µCRL and PVS. Formal Aspects of
Computing, 17(3):342–388, 2005.

[3] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and
J.C. van de Pol. µCRL: A tool set for analysing algebraic specifications. In
Proc. 13th Conference on Computer Aided Verification, LNCS 2102, pp. 250–
254. Springer, 2001.

[4] S.C.C. Blom, I. van Langevelde, and B. Lisser. Compressed and distributed file
formats for labeled transition systems. In Proc. 2nd Workshop on Parallel and
Distributed Model Checking, ENTCS 89(1): 68-83. Elsevier, 2003.

[5] S.C.C. Blom and S.M. Orzan. Distributed branching bisimulation reduction
of state spaces. In Proc. 2nd Workshop on Parallel and Distributed Model
Checking, ENTCS 89(1): 99-113. Elsevier, 2003.

[6] M. Broy, S. Merz, and M. Spies, editors. Formal Systems Specification: The
RPC-Memory Specification Case Study, LNCS 1169. Springer, 1996.

[7] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.

[8] G. Delzanno. Automatic verification of parameterized cache coherence
protocols. In Proc. 12th Conference on Computer Aided Verification, LNCS
1855, pp. 53–68. Springer, 2000.

[9] M. Dubois, J.-C. Wang, L. Barroso, K. Lee, and Y.-S. Chen. Delayed consistency
and its effects on the miss rate of parallel programs. In Proc. 1991 ACM/IEEE
Conference on Supercomputing, pp. 197–206, 1991.

[10] H. Garavel, F. Lang and R. Mateescu. An overview of CADP 2001. European
Association for Software Science and Technology Newsletter, 4:13-24, 2002.

[11] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, 1996.

31

[12] J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system
for lifting trucks. Journal of Logic and Algebraic Programming, 55(1-2):21–56,
2003.

[13] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Proc.
1st Workshop on the Algebra of Communicating Processes, Workshops in
Computing Series, pp. 26–62. Springer, 1995.

[14] J.F. Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL.
Journal of Logic and Algebraic Programming, 48(1/2):39–72, 2001.

[15] J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra,
A. Ponse, and S.A. Smolka, eds., Handbook of Process Algebra, pp. 1151–1208.
Elsevier, 2001.

[16] T.A. Henzinger, S. Qadeer, and S. Rajamani. Verifying sequential consistency
on shared memory multiprocessor systems. In Proc. 11th Conference on
Computer-Aided Verification, LNCS 1633, pp. 301–315. Springer, 1999.

[17] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks: distributed
shared memory on standard workstations and operating systems. In Proc.
USENIX Winter 1994 Conference, pp. 115–132, 1994.

[18] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess program. IEEE Transaction on Computers, 28(9):690–691, 1979.

[19] J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types.
Wiley/Teubner, 1996.

[20] J. Maessen, Arvind, and X. Shen. Improving the Java memory model
using CRF. In Proc. 2000 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications, pp. 1–12, 2000.

[21] J. Manson and W. Pugh. Core semantics of multithreaded Java. In Proc. ACM
2001 Java Grande Conference, pp. 29–38, 2001.

[22] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Science of Computer Programming, 46(3):255-281,
2003.

[23] J.C. van de Pol and M. Valero Espada. Formal specification of JavaSpacesTM

architecture using µCRL. In Proc. 5th Conference on Coordination Models and
Languages, LNCS 2315, pp. 274–290. Springer, 2002.

[24] F. Pong and M. Dubois. Formal automatic verification of cache coherence in
multiprocessors with relaxed memory models. IEEE Transaction on Parallel
and Distributed Systems, 11(9):989–1006, 2000.

[25] J-P. Queille and J. Sifakis. Fairness and related properties in transition systems
- A temporal logic to deal with fairness. Acta Informatica, 19:195-220, 1983.

[26] A. Roychoudhury and T. Mitra. Specifying multithreaded Java semantics
for program verification. In Proc. ACM SIGSOFT Conference on Software
Engineering, pp. 192–201, 2002.

32

[27] X. Shen, Arvind, and L. Rodolph. Cachet: an adaptive cache coherence protocol
of distributed shared memory systems. In Proc. 13th ACM Conference on
Supercomputing, pp. 135–144, 1999.

[28] J. Stoy, X. Shen, and Arvind. Proofs of correctness of cache-coherence protocols.
In Proc. 11th Symposium of Formal Methods Europe, LNCS 2021, pp. 43–71.
Springer, 2001.

[29] R. Veldema, R.F.H. Hofman, R. Bhoedjang, and H. Bal. Runtime-optimizations
for a Java DSM. In Proc. ACM 2001 Java Grande Conference, pp. 89–98, 2001.

[30] R. Veldema, R.F.H. Hofman, R. Bhoedjang, C. Jacobs, and H. Bal. Source-
level global optimizations for fine-grain distributed shared memory systems. In
Proc. 8th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 83–92, 2001.

[31] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Analyzing the CRF Java
memory model. In Proc. 8th Asia-Pacific Software Engineering Conference,
pp. 21–28, 2001.

[32] Y. Yang, G. Gopalakrishnan, and G. Lindstrom. Specifying Java thread
semantics using a uniform memory model. In Proc. ACM 2002 Java Grande
Conference, pp. 192–201, 2002.

[33] Y. Zhou, L. Iftode, and K. Li. Performance evaluation of two home-based lazy
release-consistency protocols for shared virtual memory systems. In Proc. 2nd
USENIX Symposium on Operating Systems Design and Implementation, pp.
75–88, 1996.

