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Abstract

The paper presents the verification of a functional
misbehavior in TCP, that is one of the widely used
transport protocols used in the Internet. The solu-
tion that was developed by I. Heavens is verified for
its correctness. A model checking approach is used to
verify TCP: the protocol is described in LOTOS and
the requirements are given in the modal p-calculus.
The verification uses the CADP tool set for automat-
ing the verification process.

1 Introduction

Only recently a functional error in the TCP mecha-
nism for closing connections was recognized [4]. TCP
uses a three-way handshake to close a connection with
FIN messages in an orderly fashion. A special state
Timed_wait is used in order to ensure, firstly, that all
FIN messages are reliably acknowledged for the com-
pletion of the three-way handshake, and, secondly,
that all TCP segments, generated in either direction
during the lifetime of the connection, are reliably de-
livered and drained from the network before initiation
of a new incarnation® of the connection.

On the other hand, connections can be closed
abruptly with RST messages, so that the connection
state of the peer entities on transmission or recep-
tion is immediately removed. However, no equiva-
lent mechanism to Timed_wait exists for connections
terminated by the transmission of a RST message.
Hence, TCP contains the possibility of erroneous ac-
ceptance of old segments from RST-terminated con-
nections, which are for example caused by user aborts
or by the reception of data after half-duplex close.

The problem was whether it would have been pos-
sible to detect the misbehavior of TCP by applying
formal verification without any use of the knowledge
about the error. Could the error have been avoided,

ITCP uses the notion incarnation to denote new instances
of a connection, i.e. having the same socket pair of sending
and receiving address.

if formal verification was used before any implemen-
tation of TCP? We decided to solve the problem in
the framework of functional behavior specification of
the protocol, temporal logic specification of the cor-
rectness requirements, and verification by the use of
model checking algorithms. The functional behav-
ior of TCP is specified in LOTOS [5], while the cor-
rectness requirements are specified in the modal u-
calculus [8].

The paper is structured as follows. Before describ-
ing the misbehavior for abruptly terminated connec-
tions, the main features of TCP are shortly discussed.
After a short overview on used formalisms, the LO-
TOS specifications of TCP and of the proposed so-
lution are presented. The verification that uses the
evaluator tool of the Caesar/Aldebaran Distribu-
tion Package (CADP) [3] is considered next. Conclu-
sions finish the paper.

2 The Transmission Control Protocol

The Transmission Control Protocol (TCP) [2] as
part of the TCP/IP protocol suite is beside the User
Datagram Protocol (UDP) the most widely used
transport protocol in the Internet. It has been devel-
oped in the late 1970s and was standardized by the
Internet Engineering Task Force in 1981 [6]. Several
corrections and improvements of TCP [1] lead to ro-
bust and performant implementations of TCP, among
which the BSD4.4. implementation of TCP should be
mentioned as a well-known representative [7].

TCP provides a reliable data transmission service,
namely, the in-order delivery of a stream of bytes.
The stream of bytes is separated into segments which
are transferred to the other side. It is a connection-
oriented and full duplex transport protocol, that uses
an application to application addressing scheme. A
connection is identified by the addresses of both sides,
where an address consists of the IP and the port num-
ber. The reliability of the data transfer is achieved
by the use of

e sequence numbers for every byte in the stream,



e positive acknowledgments that indicate the next
data to be received,

e retransmission of segments that are not acknowl-
edged within a timeout period, and

e round trip delay estimation for adapting the
timeout periods to the actual load situation in
the network.

TCP uses a sliding window mechanism to prevent
the sender from overloading the receiver (flow con-
trol). Slow start and congestion avoidance schemes
are used for congestion control, so that the sender
does not overload the network. There are several
other features of TCP such as the negotiation of the
maximal segment size (MSS), the selection of the
initial sequence number (ISN), Karn’s algorithm to
avoid the silly window syndrome, fast retransmission
and fast recovery, etc. Only the basic features of TCP
are relevant to the problems of abruptly terminated
connections, so that the others are not considered
here. For further detail on TCP please refer to [7].
TCP offers the following user calls to applications:

TCP supports passive and active OPEN calls. A pas-
sive open makes a TCP entity ready to accept re-
quests for connection setups from remote sides,
while an active open initiates the segment ex-
change that is needed for connection establish-
ment, i.e. the connection setup is actively pur-
sued.

The user data are given to the sending TCP entity
by SEND calls and are transferred as sequences
of octets. TCP must recover from lost, dupli-
cated, and re-ordered data. This is achieved by
assigning sequence numbers to any octet in the
stream and by positive acknowledgments from
the remote side.

Incoming data are delivered to the user of the re-
ceiving side, when using a RECEIVE call.

CLOSE is the user call for terminating a connection
in normal situations.

ABORT means the immediate termination of a con-
nection without any prevention for lost con-
nection termination indications and clearing old
data from the network.

TCP entities communicate by means of segments.
A segment contains, beside other things, the sequence
and acknowledgment number, several control bits,
and the data. The control bits are used to mark the
specific meaning of a segment. For the investigation
in this paper the following control bits are essential:

ACK to indicate an acknowledgment segment. Ac-
knowledgments are used to inform the sender
about successful receipt of data and to indicate
the sequence number of the next awaited data.

RESET (reset the connection) to indicate the abrupt
termination of a connection.

SYN to indicate synchronize segments for the ex-
change of information on initial sequence num-
bers during connection setup.

FIN to indicate that no more data are sent from the
sending side. FINs are used when connections
are normally terminated.

Figure 1: The finite state machine of TCP

The behavior of a TCP connection for connection
setup and termination is represented in Figure 12.
The figure uses a finite state machine representation
of the behavior. States and transitions are repre-
sented by circles and edges, respectively. A transition
is marked with the input and the output event. There
are transitions without output event. In order to dis-
tinguish between a user call and a segment, user calls
are written in italics. TCP has eleven states with the
following meanings

Closed is the idle state where no connection exists
at all.

Listen The entity waits for a connection request
from any remote side.

2Please note, that this automaton only contains the main
control flow of TCP and by far not the complete behavior.
For example, the reaction on ABORT user calls is only partially
represented and the data transfer phase is not shown at all.



Syn_sent is the waiting for a matching connection
request after having sent its own connection re-
quest.

Syn_rcvd represents waiting for the acknowledgment
of its connection request after it has both re-
ceived and sent a connection request.

Estab is the state of the data transfer phase. Data
can be sent to the remote side and received data
can be delivered to the user of the TCP entity.

Fin wait_1 represents waiting for a request on con-
nection clearing from the remote side or for the
acknowledgment of the previously sent request
on connection clearing.

Fin wait_2 is the waiting state for a request on con-
nection clearing from the remote side.

Close_wait represents waiting for a termination re-
quest from the local user.

Closing awaits the acknowledgment for a previously
sent request on connection clearing.

Timed wait is the state of waiting long enough, so
that the remote side eventually receive the ac-
knowledgment of its termination request and so
that all data of the connection have left the net-
work.

Last_ack is similar to the Closing state, but is used
after a Close_wait state.

3 Old Data Acceptances Caused by
Abruptly Terminated Connections

Before describing the problems with abruptly ter-
minated connections, the normal connection estab-
lishment and connection termination in TCP is con-
sidered.

Side1 Side2 Passive_Open
Active_Open

SYN 141:141
Syn_sent
Syn_revd
/swu&:/tm/
ACK 142

Estab

Estab

Figure 2: Connection establishment

During normal connection establishment (Fig-
ure 2), the initiating side of the call sends a SYN seg-
ment with its initial sequence number to the remote

side. The called side answers with acknowledging the
initial sequence number of the call initiator and sends
its own initial sequence number in a SYN segment
back. In the case that the calling side receives an
acknowledgment for its SYN segment, it transfers to
the Estab state. Finally, the called side awaits the
acknowledgment of its SYN segment before entering
the Estab state. Hence, three segments are used to
set up a connection, what is also called three-way
handshake. Since both of the SYN segments have to
be explicitly acknowledged by the other side, it is en-
sured that both entities have the correct information
on the sequence numbers of those segments that the
remote side will eventually send.

Side1 Side 2
Close
FIN 150:150
Fin_wait_1
Close_wait
ACK / Close

Fin_wait_2 FIN 180:180
51
Timed_wait \Ac&wl\

“\\ Last_ack

Timeout after 2MSL to Closed state

Figure 3: Connection termination

In the course of normal connection clearing (Fig-
ure 3), a modified three-way handshake mechanism is
used: after a user CLOSE call, the entity to be closed
sends a FIN segment to the remote side. That side
acknowledges the incoming FIN segment immediately
and delays until its local user also closes the connec-
tion. Afterwards, a FIN_ACK segment is send to the
remote side, from which the last acknowledgment for
the FIN segment is awaited. Similar to the connection
setup, the explicit acknowledgment of the FIN seg-
ment ensures that both sides are aware of the closing
connection. In the Timed wait and Last_ack state,
an idle period of two times the maximal segment life-
time (2MSL) is used in order to ensure that all data
from the closing connection diminish from the net-
work.

Sidel Side 2
Abort

RST 150
Closed

Closed

Figure 4: Connection abort

In contrast to the secure connection termination



in normal situations, a connection can be abruptly
terminated by issuing an ABORT call (Figure 4). Al-
though a RESET segment is sent to the remote side, no
acknowledgment is awaited. This implies that the re-
mote side may not be aware of the connection closing
at the remote side (in the case that the RST segment
gets lost). In addition, old data may still be in transit
to the other side, since there is no idle period of 2MSL.
In particular, this means that the sequence numbers
of old data may overrun the sequence numbers of a
new incarnation of this connection.

Sidel Side2
Estab
:299 ACK 151 Estab

" DATA 370:419 AGK 151 |

/me/- - - Buffering
1399 ACK 151
* =+ Old data acceptance

400:499 ACK 151

420

:499 ACK 151

Agreement on
successfully *”
transmitted data

Figure 5: Old data acceptance

Figure 5 shows a scenario where old data are ac-
cepted in the new incarnation. Side 1 serves as the
data source, while Side 2 is the data sink. Let us as-
sume that there are still old data in the network and
that the sequence numbers of the new incarnation are
overrun by the sequence numbers of old data. The
first two lines show normal data (DATA 200..299)
and acknowledgment (ACK 300) of the new incarna-
tion (after the three-way handshake for setting up
the new incarnation has been completed). Next, old
data (DATA 370..419) arrive at Side 2, which fall into
the current receiving window of Side 2. Therefore
they are queued into the re-assembly buffer at Side 2,
since their sequence numbers are not the expected
ones. An acknowledgment is generated for the next
expected octet (ACK 300), so that Side 1 does not de-
tect an acknowledgment for unsent data. Side 1 con-
tinuously sends further data to the other side (DATA
300..399, 400..499), since its sending window is
open. Once, Side 1 receives the missing data (DATA
300..369) as part of the second data segment sent
by Side 1, it accepts old data and offers it to its user.
It acknowledges data up to 420 to the sending side.
Side 1 interprets this acknowledgment as a partial ac-

knowledgment for its third data segment. Since the
timer does not expire and the sending window is still
open, it continues sending. Finally, it receives the
acknowledgment for all sent data (ACK 500), so that
neither Side 1 nor Side 2 detected the faulty accep-
tance of old data.

Beside the theoretical possibilities of old data ac-
ceptances in the course of connection abort and
new connection incarnation, it has to be investigated
whether the time settings and the mechanism for the
selection of the initial sequence number (ISN) of a
connection do not exclude this misbehavior of TCP.

In particular, if we assume a high speed network
with large throughput and long propagation delays,
one can consider a scenario of one continuously send-
ing side and of a receiver that abruptly terminates
the connection and re-establishes a new incarnation
of the connection immediately. Then, the sending
side will continue to send, although the RST segment
is on the way. Therefore it will generate a whole
bunch of old data, which may overrun the sequence
numbers of the new incarnation.

According to the TCP standard [6], TCP uses a 32-
bit counter for the ISN selection mechanism, which
is incremented every 4 microseconds. That means
250000 increments per second. If we assume a TCP
connection in a high speed network with maximal seg-
ment size (MSS) of 1500 Byte and a sending window
size of 170 segments, the sender can transmit data
segments that use this number space. In this sce-
nario, there is a non-zero probability for old data ac-
ceptances if the connection is re-established immedi-
ately. However, such a transmission capacity requires
a highspeed network in the hundreds of MBit/s range.

Also, the ISN selection mechanisms in current TCP
implementations are comparable to the TCP stan-
dard. For example, the TCP implementation of 4.4.
BSD UNIX uses a slower counter (the counter is
incremented by 64000 every half-second, i.e. the
counter is incremented every 8 microseconds). How-
ever, in addition, the counter is incremented by 64000
each time a connection is established.

Hence, it is unlikely to observe this misbehavior of
TCP in current networks. Nonetheless, [4] showed old
data acceptance phenomena by a simple (although
unrealistic) experiment consisting of a client applica-
tion that continuously sends data, and of a server ap-
plication that aborts the connection with any arrival
of a data segment and that reconnects immediately
afterwards. This continuous repetition of pushing old
data into the network and of establishing new incar-
nations leads eventually to the above described old
data acceptances.

In order to solve the problem, one can ask (1) for
the adaptation of the ISN selection mechanism to the
needs of future high speed networks, so that it is fast



enough to exclude segment number overruns by old
data. On the other hand, (2) one can deploy a general
solution, so that the functional behavior of TCP is
free of misbehavior independently of the ISN selection
mechanism.

The first alternative has the advantage of letting
the functional behavior of TCP as it is, what is im-
portant for all the applications that run over TCP.
The disadvantage is the need to correct the timing of
TCP whenever a new generation of communication
networks is used. While the second alternative solves
the latter problem, the functional correction of TCP
cannot be undertaken without problems. In partic-
ular, this is true for the large number of installed
TCP implementations and for the large number of
applications that utilize TCP. Care has to be taken
of backward compatibility issues. In order to ensure
backward compatibility, options for ”classical” TCP
and its new variant should be offered, what would
complicate the protocol.

The presented work will not discuss pros and cons
of both alternatives further. Rather, the main goal
was to formally verify the misbehavior of TCP as well
as the proposed functional solution to the problem [4].

4 The Solution to Prevent TCP from
Old Data Acceptances

Sidel Side 2
Abort Estab Estab
\
RST 150

- »

Timed_wait
Closed Timeout_2MSL

Closed

Figure 6: Modified connection abort

In order to exclude the above described old data
acceptances after connection aborts, [4] proposes to
apply a two-way closing mechanism to abruptly ter-
minated connections. This mechanism ensures that
RST segments are reliably delivered to the remote side
(Figure 6). Furthermore, also in the case of aborts,
the Timed wait state is used to wait long enough for
old data diminishing from the network.

An ABORT call (see Figure 7) in a state that is dif-
ferent to the Listen and Syn_sent state causes a RST
segment with explicit sequence number (so that it can
be retransmitted in the case of loss) sent to the re-
mote side. Afterwards, the TCP entity transfers to
the Last_ack state where the acknowledgment for the
previously sent RST segment is awaited. If the ACK
segment arrives, the connection is closed.

Figure 8: Modified receipt of RESET

Furthermore, every arriving RST segment has to be
explicitly acknowledged in a state that is different to
the Listen and Syn_sent state (Figure 8). In these
two states upon arrival of a RST segment, an imme-
diate transition to the Closed state is used. After
acknowledging the RST segments in the other states,
Timed_wait state is entered for the waiting period of
2MSL.

5 An Overview on Used Formalisms
5.1 An Overview on LOTOS
The specification of TCP has been developed in

LOTOS — the Language Of Temporal Ordering
Specification [5], what is one of the standardized for-



mal description techniques. It has been developed
by ISO for the unambiguous definition of the func-
tional behavior of information processing systems.
It is based on process-algebraic calculi for the de-
scription of behavior, in particular on Milner’s CCS
— the Calculus of Communicating Systems — and
on Hoare’s CSP — the calculus of Communicating
Sequential Processes. Data dependencies are de-
scribed in the algebraic data type language ACT
ONE.

A LOTOS specification defines the system behav-
ior as the temporal order of externally visible events.
Each event is an occurrence of an action and is as-
sociated with a gate, namely the gate at which the
event takes place. The set of gates constitutes the
system interface. The basic notions of LOTOS are
actions that represent atomic and instantaneous sys-
tem functionalities, and basic processes (stop and
exit) that represent deadlock and termination, re-
spectively. The occurrence of an action is called
event. Actions and processes can be composed by a
number of operators such as action prefixing or par-
allel composition in order to build complex behavior
expressions:

e The stop process “stop” denotes deadlock, i.e.
a process that is unable to execute anything.

e The exit process “exit (ej...e,)” denotes suc-
cessful termination, where value may be passed
to subsequent processes.

e An action prefix “g e;...e, [SP]; Q" repre-
sents an observable action g with value offering
e;...e, to the environment, provided that the
communication guard SP evaluates to true. The
action occurrence is followed by behavior Q.

e An internal action prefix “i; Q” means occur-

rence of the internal action i followed by behav-
ior Q.

e A choice expression “Q; [1 Q»” denotes choice
between alternative behaviors Q; and Q;. Only
one of them is selected for further execution.

e A parallel composition “Q; I[g1...g,11 Q2"
represents the parallel execution of behaviors Q;
and Q2, which have to synchronize in the gates
g1-.-8n. LOTOS uses synchronous communica-
tion (with rendez-vous).

e The hiding operator “hide g;...g, in Q"
makes g . ..g, invisible and unaccessible from
outside.

e An enabling “Q; >> accept xX;:s; ...X,:8,
in Q2" denotes the sequential composition of Q;
and Q2, where values may be passed to Q- after
termination of Q;.

e The disabling expression “Q; [> Q2” denotes the
possibility of interrupting Q; by Qs.

e A process is instantiated by “Plgi...g.]
(e1,...,en)”, which denotes the execution of
the process behavior of P with actual gates
gi...gn and actual parameters e;,...e,. In
particular, the recursive re-instantiation of pro-
cesses allows the specification of infinite, cyclic
behavior.

e A guard expression “[SP]-> Q” denotes the ex-
ecution of Q, if the guard SP evaluates to true.

e A value declaration “let xj:si=e;
X, :8Sp=€, in Q” binds in behavior Q the values
e;...e, to the variables x; .. .x,, resp.

A system is normally represented by a composi-
tion of several processes. The interface of a process
is defined by a set of gates that identify the exter-
nally visible and accessible actions and in which the
environment of the process may synchronize. Pro-
cesses can built up process hierarchies, what is useful
to structure the specification.

5.2 An Overview on the Modal p-
Calculus

Modal logics are used to describe behavioral prop-
erties in terms of capabilities of processes [8]. For-
mulas are built from boolean connectives, modal op-
erators [K] ("box K”) and (K) ("diamond K”), and
fixed point operators ¥Z and pZ, where Z denotes
a propositional variable and K a set of actions. The
formulae of the logic? are

S =ttt | ff | Z |
0| &3 APy | D9V Dy |
(K] | (K) |
vZ.® | nz.9.

The meaning is as follows. tt and £f denote true
and false, resp. A process has the property [K]® if
after execution of any action in K each resultant pro-
cess has property ®. The property (K)® expresses
the capability of executing an action in K, so that
the resultant process has property ®.

vZ.® denotes the greatest fix-point of the equation

7% ®, while 4 Z.® is the least fix-point of this equa-
tion. For example, vZ.(a)Z expresses the capability
for performing action a forever. Another example
is uZ.® v (a)Z that expresses the property of per-
forming action a until ® holds. This least fix-point
also includes the possibility of performing action a
forever without ® ever becoming true. Last but not
least, please observe that tt expresses the same as

3Please note, that this logic is not minimal, but reflects the
main features of the modal p-calculus.



the greatest fix-point of the equation Z “ 7 and ££
expresses its least fix-point.

The evaluator of CADP supports shortcuts to
ease the formulation of properties: (x)® denotes the
property of performing an action from the complete
set of actions of a process, so that the resultant pro-
cess has property ®, while [#]® denotes the prop-
erty that after performing any action each resultant
process has property ®. ALL® = vZ.(® A [%]2)
denotes the property that ® is true for all pro-
cesses that can be reached, i.e. ® is always satisfied.
rors Y uZ.(® V (x)Z) denotes the property that
there are some resultant processes that have property

& WUB, 8, Y vZ.((31 A[+]Z) V &) denotes weak
until, i.e. it denotes the property that the resultant
processes have property ®; as long as they do not

have property ®,, even forever if need be.

6 The Specification of TCP

TCP_Entity TCP_Entity

milin: ml_out mr_in mr_ out

( e )

e ® - timeout 2MSL -

- .

Figure 9: The structure of the TCP specification

Medium

The TCP specification is the result of taking into
account the original TCP specification [6], the TCP
corrections given in [1], and the reference implemen-
tation that is described in [7]. The specification re-
flects the functional behavior of TCP without dynam-
ically adjusted window sizes, slow start and conges-
tion avoidance, fast retransmission and fast recovery,
buffering at the receiving and sending side, check-
sums, etc. The specification contains 300 lines of
code.

The structure of the specification is presented in
Figure 9. The specification consists of a TCP entity
at each side. Both entities use a reliable transmis-
sion medium with data reordering. The correspond-
ing specification of the main behavior is given in Fig-
ure 10.

The specification uses enumerations for the defini-
tion of user calls, segments, and states. Exemplarily,
the definitions for user calls and segments are given
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specification TCP [1,r]: noexit

behavior
hide ml_out, ml_in, mr_out, mr_in, timeout_2MSL in
( TCP_entity_closed[l,ml_inml_out,timeout_2MSL](1,0,0,0)
[
TCP_entity_closed[r mr_inmr_out,timeout_2MSL](1,0,0,0))
[[ml_out, ml_in, mr_out, mr_in, timeout_2MSL]|
( Medium[ml_out,mr_in,timeout_2MSL]
[[TIMEOUT_2MSL]|
Medium[mr_out,ml_in,timeout_2MSL] )
where ... endspec (xTCPx)

Figure 10: The system behavior

in Figure 11. The representation of user calls, seg-
ments, and states is in particular useful to reduce the
size of the transition systems (as a number of bytes),

which are generated by caesar and aldebaran (see
below).

type UMessage is NaturalNumber renamedby
sortnames UMessage for Nat
opnnames PASSIVE_OPEN for 0
ACTIVE_QOPEN for 1
SEND for 2
RECEIVE for 3
CLOSE for 4
ABORT for 5
STATUS for 6
endtype
type Segment is NaturalNumber renamedby
sortnames Segment for Nat
opnnames RESET for O
SYN for 1
SYN_ACK for 2
FIN for 3
FIN_ACK for 4
ACK for 5
DATA for 6
endtype

Figure 11: The user call and segment definition

The transmission medium is given in Figure 12.
The external gates of the transmission medium are

e in for incoming segments,
e out for outgoing segments, and

e timeout_2MSL for clearing the medium from any
segment that is still in transit.

The medium consists of two independent routes
between the in and the out gate. A route (pro-
cess One Buffer) works like a reliable buffer of size 1,
where segments cannot be lost. Since two routes ex-
ist, (1) a segment can be held infinitely long in a route
without delivering it at the out gate and (2) segments
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process Medium[in,out,timeout_2MSL]: noexit:=
( One_Buffer[in,out] ||| One_Buffer[in,out] )
>
timeout_2MSL; Medium[in,out,timeout_2MSL]
where process One_Buffer[in,out]: noexit:=
in ?s: Segment [s eq RESET];
out !s; One_Buffer[in,out]
[] in ?s: Segment ?n: Nat
[(s eq ACK) or (s eq SYN) or
(s eq FIN) or (s eq DATA)];
out !s !n; One_Buffer[in,out]
[] in ?s: Segment ?n: Nat ?m: Nat
[(s eq SYN_ACK) or (s eq FIN_ACK)];
out !s !n !m; One_Buffer[in,out]
endproc (*One_Buffers)
endproc (xMediumx)

Figure 12: The transmission medium

can be reordered. Both characteristics are essential
to observe the misbehavior of TCP for abruptly ter-
minated connections.

The timeout_2MSL gate has been introduced to de-
scribe the semantics of the Timed wait state. The
synchronization in timeout_2MSL is used to empty
the medium completely. This is specified by the dis-
abling operator (line 3, 4) on timeout_2MSL and the
re-instantiation of process Medium afterwards.

A TCP entity is described by a set of processes,
where each process represents the behavior in a spe-
cific state. In any state, the entity is ready to accept
calls from the user or segments from the remote side
that are relevant to the current state. Transitions to
other states are reflected by the instantiation of the
appropriate process (with actualized parameter set-
tings). If the TCP entity transfers to a state that is
different to the current one, a status indication con-
taining the next state is given to the environment in
order to ease the validation/verification of the speci-
fication.

The interface of a TCP entity consists of

e u — the gate to the TCP user for user calls,

e m_in — the gate to the underlying transmission
medium for incoming segments, and

e m out — the gate to the underlying transmission
medium for outgoing segments.

