
Abruptly Terminated Connections in TCP �

A Veri�cation Example

Ina Schieferdecker

GMD Fokus

Hardenbergplatz �� ����� Berlin� Germany

ina�fokus�gmd�de

Abstract

The paper presents the veri�cation of a functional
misbehavior in TCP� that is one of the widely used
transport protocols used in the Internet� The solu�
tion that was developed by I� Heavens is veri�ed for
its correctness� A model checking approach is used to
verify TCP� the protocol is described in LOTOS and
the requirements are given in the modal ��calculus�
The veri�cation uses the CADP tool set for automat�
ing the veri�cation process�

� Introduction

Only recently a functional error in the TCPmecha�
nism for closing connections was recognized ���� TCP
uses a three�way handshake to close a connection with
FIN messages in an orderly fashion� A special state
Timed wait is used in order to ensure� �rstly� that all
FIN messages are reliably acknowledged for the com�
pletion of the three�way handshake� and� secondly�
that all TCP segments� generated in either direction
during the lifetime of the connection� are reliably de�
livered and drained from the network before initiation
of a new incarnation� of the connection�

On the other hand� connections can be closed
abruptly with RST messages� so that the connection
state of the peer entities on transmission or recep�
tion is immediately removed� However� no equiva�
lent mechanism to Timed wait exists for connections
terminated by the transmission of a RST message�
Hence� TCP contains the possibility of erroneous ac�
ceptance of old segments from RST�terminated con�
nections� which are for example caused by user aborts
or by the reception of data after half�duplex close�

The problem was whether it would have been pos�
sible to detect the misbehavior of TCP by applying
formal veri�cation without any use of the knowledge
about the error� Could the error have been avoided�

�TCP uses the notion incarnation to denote new instances
of a connection� i�e� having the same socket pair of sending
and receiving address�

if formal veri�cation was used before any implemen�
tation of TCP� We decided to solve the problem in
the framework of functional behavior speci�cation of
the protocol� temporal logic speci�cation of the cor�
rectness requirements� and veri�cation by the use of
model checking algorithms� The functional behav�
ior of TCP is speci�ed in LOTOS �	�� while the cor�
rectness requirements are speci�ed in the modal ��
calculus �
��

The paper is structured as follows� Before describ�
ing the misbehavior for abruptly terminated connec�
tions� the main features of TCP are shortly discussed�
After a short overview on used formalisms� the LO�
TOS speci�cations of TCP and of the proposed so�
lution are presented� The veri�cation that uses the
evaluator tool of the Caesar�Aldebaran Distribu�
tion Package �CADP
 ��� is considered next� Conclu�
sions �nish the paper�

� The Transmission Control Protocol

The Transmission Control Protocol �TCP
 ��� as
part of the TCP�IP protocol suite is beside the User
Datagram Protocol �UDP
 the most widely used
transport protocol in the Internet� It has been devel�
oped in the late ����s and was standardized by the
Internet Engineering Task Force in ��
� ���� Several
corrections and improvements of TCP ��� lead to ro�
bust and performant implementations of TCP� among
which the BSD���� implementation of TCP should be
mentioned as a well�known representative ����

TCP provides a reliable data transmission service�
namely� the in�order delivery of a stream of bytes�
The stream of bytes is separated into segments which
are transferred to the other side� It is a connection�
oriented and full duplex transport protocol� that uses
an application to application addressing scheme� A
connection is identi�ed by the addresses of both sides�
where an address consists of the IP and the port num�
ber� The reliability of the data transfer is achieved
by the use of

� sequence numbers for every byte in the stream�



� positive acknowledgments that indicate the next
data to be received�

� retransmission of segments that are not acknowl�
edged within a timeout period� and

� round trip delay estimation for adapting the
timeout periods to the actual load situation in
the network�

TCP uses a sliding window mechanism to prevent
the sender from overloading the receiver ��ow con�
trol
� Slow start and congestion avoidance schemes
are used for congestion control� so that the sender
does not overload the network� There are several
other features of TCP such as the negotiation of the
maximal segment size �MSS
� the selection of the
initial sequence number �ISN
� Karn�s algorithm to
avoid the silly window syndrome� fast retransmission
and fast recovery� etc� Only the basic features of TCP
are relevant to the problems of abruptly terminated
connections� so that the others are not considered
here� For further detail on TCP please refer to ����
TCP o�ers the following user calls to applications�

TCP supports passive and active OPEN calls� A pas�
sive open makes a TCP entity ready to accept re�
quests for connection setups from remote sides�
while an active open initiates the segment ex�
change that is needed for connection establish�
ment� i�e� the connection setup is actively pur�
sued�

The user data are given to the sending TCP entity
by SEND calls and are transferred as sequences
of octets� TCP must recover from lost� dupli�
cated� and re�ordered data� This is achieved by
assigning sequence numbers to any octet in the
stream and by positive acknowledgments from
the remote side�

Incoming data are delivered to the user of the re�
ceiving side� when using a RECEIVE call�

CLOSE is the user call for terminating a connection
in normal situations�

ABORT means the immediate termination of a con�
nection without any prevention for lost con�
nection termination indications and clearing old
data from the network�

TCP entities communicate by means of segments�
A segment contains� beside other things� the sequence
and acknowledgment number� several control bits�
and the data� The control bits are used to mark the
speci�c meaning of a segment� For the investigation
in this paper the following control bits are essential�

ACK to indicate an acknowledgment segment� Ac�
knowledgments are used to inform the sender
about successful receipt of data and to indicate
the sequence number of the next awaited data�

RESET �reset the connection
 to indicate the abrupt
termination of a connection�

SYN to indicate synchronize segments for the ex�
change of information on initial sequence num�
bers during connection setup�

FIN to indicate that no more data are sent from the
sending side� FINs are used when connections
are normally terminated�

syn/
syn+ack

syn
rcvd

syn
sent

wait 1
fin

fin
wait 2

timed
wait

close
wait

last
ack

ack
fin+ack/

close/
reset

anything/reset

active_open /syn

/synsend

close /fin

close /fin

close /fin

closed

listen

syn+ack/ack

fin/ack

fin/ack

reset

start

closing

estab

ack/

ack/

fin/ack

syn/syn+ack

passive_open close

ack/

ack/
timeout 2MSL

Figure �� The �nite state machine of TCP

The behavior of a TCP connection for connection
setup and termination is represented in Figure ���
The �gure uses a �nite state machine representation
of the behavior� States and transitions are repre�
sented by circles and edges� respectively� A transition
is marked with the input and the output event� There
are transitions without output event� In order to dis�
tinguish between a user call and a segment� user calls
are written in italics� TCP has eleven states with the
following meanings

Closed is the idle state where no connection exists
at all�

Listen The entity waits for a connection request
from any remote side�

�Please note� that this automaton only contains the main
control �ow of TCP and by far not the complete behavior�
For example� the reaction on ABORT user calls is only partially
represented and the data transfer phase is not shown at all�



Syn sent is the waiting for a matching connection
request after having sent its own connection re�
quest�

Syn rcvd represents waiting for the acknowledgment
of its connection request after it has both re�
ceived and sent a connection request�

Estab is the state of the data transfer phase� Data
can be sent to the remote side and received data
can be delivered to the user of the TCP entity�

Fin wait � represents waiting for a request on con�
nection clearing from the remote side or for the
acknowledgment of the previously sent request
on connection clearing�

Fin wait � is the waiting state for a request on con�
nection clearing from the remote side�

Close wait represents waiting for a termination re�
quest from the local user�

Closing awaits the acknowledgment for a previously
sent request on connection clearing�

Timed wait is the state of waiting long enough� so
that the remote side eventually receive the ac�
knowledgment of its termination request and so
that all data of the connection have left the net�
work�

Last ack is similar to the Closing state� but is used
after a Close wait state�

� Old Data Acceptances Caused by

Abruptly Terminated Connections

Before describing the problems with abruptly ter�
minated connections� the normal connection estab�
lishment and connection termination in TCP is con�
sidered�

Estab

Estab

Active_Open
Passive_Open

SYN 141:141

SYN 181:181

ACK 142

ACK 182

Side 1 Side 2

Syn_sent

Syn_rcvd

Figure �� Connection establishment

During normal connection establishment �Fig�
ure �
� the initiating side of the call sends a SYN seg�
ment with its initial sequence number to the remote

side� The called side answers with acknowledging the
initial sequence number of the call initiator and sends
its own initial sequence number in a SYN segment
back� In the case that the calling side receives an
acknowledgment for its SYN segment� it transfers to
the Estab state� Finally� the called side awaits the
acknowledgment of its SYN segment before entering
the Estab state� Hence� three segments are used to
set up a connection� what is also called three�way
handshake� Since both of the SYN segments have to
be explicitly acknowledged by the other side� it is en�
sured that both entities have the correct information
on the sequence numbers of those segments that the
remote side will eventually send�

FIN 180:180

ACK 151

ACK 151

FIN 150:150

ACK 181

Close

Close

Side 1 Side 2

Timeout after 2MSL to Closed state

Fin_wait_1

Fin_wait_2

Timed_wait

Close_wait

Last_ack

Figure �� Connection termination

In the course of normal connection clearing �Fig�
ure �
� a modi�ed three�way handshake mechanism is
used� after a user CLOSE call� the entity to be closed
sends a FIN segment to the remote side� That side
acknowledges the incoming FIN segment immediately
and delays until its local user also closes the connec�
tion� Afterwards� a FIN ACK segment is send to the
remote side� from which the last acknowledgment for
the FIN segment is awaited� Similar to the connection
setup� the explicit acknowledgment of the FIN seg�
ment ensures that both sides are aware of the closing
connection� In the Timed wait and Last ack state�
an idle period of two times the maximal segment life�
time ��MSL
 is used in order to ensure that all data
from the closing connection diminish from the net�
work�

Abort

Closed

Closed

RST 150

Side 1 Side 2

Figure �� Connection abort

In contrast to the secure connection termination



in normal situations� a connection can be abruptly
terminated by issuing an ABORT call �Figure �
� Al�
though a RESET segment is sent to the remote side� no
acknowledgment is awaited� This implies that the re�
mote side may not be aware of the connection closing
at the remote side �in the case that the RST segment
gets lost
� In addition� old data may still be in transit
to the other side� since there is no idle period of �MSL�
In particular� this means that the sequence numbers
of old data may overrun the sequence numbers of a
new incarnation of this connection�

Agreement on

successfully

transmitted data

DATA 200:299 ACK 151

ACK 300

DATA 370:419 ACK 151

ACK 300

DATA 400:499 ACK 151

DATA 300:399 ACK 151

DATA 400:499 ACK 151

ACK 420

ACK 500

Estab
Estab

Buffering

Old data acceptance

Side 1 Side 2

Figure 	� Old data acceptance

Figure 	 shows a scenario where old data are ac�
cepted in the new incarnation� Side � serves as the
data source� while Side � is the data sink� Let us as�
sume that there are still old data in the network and
that the sequence numbers of the new incarnation are
overrun by the sequence numbers of old data� The
�rst two lines show normal data �DATA ��������

and acknowledgment �ACK ���
 of the new incarna�
tion �after the three�way handshake for setting up
the new incarnation has been completed
� Next� old
data �DATA ��������
 arrive at Side �� which fall into
the current receiving window of Side �� Therefore
they are queued into the re�assembly bu�er at Side ��
since their sequence numbers are not the expected
ones� An acknowledgment is generated for the next
expected octet �ACK ���
� so that Side � does not de�
tect an acknowledgment for unsent data� Side � con�
tinuously sends further data to the other side �DATA
��������	 ��������
� since its sending window is
open� Once� Side � receives the missing data �DATA
������
�
 as part of the second data segment sent
by Side �� it accepts old data and o�ers it to its user�
It acknowledges data up to ��� to the sending side�
Side � interprets this acknowledgment as a partial ac�

knowledgment for its third data segment� Since the
timer does not expire and the sending window is still
open� it continues sending� Finally� it receives the
acknowledgment for all sent data �ACK ���
� so that
neither Side � nor Side � detected the faulty accep�
tance of old data�

Beside the theoretical possibilities of old data ac�
ceptances in the course of connection abort and
new connection incarnation� it has to be investigated
whether the time settings and the mechanism for the
selection of the initial sequence number �ISN
 of a
connection do not exclude this misbehavior of TCP�

In particular� if we assume a high speed network
with large throughput and long propagation delays�
one can consider a scenario of one continuously send�
ing side and of a receiver that abruptly terminates
the connection and re�establishes a new incarnation
of the connection immediately� Then� the sending
side will continue to send� although the RST segment
is on the way� Therefore it will generate a whole
bunch of old data� which may overrun the sequence
numbers of the new incarnation�

According to the TCP standard ���� TCP uses a ���
bit counter for the ISN selection mechanism� which
is incremented every � microseconds� That means
�	���� increments per second� If we assume a TCP
connection in a high speed network with maximal seg�
ment size �MSS
 of �	�� Byte and a sending window
size of ��� segments� the sender can transmit data
segments that use this number space� In this sce�
nario� there is a non�zero probability for old data ac�
ceptances if the connection is re�established immedi�
ately� However� such a transmission capacity requires
a highspeed network in the hundreds of MBit�s range�

Also� the ISN selection mechanisms in current TCP
implementations are comparable to the TCP stan�
dard� For example� the TCP implementation of ����
BSD UNIX uses a slower counter �the counter is
incremented by ����� every half�second� i�e� the
counter is incremented every 
 microseconds
� How�
ever� in addition� the counter is incremented by �����
each time a connection is established�

Hence� it is unlikely to observe this misbehavior of
TCP in current networks� Nonetheless� ��� showed old
data acceptance phenomena by a simple �although
unrealistic
 experiment consisting of a client applica�
tion that continuously sends data� and of a server ap�
plication that aborts the connection with any arrival
of a data segment and that reconnects immediately
afterwards� This continuous repetition of pushing old
data into the network and of establishing new incar�
nations leads eventually to the above described old
data acceptances�

In order to solve the problem� one can ask ��
 for
the adaptation of the ISN selection mechanism to the
needs of future high speed networks� so that it is fast



enough to exclude segment number overruns by old
data� On the other hand� ��
 one can deploy a general
solution� so that the functional behavior of TCP is
free of misbehavior independently of the ISN selection
mechanism�

The �rst alternative has the advantage of letting
the functional behavior of TCP as it is� what is im�
portant for all the applications that run over TCP�
The disadvantage is the need to correct the timing of
TCP whenever a new generation of communication
networks is used� While the second alternative solves
the latter problem� the functional correction of TCP
cannot be undertaken without problems� In partic�
ular� this is true for the large number of installed
TCP implementations and for the large number of
applications that utilize TCP� Care has to be taken
of backward compatibility issues� In order to ensure
backward compatibility� options for �classical� TCP
and its new variant should be o�ered� what would
complicate the protocol�

The presented work will not discuss pros and cons
of both alternatives further� Rather� the main goal
was to formally verify the misbehavior of TCP as well
as the proposed functional solution to the problem ����

� The Solution to Prevent TCP from

Old Data Acceptances

RST 150

Side 1 Side 2
Abort

Last_ack

ACK 151

Estab

Closed
Timed_wait

Estab

Closed
Timeout_2MSL

Figure �� Modi�ed connection abort

In order to exclude the above described old data
acceptances after connection aborts� ��� proposes to
apply a two�way closing mechanism to abruptly ter�
minated connections� This mechanism ensures that
RST segments are reliably delivered to the remote side
�Figure �
� Furthermore� also in the case of aborts�
the Timed wait state is used to wait long enough for
old data diminishing from the network�

An ABORT call �see Figure �
 in a state that is dif�
ferent to the Listen and Syn sent state causes a RST
segment with explicit sequence number �so that it can
be retransmitted in the case of loss
 sent to the re�
mote side� Afterwards� the TCP entity transfers to
the Last ack state where the acknowledgment for the
previously sent RST segment is awaited� If the ACK

segment arrives� the connection is closed�

estab
wait 1
fin fin

wait 2
syn
rcvd

closed

last
ack

close
wait

closing

ack of reset

abort/reset abort/reset abort/reset abort/reset

abort/reset abort/reset

syn
sent

abort/reset abort/reset

listen

Figure �� Modi�ed receipt of ABORT

reset/ack reset/ack reset/ack reset/ack

wait

timeout_2MSL

reset reset

sent

reset/ack reset/ackreset/ack

ackwait

rcvd
syn estab

wait 1
fin fin

wait 2

closing close last

timed

closed

listen
syn

Figure 
� Modi�ed receipt of RESET

Furthermore� every arriving RST segment has to be
explicitly acknowledged in a state that is di�erent to
the Listen and Syn sent state �Figure 

� In these
two states upon arrival of a RST segment� an imme�
diate transition to the Closed state is used� After
acknowledging the RST segments in the other states�
Timed wait state is entered for the waiting period of
�MSL�

� An Overview on Used Formalisms

��� An Overview on LOTOS

The speci�cation of TCP has been developed in
LOTOS � the Language Of Temporal Ordering
Speci�cation �	�� what is one of the standardized for�



mal description techniques� It has been developed
by ISO for the unambiguous de�nition of the func�
tional behavior of information processing systems�
It is based on process�algebraic calculi for the de�
scription of behavior� in particular on Milner�s CCS
� the Calculus of Communicating Systems � and
on Hoare�s CSP � the calculus of Communicating
Sequential Processes� Data dependencies are de�
scribed in the algebraic data type language ACT
ONE�

A LOTOS speci�cation de�nes the system behav�
ior as the temporal order of externally visible events�
Each event is an occurrence of an action and is as�
sociated with a gate� namely the gate at which the
event takes place� The set of gates constitutes the
system interface� The basic notions of LOTOS are
actions that represent atomic and instantaneous sys�
tem functionalities� and basic processes �stop and
exit
 that represent deadlock and termination� re�
spectively� The occurrence of an action is called
event � Actions and processes can be composed by a
number of operators such as action pre�xing or par�
allel composition in order to build complex behavior
expressions�

� The stop process �stop� denotes deadlock� i�e�
a process that is unable to execute anything�

� The exit process �exit �e����en
� denotes suc�
cessful termination� where value may be passed
to subsequent processes�

� An action pre�x �g e����en �SP�� Q� repre�
sents an observable action g with value o�ering
e����en to the environment� provided that the
communication guard SP evaluates to true� The
action occurrence is followed by behavior Q�

� An internal action pre�x �i� Q� means occur�
rence of the internal action i followed by behav�
ior Q�

� A choice expression �Q� �� Q�� denotes choice
between alternative behaviors Q� and Q�� Only
one of them is selected for further execution�

� A parallel composition �Q� ��g����gn�� Q��
represents the parallel execution of behaviors Q�
and Q�� which have to synchronize in the gates
g����gn� LOTOS uses synchronous communica�
tion �with rendez�vous
�

� The hiding operator �hide g����gn in Q�
makes g����gn invisible and unaccessible from
outside�

� An enabling �Q� �� accept x��s� ���xn�sn
in Q�� denotes the sequential composition of Q�
and Q�� where values may be passed to Q� after
termination of Q��

� The disabling expression �Q� �� Q�� denotes the
possibility of interrupting Q� by Q��

� A process is instantiated by �P�g����gn�
�e�	���	em
�� which denotes the execution of
the process behavior of P with actual gates
g����gn and actual parameters e�	���em� In
particular� the recursive re�instantiation of pro�
cesses allows the speci�cation of in�nite� cyclic
behavior�

� A guard expression ��SP��� Q� denotes the ex�
ecution of Q� if the guard SP evaluates to true�

� A value declaration �let x��s��e� ���

xn�sn�en in Q� binds in behavior Q the values
e����en to the variables x����xn� resp�

A system is normally represented by a composi�
tion of several processes� The interface of a process
is de�ned by a set of gates that identify the exter�
nally visible and accessible actions and in which the
environment of the process may synchronize� Pro�
cesses can built up process hierarchies� what is useful
to structure the speci�cation�

��� An Overview on the Modal ��

Calculus

Modal logics are used to describe behavioral prop�
erties in terms of capabilities of processes �
�� For�
mulas are built from boolean connectives� modal op�
erators �K� ��box K�
 and hKi ��diamond K�
� and
�xed point operators �Z and �Z� where Z denotes
a propositional variable and K a set of actions� The
formulae of the logic� are

� ��� tt j ff j Z j
�� j �� � �� j �� � �� j
�K� j hKi j
�Z�� j �Z���

The meaning is as follows� tt and ff denote true
and false� resp� A process has the property �K�� if
after execution of any action in K each resultant pro�
cess has property �� The property hKi� expresses
the capability of executing an action in K� so that
the resultant process has property ��
�Z�� denotes the greatest �x�point of the equation

Z
def
� �� while �Z�� is the least �x�point of this equa�

tion� For example� �Z�haiZ expresses the capability
for performing action a forever� Another example
is �Z�� � haiZ that expresses the property of per�
forming action a until � holds� This least �x�point
also includes the possibility of performing action a

forever without � ever becoming true� Last but not
least� please observe that tt expresses the same as

�Please note� that this logic is not minimal� but re�ects the
main features of the modal ��calculus�



the greatest �x�point of the equation Z
def
� Z and ff

expresses its least �x�point�
The evaluator of CADP supports shortcuts to

ease the formulation of properties� h�i� denotes the
property of performing an action from the complete
set of actions of a process� so that the resultant pro�
cess has property �� while ���� denotes the prop�
erty that after performing any action each resultant

process has property �� ALL�
def
� �Z��� � ���Z


denotes the property that � is true for all pro�
cesses that can be reached� i�e� � is always satis�ed�

POT�
def
� �Z��� � h�iZ
 denotes the property that

there are some resultant processes that have property

�� WU����

def
� �Z����� � ���Z
 ���
 denotes weak

until� i�e� it denotes the property that the resultant
processes have property �� as long as they do not
have property ��� even forever if need be�

� The Speci�cation of TCP

TCP_Entity

Medium

Medium

TCP_Entity

r

timeout_2MSL

l

ml_out mr_in mr_outml_in

Figure �� The structure of the TCP speci�cation

The TCP speci�cation is the result of taking into
account the original TCP speci�cation ���� the TCP
corrections given in ���� and the reference implemen�
tation that is described in ���� The speci�cation re�
�ects the functional behavior of TCP without dynam�
ically adjusted window sizes� slow start and conges�
tion avoidance� fast retransmission and fast recovery�
bu�ering at the receiving and sending side� check�
sums� etc� The speci�cation contains ��� lines of
code�

The structure of the speci�cation is presented in
Figure �� The speci�cation consists of a TCP entity
at each side� Both entities use a reliable transmis�
sion medium with data reordering� The correspond�
ing speci�cation of the main behavior is given in Fig�
ure ���

The speci�cation uses enumerations for the de�ni�
tion of user calls� segments� and states� Exemplarily�
the de�nitions for user calls and segments are given

speci�cation TCP �l�r�� noexit
� � � �

behavior

� hide ml out� ml in� mr out� mr in� timeout �MSL in

� TCP entity closed�l�ml in�ml out�timeout �MSL���������	
� j j j

TCP entity closed�r�mr in�mr out�timeout �MSL���������		
� j�ml out� ml in� mr out� mr in� timeout �MSL�j

� Medium�ml out�mr in�timeout �MSL�
�� j�TIMEOUT �MSL�j

Medium�mr out�ml in�timeout �MSL� 	
�� where � � � endspec ��TCP��

Figure ��� The system behavior

in Figure ��� The representation of user calls� seg�
ments� and states is in particular useful to reduce the
size of the transition systems �as a number of bytes
�
which are generated by caesar and aldebaran �see
below
�

type UMessage is NaturalNumber renamedby

� sortnames UMessage for Nat

opnnames PASSIVE OPEN for �
� ACTIVE OPEN for �

SEND for 

� RECEIVE for �

CLOSE for �
� ABORT for 


STATUS for �
�� endtype

type Segment is NaturalNumber renamedby

�� sortnames Segment for Nat

opnnames RESET for �
�� SYN for �

SYN ACK for 

�� FIN for �

FIN ACK for �
�� ACK for 


DATA for �
�� endtype

Figure ��� The user call and segment de�nition

The transmission medium is given in Figure ���
The external gates of the transmission medium are

� in for incoming segments�

� out for outgoing segments� and

� timeout �MSL for clearing the medium from any
segment that is still in transit�

The medium consists of two independent routes
between the in and the out gate� A route �pro�
cess One Buffer
 works like a reliable bu�er of size ��
where segments cannot be lost� Since two routes ex�
ist� ��
 a segment can be held in�nitely long in a route
without delivering it at the out gate and ��
 segments



process Medium�in�out�timeout �MSL�� noexit��
� � One Buffer�in�out� j j j One Buffer�in�out� 	

��
� timeout �MSL� Medium�in�out�timeout �MSL�

where process One Buffer�in�out�� noexit��
� in �s� Segment �s eq RESET��

out �s� One Buffer�in�out�
� � � in �s� Segment �n� Nat

��s eq ACK	 or �s eq SYN	 or

�� �s eq FIN	 or �s eq DATA	��
out �s �n� One Buffer�in�out�

�� � � in �s� Segment �n� Nat �m� Nat

��s eq SYN ACK	 or �s eq FIN ACK	��
�� out �s �n �m� One Buffer�in�out�

endproc ��One Bu�er��
�� endproc ��Medium��

Figure ��� The transmission medium

can be reordered� Both characteristics are essential
to observe the misbehavior of TCP for abruptly ter�
minated connections�

The timeout �MSL gate has been introduced to de�
scribe the semantics of the Timed wait state� The
synchronization in timeout �MSL is used to empty
the medium completely� This is speci�ed by the dis�
abling operator �line �� �
 on timeout �MSL and the
re�instantiation of process Medium afterwards�

A TCP entity is described by a set of processes�
where each process represents the behavior in a spe�
ci�c state� In any state� the entity is ready to accept
calls from the user or segments from the remote side
that are relevant to the current state� Transitions to
other states are re�ected by the instantiation of the
appropriate process �with actualized parameter set�
tings
� If the TCP entity transfers to a state that is
di�erent to the current one� a status indication con�
taining the next state is given to the environment in
order to ease the validation�veri�cation of the speci�
�cation�

The interface of a TCP entity consists of

� u � the gate to the TCP user for user calls�

� m in � the gate to the underlying transmission
medium for incoming segments� and