A Appendix: µCRL code of the protocol

%%

% Sort: Bool

%%

sort Bool

func T,F:->Bool

map if:Bool#Bool#Bool->Bool

not:Bool->Bool

and,or,eq:Bool#Bool->Bool

var b,b’:Bool

rew if(T,b,b’)=b if(F,b,b’)=b’

not(T)=F not(F)=T not(not(b))=b

and(T,b)=b and(F,b)=F and(b,T)=b and(b,F)=F

or(T,b)=T or(F,b)=b or(b,T)=T or(b,F)=b

eq(T,T)=T eq(T,F)=F eq(F,T)=F eq(F,F)=T

33

%%

% Sort: Natural

%%

sort Natural

func 0:->Natural S:Natural->Natural

map sub1: Natural->Natural

eq,gt: Natural#Natural->Bool

var n,m:Natural

rew sub1(0)=0 sub1(S(n))=n

eq(0,0)=T eq(0,S(m))=F eq(S(n),0)=F eq(S(n),S(m))=eq(n,m)

gt(0,n)=F gt(S(n),0)=T gt(S(n),S(m))=gt(n,m)

%%

% Sort: ThreadId

%%

sort ThreadId

func tid1,tid2,tid3:->ThreadId

map eq,le:ThreadId#ThreadId->Bool

var t:ThreadId

rew eq(t,t)=T eq(tid1,tid2)=F eq(tid1,tid3)=F

eq(tid2,tid1)=F eq(tid2,tid3)=F eq(tid3,tid1)=F eq(tid3,tid2)=F

le(t,t)=T le(tid1,t)=T le(tid2,tid1)=F le(tid2,tid3)=T

le(tid3,tid1)=F le(tid3,tid2)=F

%%

% Sort: ProcessorId

%%

sort ProcessorId

func pid1,pid2 :->ProcessorId

map eq,le:ProcessorId#ProcessorId->Bool

var p:ProcessorId

rew eq(p,p)=T eq(pid1,pid2)=F eq(pid2,pid1)=F

le(pid1,p)=T le(pid2,pid1)=F le(pid2,pid2)=T

%%

% Sort: RegionId

%%

sort RegionId

func rid1:->RegionId

map eq:RegionId#RegionId->Bool

rew eq(rid1,rid1)=T

%%

% Sort: ProcessorIdSet

%%

sort ProcessorIdSet

func ema:->ProcessorIdSet

34

in:ProcessorId#ProcessorIdSet->ProcessorIdSet

map remove:ProcessorId#ProcessorIdSet->ProcessorIdSet

tail:ProcessorIdSet->ProcessorIdSet

test:ProcessorId#ProcessorIdSet->Bool

empty:ProcessorIdSet->Bool

if:Bool#ProcessorIdSet#ProcessorIdSet->ProcessorIdSet

eq:ProcessorIdSet#ProcessorIdSet->Bool

count:ProcessorIdSet->Natural

head:ProcessorIdSet->ProcessorId

insert:ProcessorId#ProcessorIdSet->ProcessorIdSet

var a,a’:ProcessorId

A,A’:ProcessorIdSet

rew remove(a,ema)=ema

remove(a,in(a’,A))=if(eq(a,a’),remove(a,A),in(a’,remove(a,A)))

tail(in(a,A))=A

test(a,ema)=F test(a,in(a’,A))=if(eq(a,a’),T,test(a,A))

empty(ema)=T empty(in(a,A))=F

if(T,A,A’)=A if(F,A,A’)=A’

eq(ema,ema)=T eq(ema,in(a,A))=F eq(in(a,A),ema)=F

eq(in(a,A),A’)=and(test(a,A’),

eq(remove(a,in(a,A)),remove(a,A’)))

count(ema)=0

count(in(a,A))=S(count(remove(a,in(a,A))))

head(in(a,A))=a

insert(a,ema)=in(a,ema)

insert(a,in(a’,A’))=if(eq(a,a’),in(a’,A’),

if(le(a,a’),in(a,in(a’,A’)),

in(a’,insert(a,A’)))

)

%%

% sort RegionIdSet

%%

sort RegionIdSet

func ridema:->RegionIdSet

in:RegionId#RegionIdSet->RegionIdSet

map remove:RegionId#RegionIdSet->RegionIdSet

tail:RegionIdSet->RegionIdSet

test:RegionId#RegionIdSet->Bool

empty:RegionIdSet->Bool

if:Bool#RegionIdSet#RegionIdSet->RegionIdSet

eq:RegionIdSet#RegionIdSet->Bool

count:RegionIdSet->Natural

head:RegionIdSet->RegionId

insert:RegionId#RegionIdSet->RegionIdSet

var a,a’:RegionId

A,A’:RegionIdSet

35

rew remove(a,ridema)=ridema

remove(a,in(a’,A))=if(eq(a,a’),remove(a,A),in(a’,remove(a,A)))

tail(in(a,A))=A

test(a,ridema)=F test(a,in(a’,A))=if(eq(a,a’),T,test(a,A))

empty(ridema)=T empty(in(a,A))=F

if(T,A,A’)=A if(F,A,A’)=A’

eq(ridema,ridema)=T eq(ridema,in(a,A))=F eq(in(a,A),ridema)=F

eq(in(a,A),A’)=and(test(a,A’),

eq(remove(a,in(a,A)),remove(a,A’)))

count(ridema)=0

count(in(a,A))=S(count(remove(a,in(a,A))))

head(in(a,A))=a

insert(a,A)=if(test(a,A),A,in(a,A))

%%

% State of regions, initially, the region is UNUSED.

%%

sort State

func UNUSED,USED:->State

map eq: State#State->Bool

if:Bool#State#State->State

var s1,s2:State

rew eq(UNUSED, UNUSED)=T eq(UNUSED, USED)=F

eq(USED, UNUSED)=F eq(USED, USED)=T

if(T,s1,s2)=s1 if(F,s1,s2)=s2

%%

% Sort: RegionInfo

% Id, Home, State, writerlist, the number of local threads

%%

sort RegionInfo

func reg:ProcessorId#State#ProcessorIdSet#Natural->RegionInfo

map gethome:RegionInfo->ProcessorId

getstate:RegionInfo->State

getwriterlist:RegionInfo->ProcessorIdSet

getlocalt:RegionInfo->Natural

sethome:RegionInfo#ProcessorId->RegionInfo

setstate:RegionInfo#State->RegionInfo

setwriterlist:RegionInfo#ProcessorIdSet->RegionInfo

setlocalt:RegionInfo#Natural->RegionInfo

increaselocalt:RegionInfo->RegionInfo

decreaselocalt:RegionInfo->RegionInfo

eq:RegionInfo#RegionInfo->Bool

var h,h’:ProcessorId

w,w’:ProcessorIdSet

s,s’:State

lt,lt’:Natural

36

rew gethome(reg(h,s,w,lt))=h

getstate(reg(h,s,w,lt))=s

getwriterlist(reg(h,s,w,lt))=w

getlocalt(reg(h,s,w,lt))=lt

sethome(reg(h,s,w,lt),h’)=reg(h’,s,w,lt)

setstate(reg(h,s,w,lt),s’)=reg(h,s’,w,lt)

setwriterlist(reg(h,s,w,lt),w’)=reg(h,s,w’,lt)

setlocalt(reg(h,s,w,lt),lt’)=reg(h,s,w,lt’)

increaselocalt(reg(h,s,w,lt))=reg(h,s,w,S(lt))

decreaselocalt(reg(h,s,w,lt))=reg(h,s,w,sub1(lt))

eq(reg(h,s,w,lt),reg(h’,s’,w’,lt’))=

and(and(and(eq(h,h’), eq(s,s’)),eq(w,w’)),eq(lt,lt’))

%%

% Actions: we synchronize s_* and r_* into action c_*.

%%

act

s_require_faultlock,r_require_faultlock,

c_require_faultlock: ProcessorId

s_require_flushlock,r_require_flushlock,

c_require_flushlock: ProcessorId

s_require_serverlock,r_require_serverlock,

c_require_serverlock: ProcessorId

s_require_homequeuelock,r_require_homequeuelock,

c_require_homequeuelock: ProcessorId

s_require_remotequeuelock,r_require_remotequeuelock,

c_require_remotequeuelock: ProcessorId

s_free_faultlock,r_free_faultlock,

c_free_faultlock: ProcessorId

s_free_flushlock,r_free_flushlock,

c_free_flushlock: ProcessorId

s_free_serverlock,r_free_serverlock,

c_free_serverlock: ProcessorId

s_free_homequeuelock,r_free_homequeuelock,

c_free_homequeuelock: ProcessorId

s_free_remotequeuelock,r_free_remotequeuelock,

c_free_remotequeuelock: ProcessorId

37

s_nodelay_faultwait,r_nodelay_faultwait,

c_nodelay_faultwait: ProcessorId

s_nodelay_flushwait,r_nodelay_flushwait,

c_nodelay_flushwait: ProcessorId

s_nodelay_serverwait,r_nodelay_serverwait,

c_nodelay_serverwait: ProcessorId

s_nodelay_homequeuewait,r_nodelay_homequeuewait,

c_nodelay_homequeuewait: ProcessorId

s_nodelay_remotequeuewait,r_nodelay_remotequeuewait,

c_nodelay_remotequeuewait: ProcessorId

s_delay_faultwait,r_delay_faultwait,

c_delay_faultwait: ProcessorId

s_delay_flushwait,r_delay_flushwait,

c_delay_flushwait: ProcessorId

s_delay_serverwait,r_delay_serverwait,

c_delay_serverwait: ProcessorId

s_delay_homequeuewait,r_delay_homequeuewait,

c_delay_homequeuewait: ProcessorId

s_delay_remotequeuewait,r_delay_remotequeuewait,

c_delay_remotequeuewait: ProcessorId

s_thread_datarequest,r_thread_datarequest,

c_thread_datarequest,

s_queue_datarequest,r_queue_datarequest,

c_queue_datarequest:

ThreadId#ProcessorId#ProcessorId#RegionId

s_thread_datareturn,r_thread_datareturn,

c_thread_datareturn,

s_queue_datareturn,r_queue_datareturn,

c_queue_datareturn:

ThreadId#ProcessorId#ProcessorId#RegionId#RegionInfo#Bool

s_thread_flushrequest,r_thread_flushrequest,

c_thread_flushrequest,

s_queue_flushrequest,r_queue_flushrequest,

c_queue_flushrequest:

ThreadId#ProcessorId#ProcessorId#RegionId#RegionInfo#Bool

38

s_thread_regionsponmigrate,r_thread_regionsponmigrate,

c_thread_regionsponmigrate,

s_queue_regionsponmigrate,r_queue_regionsponmigrate,

c_queue_regionsponmigrate:

ThreadId#ProcessorId#ProcessorId#RegionId#RegionInfo

s_threadrequestinfo,r_threadrequestinfo,

c_threadrequestinfo:ThreadId#ProcessorId#RegionId#RegionInfo

s_threadrefresh,r_threadrefresh,

c_threadrefresh:ThreadId#ProcessorId#RegionId#RegionInfo

s_threadnorefresh,r_threadnorefresh,

c_threadnorefresh:ThreadId#ProcessorId#RegionId

s_processorrequestinfo,r_processorrequestinfo,

c_processorrequestinfo:ProcessorId#RegionId#RegionInfo

s_processorrefresh,r_processorrefresh,

c_processorrefresh:ProcessorId#RegionId#RegionInfo

s_processornorefresh,r_processornorefresh,

c_processornorefresh:ProcessorId#RegionId

s_signal,r_signal,c_signal:ThreadId#ProcessorId#RegionId

write,writeover: ThreadId#RegionId

flush,flushover: ThreadId

r_home,s_home,c_home,r_copy,s_copy,c_copy: RegionId

lock_empty,homequeue_empty,remotequeue_empty: ProcessorId

%%

% Process: Thread

%%

proc Thread(tid:ThreadId,pid:ProcessorId,FlushList:RegionIdSet)=

sum(rid:RegionId, write(tid,rid).

ThreadWrite(tid,pid,rid,FlushList)

)

+

flush(tid).ThreadInvalidate(tid,pid,FlushList)

<| not(empty(FlushList)) |>delta

%%

% Process: ThreadWrite

%%

proc ThreadWrite(tid:ThreadId,pid:ProcessorId,

39

rid:RegionId,FlushList:RegionIdSet)=

writeover(tid,rid).

Thread(tid,pid,FlushList)

<| test(rid, FlushList) |>

sum(r:RegionInfo,s_threadrequestinfo(tid,pid,rid,r).

(s_threadnorefresh(tid,pid,rid).

WriteHome(tid,pid,rid,insert(rid,FlushList))

<| eq(gethome(r), pid) |>

s_threadnorefresh(tid,pid,rid).

WriteRemote(tid,pid,rid,insert(rid,FlushList))

))

%%

% Process: WriteHome

%%

proc WriteHome(tid:ThreadId,pid:ProcessorId,

rid:RegionId,FlushList:RegionIdSet)=

s_require_serverlock(pid).

(r_nodelay_serverwait(pid)+r_delay_serverwait(pid)).

sum(r:RegionInfo,s_threadrequestinfo(tid,pid,rid,r).

((s_threadrefresh(tid,pid,rid,

increaselocalt(setstate(setwriterlist(

r,insert(pid,getwriterlist(r))),USED))).

s_free_serverlock(pid).

writeover(tid,rid).Thread(tid,pid,FlushList)

<| eq(getstate(r), UNUSED) |>

s_threadrefresh(tid,pid,rid,

increaselocalt(setwriterlist(

r,insert(pid,getwriterlist(r))))).

s_free_serverlock(pid).

writeover(tid,rid).Thread(tid,pid,FlushList)

)

<| eq(gethome(r), pid) |>

s_threadnorefresh(tid,pid,rid).

s_free_serverlock(pid).

WriteRemote(tid,pid,rid,FlushList)

))

%%

% Process: WriteRemote

%%

proc WriteRemote(tid:ThreadId,pid:ProcessorId,

rid:RegionId,FlushList:RegionIdSet)=

s_require_faultlock(pid).

(r_nodelay_faultwait(pid)+r_delay_faultwait(pid)).

sum(r:RegionInfo,s_threadrequestinfo(tid,pid,rid,r).

(s_thread_datarequest(tid,pid,gethome(r),rid).

40

s_threadnorefresh(tid,pid,rid).

sum(pid’:ProcessorId,r_signal(tid,pid’,rid).

sum(newr:RegionInfo,

s_threadrequestinfo(tid,pid,rid,newr).

s_threadrefresh(tid,pid,rid,increaselocalt(newr)).

s_free_faultlock(pid).

writeover(tid,rid).Thread(tid,pid,FlushList)

))

<| not(eq(gethome(r),pid)) |>

s_threadnorefresh(tid,pid,rid).

s_free_faultlock(pid).

WriteHome(tid,pid,rid,FlushList)

))

%%

% Process: ThreadInvalidate

%%

proc ThreadInvalidate(tid:ThreadId,pid:ProcessorId,

FlushList:RegionIdSet)=

flushover(tid).

Thread(tid,pid,FlushList)

<| empty(FlushList) |>

s_require_flushlock(pid).

(r_nodelay_flushwait(pid)+r_delay_flushwait(pid)).

sum(r:RegionInfo,

s_threadrequestinfo(tid,pid,head(FlushList),r).

(FlushHome(tid,pid,head(FlushList),tail(FlushList),r)

<| eq(gethome(r),pid) |>

FlushRemote(tid,pid,head(FlushList),tail(FlushList),r)

))

%%

% Process: FlushHome

%%

proc FlushHome(tid:ThreadId,pid:ProcessorId,rid:RegionId,

FlushList:RegionIdSet,r:RegionInfo)=

(s_threadrefresh(tid,pid,rid,

decreaselocalt(setstate(setwriterlist(

r,remove(pid,getwriterlist(r))),UNUSED))).

s_free_flushlock(pid).

ThreadInvalidate(tid,pid,FlushList)

<| empty(remove(pid,getwriterlist(r))) |>

((s_thread_regionsponmigrate(tid,pid,

head(remove(pid,getwriterlist(r))),rid,

setwriterlist(r,remove(pid,getwriterlist(r)))).

s_threadrefresh(tid,pid,rid,

sethome(decreaselocalt(setstate(

41

setwriterlist(r,ema),UNUSED)),

head(remove(pid,getwriterlist(r))))).

s_free_flushlock(pid).

ThreadInvalidate(tid,pid,FlushList)

<| not(eq(head(remove(pid,getwriterlist(r))), pid))|>

s_threadrefresh(tid,pid,rid,

decreaselocalt(setwriterlist(

r,remove(pid,getwriterlist(r))))).

s_free_flushlock(pid).

ThreadInvalidate(tid,pid,FlushList)

)

<| eq(count(remove(pid,getwriterlist(r))),S(0)) |>

s_threadrefresh(tid,pid,rid,

decreaselocalt(setwriterlist(

r,remove(pid,getwriterlist(r))))).

s_free_flushlock(pid).

ThreadInvalidate(tid,pid,FlushList)

))

<| eq(getlocalt(r),S(0)) |>

s_threadrefresh(tid,pid,rid,decreaselocalt(r)).

s_free_flushlock(pid).

ThreadInvalidate(tid,pid,FlushList)

%%

% Process: FlushRemote

%%

proc FlushRemote(tid:ThreadId,pid:ProcessorId,rid:RegionId,

FlushList:RegionIdSet,r:RegionInfo)=

s_thread_flushrequest(tid,pid,gethome(r),rid,r,T).

s_threadrefresh(tid,pid,rid,

decreaselocalt(setwriterlist(setstate(

r,UNUSED),ema))).

s_free_flushlock(pid).

sum(pid’:ProcessorId,r_signal(tid,pid’,rid).

ThreadInvalidate(tid,pid,FlushList)

)

<| eq(getlocalt(r),S(0)) |>

s_thread_flushrequest(tid,pid,gethome(r),rid,r,F).

s_threadrefresh(tid,pid,rid,

decreaselocalt(setwriterlist(r,ema))).

s_free_flushlock(pid).

sum(pid’:ProcessorId,

r_signal(tid,pid’,rid).

ThreadInvalidate(tid,pid,FlushList)

)

%%

42

% Process: Region

%%

proc Region(pid:ProcessorId, rid: RegionId, r:RegionInfo)=

sum(tid:ThreadId, r_threadrequestinfo(tid,pid,rid,r).

(r_threadnorefresh(tid,pid,rid).Region(pid,rid,r)+

sum(r’:RegionInfo,

r_threadrefresh(tid,pid,rid,r’).

Region(pid,rid,r’))

))

+

r_processorrequestinfo(pid,rid,r).

(r_processornorefresh(pid,rid).Region(pid,rid,r)+

sum(r’:RegionInfo,

r_processorrefresh(pid,rid,r’).

Region(pid,rid,r’))

)

+

r_home(rid).Region(pid,rid,r)

<| eq(pid,gethome(r)) |>delta

+

s_home(rid).Region(pid,rid,r)

<| eq(pid,gethome(r)) |>delta

+

r_copy(rid).Region(pid,rid,r)

<| not(eq(pid,gethome(r))) |>delta

+

s_copy(rid).Region(pid,rid,r)

<| not(eq(pid,gethome(r))) |>delta

%%

% Process: Processor

%%

proc Processor(pid:ProcessorId)=

sum(tid:ThreadId,sum(pid’:ProcessorId,

sum(rid:RegionId,sum(r’:RegionInfo,sum(b:Bool,

r_queue_datareturn(tid,pid,pid’,rid,r’,b).

(sum(r:RegionInfo,s_processorrequestinfo(pid,rid,r).

(s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,sethome(setstate(

r,getstate(r’)),gethome(r’))).

s_free_remotequeuelock(pid).

Processor(pid)

<| not(eq(gethome(r),pid)) |>

s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,sethome(setstate(

r,USED),pid)).

s_free_remotequeuelock(pid).

43

Processor(pid)

))

<| not(b) |>

sum(r:RegionInfo,s_processorrequestinfo(pid,rid,r).

s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,

sethome(setstate(setwriterlist(

r,getwriterlist(r’)),USED),pid)).

s_free_remotequeuelock(pid).

Processor(pid)

)

))))))

+

sum(tid:ThreadId,sum(pid’:ProcessorId,sum(rid:RegionId,

r_queue_datarequest(tid,pid’,pid,rid).

sum(r:RegionInfo,

s_processorrequestinfo(pid,rid,r).

(s_thread_datarequest(tid,pid’,gethome(r),rid).

s_processornorefresh(pid,rid).

s_free_homequeuelock(pid).

Processor(pid)

<| not(eq(gethome(r),pid)) |>

((s_thread_datareturn(tid,pid’,pid,rid,

sethome(setstate(

setwriterlist(r,

insert(pid’,getwriterlist(r))),

USED),pid’),T).

s_processorrefresh(pid,rid,

sethome(setstate(setwriterlist(

r, ema),UNUSED),pid’)).

s_free_homequeuelock(pid).

Processor(pid)

<| eq(getstate(r),UNUSED) |>

s_thread_datareturn(tid,pid’,pid,rid,

setstate(setwriterlist(

r, insert(pid’,getwriterlist(r))),USED),F).

s_processorrefresh(pid,rid,

setstate(setwriterlist(

r, insert(pid’,getwriterlist(r))),USED)).

s_free_homequeuelock(pid).

Processor(pid)

)

<| not(eq(pid,pid’)) |>

s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,

setstate(setwriterlist(

r, insert(pid’,getwriterlist(r))),USED)).

44

s_free_homequeuelock(pid).

Processor(pid)

)

))

)))

+

sum(tid:ThreadId,sum(pid’:ProcessorId,

sum(rid:RegionId,sum(r’:RegionInfo,sum(b:Bool,

r_queue_flushrequest(tid,pid’,pid,rid,r’,b).

sum(r:RegionInfo,

s_processorrequestinfo(pid,rid,r).

(s_thread_flushrequest(tid,pid’,gethome(r),rid,r’,b).

s_processornorefresh(pid,rid).

s_free_homequeuelock(pid).

Processor(pid)

<| not(eq(gethome(r), pid)) |>

(s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,r).

s_free_homequeuelock(pid).

Processor(pid)

<| not(b) |>

(s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,

setstate(setwriterlist(

r,remove(pid’,getwriterlist(r))),UNUSED)).

s_free_homequeuelock(pid).

Processor(pid)

<| empty(remove(pid’,getwriterlist(r))) |>

((s_thread_regionsponmigrate(tid,pid,

head(remove(pid’,getwriterlist(r))),rid,

setwriterlist(r,

remove(pid’,getwriterlist(r)))).

s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,sethome(

setstate(

setwriterlist(r,ema),UNUSED),

head(remove(pid’,getwriterlist(r))))).

s_free_homequeuelock(pid).

Processor(pid)

<| not(eq(head(remove(pid’,

getwriterlist(r))),gethome(r))) |>

s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,

setstate(setwriterlist(

r,remove(pid’,getwriterlist(r))),USED)).

s_free_homequeuelock(pid).

Processor(pid)

45

)

<| eq(count(remove(pid’,getwriterlist(r))),

S(0)) |>

s_signal(tid,pid,rid).

s_processorrefresh(pid,rid,setwriterlist(

r,remove(pid’,getwriterlist(r)))).

s_free_homequeuelock(pid).

Processor(pid)

)))

)))))))

+

sum(tid:ThreadId,sum(pid’:ProcessorId,

sum(rid:RegionId,sum(r’:RegionInfo,

r_queue_regionsponmigrate(tid,pid’,pid,rid,r’).

sum(r:RegionInfo,

s_processorrequestinfo(pid,rid,r).

s_processorrefresh(pid,rid,

sethome(setstate(setwriterlist(

r,getwriterlist(r’)),USED),pid)).

s_free_homequeuelock(pid).

Processor(pid)

)))))

%%

% Process: HomeQueue

%%

proc HomeQueue(pid: ProcessorId)=

sum(tid:ThreadId,sum(pid’:ProcessorId,sum(rid:RegionId,

r_thread_datarequest(tid,pid’,pid,rid).

s_require_homequeuelock(pid).

(r_nodelay_homequeuewait(pid)+r_delay_homequeuewait(pid)).

s_queue_datarequest(tid,pid’,pid,rid).HomeQueue(pid)

)))

+

sum(tid:ThreadId,sum(pid’:ProcessorId,

sum(rid:RegionId,sum(r:RegionInfo,

r_thread_regionsponmigrate(tid,pid’,pid,rid,r).

s_require_homequeuelock(pid).

(r_nodelay_homequeuewait(pid)+r_delay_homequeuewait(pid)).

s_queue_regionsponmigrate(tid,pid’,pid,rid,r).

HomeQueue(pid)

))))

+

sum(tid:ThreadId,sum(pid’:ProcessorId,

sum(rid:RegionId,sum(r:RegionInfo,sum(b:Bool,

r_thread_flushrequest(tid,pid’,pid,rid,r,b).

s_require_homequeuelock(pid).

46

(r_nodelay_homequeuewait(pid)+r_delay_homequeuewait(pid)).

s_queue_flushrequest(tid,pid’,pid,rid,r,b).HomeQueue(pid)

)))))

+ homequeue_empty(pid).HomeQueue(pid)

%%

% Process: RemoteQueue

%%

proc RemoteQueue(pid: ProcessorId)=

sum(tid:ThreadId,sum(pid’:ProcessorId,

sum(rid:RegionId,sum(r:RegionInfo,sum(b:Bool,

r_thread_datareturn(tid,pid,pid’,rid,r,b).

s_require_remotequeuelock(pid).

(r_nodelay_remotequeuewait(pid)+

r_delay_remotequeuewait(pid)).

s_queue_datareturn(tid,pid,pid’,rid,r,b).RemoteQueue(pid)

)))))

+ remotequeue_empty(pid).RemoteQueue(pid)

%%

% Process: Locker

%%

proc Locker(pid:ProcessorId,fault:Natural,flush:Natural,

homequeue:Natural,remotequeue:Natural,

wait_fault:Natural,wait_flush:Natural,

wait_homequeue:Natural,wait_remotequeue:Natural)=

lock_empty(pid).

Locker(pid,fault,flush,homequeue,remotequeue,

wait_fault,wait_flush,wait_homequeue,wait_remotequeue)

<| and(and(and(and(and(and(and(

eq(fault,0),eq(flush,0)),eq(homequeue,0)),

eq(remotequeue,0)),eq(wait_fault,0)),eq(wait_flush,0)),

eq(wait_homequeue,0)),eq(wait_remotequeue,0)) |>delta

+

r_require_faultlock(pid).

s_nodelay_faultwait(pid).

Locker(pid,S(fault),flush,homequeue,remotequeue,

wait_fault,wait_flush,wait_homequeue,

wait_remotequeue)

<| and(eq(fault,0), eq(flush,0)) |>

r_require_faultlock(pid).

Locker(pid,fault,flush,homequeue,remotequeue,

S(wait_fault),wait_flush,wait_homequeue,

wait_remotequeue)

+

r_require_flushlock(pid).

s_nodelay_flushwait(pid).

47

Locker(pid,fault,S(flush),homequeue,remotequeue,

wait_fault,wait_flush,wait_homequeue,

wait_remotequeue)

<| and(and(and(eq(fault,0),eq(flush,0)),

eq(homequeue,0)),eq(remotequeue,0)) |>

r_require_flushlock(pid).

Locker(pid,fault,flush,homequeue,remotequeue,

wait_fault,S(wait_flush),wait_homequeue,

wait_remotequeue)

+

r_require_serverlock(pid).

s_nodelay_serverwait(pid).

Locker(pid,fault,flush,S(homequeue),remotequeue,

wait_fault,wait_flush,wait_homequeue,

wait_remotequeue)

<| and(eq(homequeue,0),eq(flush,0)) |>

r_require_serverlock(pid).

Locker(pid,fault,flush,homequeue,remotequeue,

wait_fault,wait_flush,S(wait_homequeue),

wait_remotequeue)

+

r_require_homequeuelock(pid).

s_nodelay_homequeuewait(pid).

Locker(pid,fault,flush,S(homequeue),remotequeue,

wait_fault,wait_flush,wait_homequeue,

wait_remotequeue)

<| and(eq(homequeue,0),eq(flush,0)) |>

r_require_homequeuelock(pid).

Locker(pid,fault,flush,homequeue,remotequeue,

wait_fault,wait_flush,S(wait_homequeue),

wait_remotequeue)

+

r_require_remotequeuelock(pid).

s_nodelay_remotequeuewait(pid).

Locker(pid,fault,flush,homequeue,S(remotequeue),

wait_fault,wait_flush,wait_homequeue,

wait_remotequeue)

<| and(eq(remotequeue,0),eq(flush,0)) |>

r_require_remotequeuelock(pid).

Locker(pid,fault,flush,homequeue,remotequeue,

wait_fault,wait_flush,wait_homequeue,

S(wait_remotequeue))

+

r_free_faultlock(pid).

(((s_delay_serverwait(pid).

Locker(pid,sub1(fault),flush,S(homequeue),

remotequeue,wait_fault,wait_flush,

48

sub1(wait_homequeue),wait_remotequeue)

+

s_delay_homequeuewait(pid).

Locker(pid,sub1(fault),flush,S(homequeue),

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(not(eq(wait_homequeue,0)),eq(homequeue,0)) |>

((s_delay_remotequeuewait(pid).

Locker(pid,sub1(fault),flush,homequeue,

S(remotequeue),wait_fault,wait_flush,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,sub1(fault),flush,homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,sub1(fault),flush,homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flush,0)) |>

(s_delay_flushwait(pid).

Locker(pid,sub1(fault),S(flush),homequeue,

remotequeue,wait_fault,sub1(wait_flush),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(

not(eq(wait_flush,0)),eq(remotequeue,0)),

eq(homequeue,0)),

eq(flush,0)),

eq(fault,S(0))) |>

(s_delay_faultwait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,sub1(wait_fault),wait_flush,

wait_homequeue,wait_remotequeue)

<| and(and(and(

not(eq(wait_fault,0)),eq(homequeue,0)),

eq(flush,0)),

eq(fault,S(0))) |>

Locker(pid,sub1(fault),flush,homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)))

+

r_free_flushlock(pid).

49

(((s_delay_serverwait(pid).

Locker(pid,fault,sub1(flush),S(homequeue),

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

+

s_delay_homequeuewait(pid).

Locker(pid,fault,sub1(flush),S(homequeue),

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(not(eq(wait_homequeue,0)),eq(homequeue,0)) |>

((s_delay_remotequeuewait(pid).

Locker(pid,fault,sub1(flush),homequeue,

S(remotequeue),wait_fault,wait_flush,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,fault,sub1(flush),homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,fault,sub1(flush),homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(

eq(wait_homequeue,0),

eq(wait_remotequeue,0))),

eq(flush,S(0))) |>

(s_delay_flushwait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,wait_fault,sub1(wait_flush),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(

not(eq(wait_flush,0)),

eq(remotequeue,0)),

eq(homequeue,0)),

eq(sub1(flush),0)),

eq(fault,0))|>

(s_delay_faultwait(pid).

Locker(pid,S(fault),sub1(flush),homequeue,

remotequeue,sub1(wait_fault),wait_flush,

wait_homequeue,wait_remotequeue)

<| and(and(and(

not(eq(wait_fault,0)),

eq(homequeue,0)),

eq(flush,S(0))),

50

eq(fault,0)) |>

Locker(pid,fault,sub1(flush),homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)))

+

r_free_serverlock(pid).

(((s_delay_serverwait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

+

s_delay_homequeuewait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(not(eq(wait_homequeue,0)),

eq(homequeue,S(0))) |>

((s_delay_remotequeuewait(pid).

Locker(pid,fault,flush,sub1(homequeue),

S(remotequeue),wait_fault,wait_flush,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,fault,flush,sub1(homequeue),

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,fault,flush,sub1(homequeue),

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flush,0)) |>

(s_delay_flushwait(pid).

Locker(pid,fault,S(flush),sub1(homequeue),

remotequeue,wait_fault,sub1(wait_flush),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(

not(eq(wait_flush,0)),

eq(remotequeue,0)),

eq(homequeue,S(0))),

eq(flush,0)),

eq(fault,0)) |>

(s_delay_faultwait(pid).

Locker(pid,S(fault),flush,sub1(homequeue),

51

remotequeue,sub1(wait_fault),wait_flush,

wait_homequeue,wait_remotequeue)

<| and(and(and(

not(eq(wait_fault,0)),

eq(homequeue,S(0))),

eq(flush,0)),

eq(fault,0)) |>

Locker(pid,fault,flush,sub1(homequeue),

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)))

+

r_free_homequeuelock(pid).

(((s_delay_serverwait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

+

s_delay_homequeuewait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(eq(homequeue,S(0)),not(eq(wait_homequeue,0))) |>

((s_delay_remotequeuewait(pid).

Locker(pid,fault,flush,sub1(homequeue),

S(remotequeue),wait_fault,wait_flush,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,fault,flush,sub1(homequeue),

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,0) |>

Locker(pid,fault,flush,sub1(homequeue),

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flush,0)) |>

(s_delay_flushwait(pid).

Locker(pid,fault,S(flush),sub1(homequeue),

remotequeue,wait_fault,sub1(wait_flush),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(

not(eq(wait_flush,0)),

eq(remotequeue,0)),

52

eq(homequeue,S(0))),

eq(flush,0)),

eq(fault,0)) |>

(s_delay_faultwait(pid).

Locker(pid,S(fault),flush,sub1(homequeue),

remotequeue,sub1(wait_fault),wait_flush,

wait_homequeue,wait_remotequeue)

<| and(and(and(

not(eq(wait_fault,0)),

eq(homequeue,S(0))),

eq(flush,0)),

eq(fault,0)) |>

Locker(pid,fault,flush,sub1(homequeue),

remotequeue,wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)))

+

r_free_remotequeuelock(pid).

(((s_delay_serverwait(pid).

Locker(pid,fault,flush,S(homequeue),

sub1(remotequeue),wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

+

s_delay_homequeuewait(pid).

Locker(pid,fault,flush,S(homequeue),

sub1(remotequeue),wait_fault,wait_flush,

sub1(wait_homequeue),wait_remotequeue)

)

<| and(eq(homequeue,0),not(eq(wait_homequeue,0))) |>

((s_delay_remotequeuewait(pid).

Locker(pid,fault,flush,homequeue,

remotequeue,wait_fault,wait_flush,

wait_homequeue,sub1(wait_remotequeue))

<| not(eq(wait_remotequeue,0)) |>

Locker(pid,fault,flush,homequeue,

sub1(remotequeue),wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)

<| eq(remotequeue,S(0)) |>

Locker(pid,fault,flush,homequeue,

sub1(remotequeue),wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

))

<| and(not(and(eq(wait_homequeue,0),

eq(wait_remotequeue,0))),eq(flush,0)) |>

(s_delay_flushwait(pid).

Locker(pid,fault,S(flush),homequeue,

53

sub1(remotequeue),wait_fault,sub1(wait_flush),

wait_homequeue,wait_remotequeue)

<| and(and(and(and(

not(eq(wait_flush,0)),

eq(remotequeue,S(0))),

eq(homequeue,0)),

eq(flush,0)),

eq(fault,0)) |>

(s_delay_faultwait(pid).

Locker(pid,S(fault),flush,homequeue,

sub1(remotequeue),sub1(wait_fault),wait_flush,

wait_homequeue,wait_remotequeue)

<| and(and(and(

not(eq(wait_fault,0)),

eq(homequeue,0)),

eq(flush,0)),

eq(fault,0)) |>

Locker(pid,fault,flush,homequeue,

sub1(remotequeue),wait_fault,wait_flush,

wait_homequeue,wait_remotequeue)

)))

%%

% Communications

%%

comm

s_require_faultlock | r_require_faultlock = c_require_faultlock

s_require_flushlock | r_require_flushlock = c_require_flushlock

s_require_serverlock | r_require_serverlock = c_require_serverlock

s_require_homequeuelock | r_require_homequeuelock

= c_require_homequeuelock

s_require_remotequeuelock | r_require_remotequeuelock

= c_require_remotequeuelock

s_free_faultlock | r_free_faultlock = c_free_faultlock

s_free_flushlock | r_free_flushlock = c_free_flushlock

s_free_serverlock | r_free_serverlock = c_free_serverlock

s_free_homequeuelock | r_free_homequeuelock = c_free_homequeuelock

s_free_remotequeuelock | r_free_remotequeuelock

= c_free_remotequeuelock

s_nodelay_faultwait | r_nodelay_faultwait = c_nodelay_faultwait

s_nodelay_flushwait | r_nodelay_flushwait = c_nodelay_flushwait

s_nodelay_serverwait | r_nodelay_serverwait = c_nodelay_serverwait

s_nodelay_homequeuewait | r_nodelay_homequeuewait

= c_nodelay_homequeuewait

s_nodelay_remotequeuewait | r_nodelay_remotequeuewait

= c_nodelay_remotequeuewait

54

s_delay_faultwait | r_delay_faultwait = c_delay_faultwait

s_delay_flushwait | r_delay_flushwait = c_delay_flushwait

s_delay_serverwait | r_delay_serverwait = c_delay_serverwait

s_delay_homequeuewait | r_delay_homequeuewait

= c_delay_homequeuewait

s_delay_remotequeuewait | r_delay_remotequeuewait

= c_delay_remotequeuewait

s_thread_datarequest | r_thread_datarequest = c_thread_datarequest

s_queue_datarequest | r_queue_datarequest = c_queue_datarequest

s_thread_datareturn | r_thread_datareturn = c_thread_datareturn

s_queue_datareturn | r_queue_datareturn = c_queue_datareturn

s_thread_flushrequest | r_thread_flushrequest

= c_thread_flushrequest

s_queue_flushrequest | r_queue_flushrequest = c_queue_flushrequest

s_thread_regionsponmigrate | r_thread_regionsponmigrate

= c_thread_regionsponmigrate

s_queue_regionsponmigrate | r_queue_regionsponmigrate

= c_queue_regionsponmigrate

s_threadrequestinfo | r_threadrequestinfo = c_threadrequestinfo

s_threadrefresh | r_threadrefresh = c_threadrefresh

s_threadnorefresh | r_threadnorefresh = c_threadnorefresh

s_processorrequestinfo | r_processorrequestinfo

= c_processorrequestinfo

s_processorrefresh | r_processorrefresh = c_processorrefresh

s_processornorefresh | r_processornorefresh

= c_processornorefresh

s_signal | r_signal = c_signal

s_home | r_home = c_home

s_copy | r_copy = c_copy

%%

% The protocol with 2 processors, 3 threads and 1 region.

% (each processor has a copy of the region)

%%

init

hide({ c_require_faultlock,c_free_faultlock,

c_require_flushlock,c_free_flushlock,

c_require_serverlock,c_free_serverlock,

c_require_homequeuelock,c_free_homequeuelock,

c_require_remotequeuelock,c_free_remotequeuelock,

c_nodelay_faultwait,c_nodelay_flushwait,c_nodelay_serverwait,

c_nodelay_homequeuewait,c_nodelay_remotequeuewait,

c_delay_faultwait,c_delay_flushwait,c_delay_serverwait,

c_delay_homequeuewait,c_delay_remotequeuewait,

c_thread_datarequest,c_queue_datarequest,

c_thread_datareturn,c_queue_datareturn,

55

c_thread_flushrequest,c_queue_flushrequest,

c_thread_regionsponmigrate,c_queue_regionsponmigrate,

c_threadrequestinfo, c_processorrequestinfo,

c_threadrefresh, c_processorrefresh,

c_threadnorefresh, c_processornorefresh,

c_signal},
encap({ s_require_faultlock,r_require_faultlock,

s_require_flushlock,r_require_flushlock,

s_require_serverlock,r_require_serverlock,

s_require_homequeuelock,r_require_homequeuelock,

s_require_remotequeuelock,r_require_remotequeuelock,

s_free_faultlock,r_free_faultlock,

s_free_flushlock,r_free_flushlock,

s_free_serverlock,r_free_serverlock,

s_free_homequeuelock,r_free_homequeuelock,

s_free_remotequeuelock,r_free_remotequeuelock,

s_nodelay_faultwait,r_nodelay_faultwait,

s_nodelay_flushwait,r_nodelay_flushwait,

s_nodelay_serverwait,r_nodelay_serverwait,

s_nodelay_homequeuewait,r_nodelay_homequeuewait,

s_nodelay_remotequeuewait,r_nodelay_remotequeuewait,

s_delay_faultwait,r_delay_faultwait,

s_delay_flushwait,r_delay_flushwait,

s_delay_serverwait,r_delay_serverwait,

s_delay_homequeuewait,r_delay_homequeuewait,

s_delay_remotequeuewait,r_delay_remotequeuewait,

s_thread_datarequest,r_thread_datarequest,

s_queue_datarequest,r_queue_datarequest,

s_thread_datareturn,r_thread_datareturn,

s_queue_datareturn,r_queue_datareturn,

s_thread_flushrequest,r_thread_flushrequest,

s_queue_flushrequest,r_queue_flushrequest,

s_thread_regionsponmigrate,

r_thread_regionsponmigrate,

s_queue_regionsponmigrate,r_queue_regionsponmigrate,

s_threadrequestinfo,r_threadrequestinfo,

s_threadrefresh, r_threadrefresh,

s_threadnorefresh, r_threadnorefresh,

s_processorrequestinfo,r_processorrequestinfo,

s_processorrefresh, r_processorrefresh,

s_processornorefresh, r_processornorefresh,

s_signal, r_signal,

s_home, r_home,

s_copy, r_copy},
Thread(tid1,pid1,ridema) ||

Thread(tid2,pid2,ridema) ||

Thread(tid3,pid1,ridema) ||

56

Locker(pid1,0,0,0,0,0,0,0,0) ||

Locker(pid2,0,0,0,0,0,0,0,0) ||

HomeQueue(pid1) ||

HomeQueue(pid2) ||

RemoteQueue(pid1) ||

RemoteQueue(pid2) ||

Processor(pid1) ||

Processor(pid2) ||

Region(pid1,rid1,reg(pid1,UNUSED,ema,0)) ||

Region(pid2,rid1,reg(pid1,UNUSED,ema,0))

))

57