The parameters of the TCP entity are
e no — the number of the instance of a connection,

e sn — the sequence number of the next segment
to be sent,

e rn — the sequence number of the next segment
to be received,
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e ab — the number of ABORT user calls for a con-
nection,

e sp — the number of sent data packets, and
e rp — the number of received data packets.

For simplification, we assumed a sending window
of infinite length and a receiving window of size 1.
That means, that the entity is always able to send
data, but accepts only that incoming data with a se-
quence number identical to rn. In order to reduce
the size of the state space, the following restrictions
were assumed in addition: at most two instances of
a connection may be established, at most one ABORT
user call is allowed per connection and per entity,
and finally, at most one data packet can be sent or
received per connection. The last assumption is in
particular needed to adapt a compositional approach
to the generation of the state space.

process TCP_entity_estab[u,m_in,m_out,timeout_2MSL]
(no,sn,rn,ab,sp,rp: Nat): noexit:=
u !'CLOSE;

m_out !FIN !sn; u !STATUS !Fin_wait_1;
TCP_entity_fin_wait_1[..](no,sn+1,rn,ab)

[1 ([ab 1t 1] —> u 'ABORT;
m_out 'RESET; u !STATUS !Closed;
TCP_entity_closed]..](2,0,0,0))

[1 ([sp 1t 1] —> u !SEND;
m_out !DATA !sn;
TCP_entity_establ..](no,sn+1,rn,ab,sp+1,rp))

[] m_in 'DATA 'rn [rp 1t 1];
u 'RECEIVE; m_out 'ACK 'rn+1;
TCP_entity_establ..](no,sn,rn+1,ab,sp,rp+1)

[] m_in 'ACK !(sn—1);
TCP_entity_establ..](no,sn,rn,ab,sp,rp)

[] m_in IFIN !rn;
m_out !'ACK !rn+1; u !STATUS !Close_wait;
TCP_entity_close_wait[..](no,sn,rn+1,ab)

[] m_in !'RESET;
u !'STATUS !Closed;
TCP_entity_closed]..](2,0,0,0)

endproc (*TCP_entity_estabsxk)

Figure 13: The TCP entity in Estab state

As a representative for the state processes, the pro-
cess for the Estab state is given in Figure 13 . Every
state process is described by a choice of alternatives
on user calls and incoming segments. An alternative
in the choice expression describes one transition in
the current state. It has an input, possibly an out-
put, and ends in the final state.

For example, if the user issues a CLOSE call,
the entity sends a FIN segment to the remote side
with the current send sequence number sn. Then
it enters the Fin wait_1 state by instantiating the
TCP_entity fin wait_1 process and by increment-
ing the send sequence number by 1. If a data seg-
ment arrives (m_in !DATA !rn), its sequence number



is checked to coincide with the sequence number to be
received next (rn). The TCP entity remains in Estab
state and re-instantiates with the actualized param-
eters. Since the transmission medium is assumed to
be error-free, no timeout mechanism for the retrans-
mission of lost data is needed.

7 The Specification of Modified TCP

The corrections that are needed to represent the
above presented modifications to TCP are rather sim-
ple. The appropriate transitions for ABORT calls (line
2—4) are modified to transitions to the Last_ack state
(line 5-7):

[1 (fab 1t 1] —> u !'ABORT;
m_out 'RESET; u !STATUS !Closed;
TCP_entity_closed][..](2,0,0,0)) ...
=> ...
[1 (fab 1t 1] —> u !'ABORT;
m_out 'RESET !sn; u !STATUS !Last_ack;
TCP_entity_last_ack|[..](no,sn+1,rn,ab+1)) ...

Likewise, the appropriate transition for incoming
RST segments (line 2-4) are modified to transitions to

the Timed wait state (line 5-7):

[] m_in 'RESET;
u !STATUS !Closed;
TCP_entity_closed[..](2,0,0,0) ...
=> ...
[] m_in 'RESET 'rn;
m_out 'ACK !rn+1; u !STATUS !Timed_wait;
TCP_entity_timed_wait[..](no,sn,rn+1,ab) ...

8 The Verification

The verification used the evaluator tool of
CADP [3] for model checking the requirement that
during the lifetime of a connection instance data is
not received before it has been sent. Before applying
the evaluator, caesar, aldebaran, and bcg_open
were used to generate the labelled transition system
(LTS) of the TCP specification and its modified ver-
sion.

Instead of verifying the TCP specification pre-
sented above we had to use a specification where the
data part has been eliminated. This simplification
was needed due to the state space exploration prob-
lem: a single entity (with data) has a labelled tran-
sition system with over 1,1 Mio states and 1,6 Mio
transitions (the file containing the LTS has a size
of 48MB), so that it was not possible to minimize
even one entity, not to mention the complete system®.

4A Sun SPARCstation 20 with two processors, 60 MHz, and
50MB main memory has been used.

Also, the try to validate the correctness requirements
on the fly without explicitly constructing the com-
plete state space was unsuccessfully interrupted after
four days.

Of course, care has to be taken when eliminating
the data part. In particular, the use of sequence num-
bers is essential for the correct behavior of TCP. Due
to the assumptions we made in the TCP specification,
(1) data is not lost, and (2) only two segments can
be re-ordered on the transit between both entities.
However, this can only lead to additional deadlocks,
since segments may arrive in states where they are
not expected.

The correctness requirements are given by three
temporal formulae:

e There is the possibility to establish a connec-
tion®:

POT( <"L !Status !'Estab">T
and
<"R !Status !Estab">T )

e There is the possibility to receive data:

POT ( <"L !Receive">T
or
<"R !Receive">T )

e It is always the case that data is not received
before it is sent (with respect to the current in-

stance of a connection):

ALL( ["R !Status !'Closed"]
( WU["R 'Receive"]F<"L !Send">T ) )

The verification used a compositional approach by
generating individually the labelled transition sys-
tems of the TCP entity and the medium, before com-
bining them to the complete system®. That does not
only reduce the execution time for the whole verifi-
cation process, but gives also more insights into the
size of each component. Most importantly, minimiz-
ing the LTSs for each component individually reduces
the size of the complete LTS (before its minimization)
drastically. Please find below the size for an entity, a
medium, and the system before and after minimiza-
tion:

5The evaluator had to use in fact POT(<"L !'6 !4">T and
<"R !'6 !'4">T ) since the user calls, segments, and states are
represented by natural numbers.

6This approach is supported by the aldebaran tool of
CADP: it offers the possibility to generate a LTS from
a network of communicating LTSs, which were previously
generated.



Before Minimization
Transitions| States | Bytes

Component

| Medium [ 13821 [ 901 | 33K ]
TCP
Entity 109 76 2K
System 403964 160931 | 8,5MB
Modified TCP
Entity 105 73 2K
System 110992 45083 | 2,2MB
Component || After Minimization

Transitions | States | Bytes

| Medium I 286 | 66 | 55K |
TCP
Entity 67 34 K
System 292790 100261 | 5,9MB
Modified TCP
Entity 69 37 1K
System 62127 21871 | 1,2MB

The generation of the evaluator took for both ver-
sions appr. 5 min.

The requirements were checked for their fulfillment
as follows:

| System | reql | req2 [ req3 |
TCP 20s 20s 2:10min
(true) | (true) | (false)
Modified 14s 11s 53s
TCP (true) | (true) | (true)

In addition to the model checking with the
evaluator, the exhibitor was used to find further
scenarios (see Figure 5) where old data are accepted.
Such scenarios exist not only for aborts in Estab
state but also in Fin wait_1,Fin wait_2, Closing,
and Close_wait state.

9 Conclusions

During the specifications phase some bugs in the
original TCP specification [6] were found, whose cor-
rections are however contained in [1]. In addition,
some ambiguities were found that could only be
solved when considering the reference implementa-
tion described in [7].

The original goal of this verification experiment
has only been partially reached: The complete TCP
specification could not be analyzed due to its size.
Therefore a number of assumptions were made to re-
duce the size of the state space. These assumptions
had to take into account the knowledge about the
misbehavior in order not to exclude the system exe-
cutions of interest. Nonetheless, it showed that tools

for automatic verification are powerful enough to an-
alyze problems of practical needs.

The study on TCP will be continued in order to in-
vestigate other interesting properties of TCP. In par-
ticular, TCP is a good candidate to explore methods
for timed verification, since the protocol makes in-
tensive use of timers in order to exclude functional
misbehavior.
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