� m out� the gate to the underlying transmission
medium for outgoing segments�

The parameters of the TCP entity are

� no� the number of the instance of a connection�

� sn � the sequence number of the next segment
to be sent�

� rn � the sequence number of the next segment
to be received�

� ab � the number of ABORT user calls for a con�
nection�

� sp � the number of sent data packets� and

� rp � the number of received data packets�

For simpli�cation� we assumed a sending window
of in�nite length and a receiving window of size ��
That means� that the entity is always able to send
data� but accepts only that incoming data with a se�
quence number identical to rn� In order to reduce
the size of the state space� the following restrictions
were assumed in addition� at most two instances of
a connection may be established� at most one ABORT
user call is allowed per connection and per entity�
and �nally� at most one data packet can be sent or
received per connection� The last assumption is in
particular needed to adapt a compositional approach
to the generation of the state space�

process TCP entity estab�u�m in�m out�timeout �MSL�
� �no�sn�rn�ab�sp�rp� Nat	� noexit��

u �CLOSE�
� m out �FIN �sn� u �STATUS �Fin wait ��

TCP entity fin wait ��� ���no�sn���rn�ab	
� � � ��ab lt �� �� u �ABORT�

m out �RESET� u �STATUS �Closed�
� TCP entity closed�� ���
������		

� � ��sp lt �� �� u �SEND�
�� m out �DATA �sn�

TCP entity estab�� ���no�sn���rn�ab�sp���rp		
�� � � m in �DATA �rn �rp lt ���

u �RECEIVE� m out �ACK �rn���
�� TCP entity estab�� ���no�sn�rn���ab�sp�rp��	

� � m in �ACK ��sn��	�
�� TCP entity estab�� ���no�sn�rn�ab�sp�rp	

� � m in �FIN �rn�
�� m out �ACK �rn��� u �STATUS �Close wait�

TCP entity close wait�� ���no�sn�rn���ab	
�� � � m in �RESET�

u �STATUS �Closed�
�� TCP entity closed�� ���
������	

endproc ��TCP entity estab��

Figure ��� The TCP entity in Estab state

As a representative for the state processes� the pro�
cess for the Estab state is given in Figure �� � Every
state process is described by a choice of alternatives
on user calls and incoming segments� An alternative
in the choice expression describes one transition in
the current state� It has an input� possibly an out�
put� and ends in the �nal state�

For example� if the user issues a CLOSE call�
the entity sends a FIN segment to the remote side
with the current send sequence number sn� Then
it enters the Fin wait � state by instantiating the
TCP entity fin wait � process and by increment�
ing the send sequence number by �� If a data seg�
ment arrives �m in �DATA �rn
� its sequence number



is checked to coincide with the sequence number to be
received next �rn
� The TCP entity remains in Estab

state and re�instantiates with the actualized param�
eters� Since the transmission medium is assumed to
be error�free� no timeout mechanism for the retrans�
mission of lost data is needed�

� The Speci�cation of Modi�ed TCP

The corrections that are needed to represent the
above presented modi�cations to TCP are rather sim�
ple� The appropriate transitions for ABORT calls �line
���
 are modi�ed to transitions to the Last ack state
�line 	��
�

� � �
� � � ��ab lt �� �� u �ABORT�

m out �RESET� u �STATUS �Closed�
� TCP entity closed�� ���
������		 � � �

�� � � �
� � � ��ab lt �� �� u �ABORT�

m out �RESET �sn� u �STATUS �Last ack�
� TCP entity last ack�� ���no�sn���rn�ab��		 � � �

Likewise� the appropriate transition for incoming
RST segments �line ���
 are modi�ed to transitions to
the Timed wait state �line 	��
�

� � �
� � � m in �RESET�

u �STATUS �Closed�
� TCP entity closed�� ���
������	 � � �

�� � � �
� � � m in �RESET �rn�

m out �ACK �rn��� u �STATUS �Timed wait�
� TCP entity timed wait�� ���no�sn�rn���ab	 � � �

	 The Veri�cation

The veri�cation used the evaluator tool of
CADP ��� for model checking the requirement that
during the lifetime of a connection instance data is
not received before it has been sent� Before applying
the evaluator� caesar� aldebaran� and bcg open

were used to generate the labelled transition system
�LTS
 of the TCP speci�cation and its modi�ed ver�
sion�

Instead of verifying the TCP speci�cation pre�
sented above we had to use a speci�cation where the
data part has been eliminated� This simpli�cation
was needed due to the state space exploration prob�
lem� a single entity �with data
 has a labelled tran�
sition system with over ��� Mio states and ��� Mio
transitions �the �le containing the LTS has a size
of �
MB
� so that it was not possible to minimize
even one entity� not to mention the complete system��

�A Sun SPARCstation �	 with two processors� 
	 MHz� and
�	MB main memory has been used�

Also� the try to validate the correctness requirements
on the �y without explicitly constructing the com�
plete state space was unsuccessfully interrupted after
four days�

Of course� care has to be taken when eliminating
the data part� In particular� the use of sequence num�
bers is essential for the correct behavior of TCP� Due
to the assumptions we made in the TCP speci�cation�
��
 data is not lost� and ��
 only two segments can
be re�ordered on the transit between both entities�
However� this can only lead to additional deadlocks�
since segments may arrive in states where they are
not expected�

The correctness requirements are given by three
temporal formulae�

� There is the possibility to establish a connec�
tion��

POT� ��L �Status �Estab��T

and

��R �Status �Estab��T �

� There is the possibility to receive data�

POT � ��L �Receive��T

or

��R �Receive��T �

� It is always the case that data is not received
before it is sent �with respect to the current in�
stance of a connection
�

ALL� 	�R �Status �Closed�


� WU	�R �Receive�
F��L �Send��T � �

The veri�cation used a compositional approach by
generating individually the labelled transition sys�
tems of the TCP entity and the medium� before com�
bining them to the complete system�� That does not
only reduce the execution time for the whole veri��
cation process� but gives also more insights into the
size of each component� Most importantly� minimiz�
ing the LTSs for each component individually reduces
the size of the complete LTS �before its minimization

drastically� Please �nd below the size for an entity� a
medium� and the system before and after minimiza�
tion�

�The evaluator had to use in fact POT���L �� ����T and

��R �� ����T � since the user calls� segments� and states are
represented by natural numbers�

�This approach is supported by the aldebaran tool of
CADP� it o�ers the possibility to generate a LTS from
a network of communicating LTSs� which were previously
generated�



Component Before Minimization
Transitions States Bytes

Medium ��
�� ��� ��K

TCP
Entity ��� �� �K
System ������ ������ 
�	MB

Modi�ed TCP
Entity ��	 �� �K
System ������ �	�
� ���MB

Component After Minimization
Transitions States Bytes

Medium �
� �� 	�	K

TCP
Entity �� �� �K
System ������ ������ 	��MB

Modi�ed TCP
Entity �� �� �K
System ����� ��
�� ���MB

The generation of the evaluator took for both ver�
sions appr� 	 min�

The requirements were checked for their ful�llment
as follows�

System req� req� req�

TCP ��s ��s ����min
�true
 �true
 �false


Modi�ed ��s ��s 	�s
TCP �true
 �true
 �true


In addition to the model checking with the
evaluator� the exhibitor was used to �nd further
scenarios �see Figure 	
 where old data are accepted�
Such scenarios exist not only for aborts in Estab

state but also in Fin wait ��Fin wait �� Closing�
and Close wait state�


 Conclusions

During the speci�cations phase some bugs in the
original TCP speci�cation ��� were found� whose cor�
rections are however contained in ���� In addition�
some ambiguities were found that could only be
solved when considering the reference implementa�
tion described in ����

The original goal of this veri�cation experiment
has only been partially reached� The complete TCP
speci�cation could not be analyzed due to its size�
Therefore a number of assumptions were made to re�
duce the size of the state space� These assumptions
had to take into account the knowledge about the
misbehavior in order not to exclude the system exe�
cutions of interest� Nonetheless� it showed that tools

for automatic veri�cation are powerful enough to an�
alyze problems of practical needs�

The study on TCP will be continued in order to in�
vestigate other interesting properties of TCP� In par�
ticular� TCP is a good candidate to explore methods
for timed veri�cation� since the protocol makes in�
tensive use of timers in order to exclude functional
misbehavior�

References

��� R� Braden� Requirements for Internet Hosts �
Communication Layers� RFC ����� Oct ��
��

��� D�E� Comer� Internetworking with TCP�IP� Vol�
� � Principles� Protocols and Architectures� Pren�
tice Hall Inc�� ���	�

��� H� Garavel� CADP � The Caesar�Aldebaran
Distribution Package� CNRS�IMAG and INRIA�
���	�

��� I� Heavens� Problems with TCP Connections Ter�
minated by RSTs or Timers� Internet Draft� Nov
���	�

�	� ISO�IEC� Geneva� Switzerland� IS 		
�� Infor�
mation Processing Systems � Open Systems In�
terconnection � LOTOS � A Formal Description
Technique based on the Temporal Ordering of Ob�
servational Behaviour� ��
��

��� J� Postel� Transmission Control Protocol�
DARPA Internet Program� Protocol speci�cation�
RFC ���� Sept ��
��

��� W�R� Stevens� TCP�IP Illustrated� Vol� � � The
Protocols� Addison�Wesley Professional Comput�
ing Series� Addison�Wesley� �����

�
� C� Stirling� Modal and temporal logics� In
S� Abramsky� D� Gabbay� and T� Maibaum� ed�
itors� Handbook of Computer Science� Vol� 
�
pages ����	��� Oxford University Press� �����


