
An Approach for Validation of
Semantic Composability in Simulation Models

C. Szabo and Y.M. Teo
Department of Computer Science
National University of Singapore

Computing 1, 13 Computing Drive
Singapore 117417

claudias@comp.nus.edu.sg

Abstract

Semantic composability aims to ensure that the compo-
sition of simulation components is meaningful in terms of
their expressed behavior, and achieves the desired objec-
tive of the new composed model. Validation of semantic
composability is a non-trivial problem because reused sim-
ulation components are heterogeneous in nature and val-
idation must consider various orthogonal aspects includ-
ing logical, temporal, and formal. In this paper, we pro-
pose a layered approach to semantic composability vali-
dation with increasing accuracy and complexity. The first
layer exploits model checking for logical properties of com-
ponent coordination including deadlock, safety, and live-
ness. Next, we address temporal properties by validating
composition safety and liveness through simulation time.
The third layer provides a formal composition validation
guarantee by determining the behavioral equivalence be-
tween the composed model and a perfect model. In contrast
to state-of-the-art approaches, we propose time-based for-
malisms to describe simulation components and compare
the composition behaviors through time using semantically
related composition states.

1 Introduction

Component-based simulation has been of interest in the
modeling and simulation research community in recent
years [5, 13]. Models developed using reused components
are appealing because of shorter development time and their
flexibility in meeting diverse user needs [8]. While there are
many benefits of component-based modeling, several chal-
lenges including semantic composability [5, 8] and seman-
tic composition validation [13] remain.

The validation of composable simulations is a non-trivial
problem [8, 13]. Challenges arise from the fact that compo-

sition is not a closed operation with respect to validation [1],
compositions have emergent properties [4], and reused sim-
ulation components were developed in conflicting contexts
[13]. Validation must also address logical aspects such as
deadlock, safety, and liveness, temporal aspects such as the
behavior of components and compositions over time, and
formal aspects such as the need to provide a formal measure
of the validity of compositions, also called “figure of merit”
[5]. In composable simulations, the main validation tech-
niques include formal methods such as the DEVS formal-
ism [15], Petty and Weisel’s theory of composability [8],
and BOM [6] component abstractions.

We consider a composition to be valid and its compo-
nents to be semantically composable if and only if (i) com-
ponents to be integrated behave correctly to form a valid
composition both externally with respect to their neighbors,
and internally when safety and liveness properties are pre-
served over time, and (ii) the resulting composition pro-
duces valid output. Constraint validation is the process of
verifying the communication of connected components for
semantic correctness [12].

This paper presents a new three-layer approach to the
validation of simulation compositions, considering logical,
temporal, and formal aspects of validity. Each validation
layer exploits semantic knowledge of the components to
validate different aspects of semantic composition validity.
We exemplify our approach using the CoDES (COmpos-
able Discrete-Event scalable Simulation) [12] framework.
The contributions of this paper include:

1. An incremental three-layer approach with increasing
validation accuracy but with a higher overhead. The
first two layers, Concurrent Process Validation and
Meta-Simulation Validation, exploit model checking
validation by exposing logical properties including
deadlock, safety, and liveness and respectively, tem-

2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/09 $25.00 © 2009 IEEE

DOI 10.1109/PADS.2009.14

3

2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and Distributed Simulation

1087-4097/09 $25.00 © 2009 IEEE

DOI 10.1109/PADS.2009.14

3

poral properties by validating these logical properties
through simulation time. Perfect Model Validation for-
malizes the similarity of the composed model with ref-
erence to a perfect model. In contrast to current ap-
proaches [8], we validate the composition of states
over time.

2. An important aspect of validating semantic compos-
ability is to establish a formal measure of the compo-
sition validity. We introduce a novel semantic metric
relation, Vε, for comparing simulation executions of a
composed model with a perfect model. Based on well-
defined concepts in a component-based ontology, Vε
quantifies state similarities and considers only compo-
sition states that are semantically related. Through Vε,
the formal guarantee to validity has higher credibility
compared with current measures [8, 14] because the
comparison is done based on both time and semantics,
two important considerations in simulation.

This paper is organized as follows. Section 2 presents an
overview of the CoDES framework. We describe our three-
layered approach in Section 3. In Section 4, we illustrate
our approach using a simple example and discuss imple-
mentation details. We compare and contrast our approach
with current approaches in Section 5. Concluding remarks
and future work are given in Section 6.

2 CoDES Framework Overview
CoDES (Composable Discrete-Event scalable Simula-

tion) [12] is a hierarchical component-based modeling and
simulation framework. A CoDES component is modeled
as a meta-component, an abstraction of the actual compo-
nent implementation, provided by the component developer
when creating the component. The meta-component de-
scribes the attributes and behavior of a component and is
used in the framework for model discovery and in the ver-
ification and validation of syntactic and semantic compos-
ability. The component behavior describes the data that it
receives and outputs as a set of states. The transitions be-
tween states are defined as a set of triggers expressed in
terms of input, time and conditions. More formally, a com-
ponent Ci is represented by the tuple:

Ci = 〈R,Ai, Bi〉

where R denotes mandatory attributes that are common to
all components, Ai denotes component specific attributes,
and Bi represents component behavior as a state machine.
A component behavior is represented as follows:

[Il]Sp[∆t]
Condn−−−−→ St[Ol][Am]

where Il is the set of input data; Sp is the current state; ∆t
is the transition duration; Condm defines the condition(s)

for the state transition; St is the next state; Ol is the set
of outputs after the state change; Am is the set of modified
attributes after the state change.

Reusable CoDES components are divided into three cat-
egories. Base components are well-defined atomic enti-
ties specific to an application domain. We assume that for
each base component type (e.g. Source in Queueing Net-
works Application domain) there exist different base com-
ponent implementations in the repository (e.g. SourceOpen
- a Source component for open queueing network systems).
A developed simulation model is reused as a standalone
simulator or as model components in a larger simulation
model. In the adopted component-connector paradigm,
components are black-boxes linked by connectors which
are responsible for message passing. Composition gram-
mars [10] determine the syntactic composability of simula-
tion components. COSMO, a component oriented ontology,
and COML, a markup language that models CoDES com-
ponents as model meta-components, facilitate component
discovery and semantic validation of compositions [12].

3 Proposed Approach
Figure 1 shows our layered approach to semantic valida-

tion with increasing accuracy and complexity. In the first
layer, the composed model is abstracted as a composition
of concurrent processes and desired logical properties are
validated by a model checker. In the second layer, a meta-
simulation of the composition is executed over time to val-
idate safety and liveness. The third layer, perfect model
validation, is a formal but more complex guarantee to val-
idation. The validation in each layer exploits the results or
guarantees provided by the previous layers. Major abstrac-
tion trade-offs and drawbacks in one layer are addressed in
the subsequent layers. All layers assume that the compo-
nent communication is correct and meaningful [12].

Our proposed approach aims to provide a formal mea-
sure of the validity of a simulation, and at the same time
considers logical and temporal aspects of the composition.
It would be difficult if not impossible to deal with all aspects
(formality, logical, temporal) in a single layer. As such, our
validation process starts with high level abstractions before
adding greater level of detail and realism in the subsequent
layers. In the first layer, time is ignored and state machines
are compacted as much as possible. The next layer consid-
ers time, detailed state machines, and all attribute values.
Lastly, the third layer exploits results from the previous lay-
ers to provide a more formal, comparable measure of valid-
ity.

3.1 Concurrent Process Validation

In Concurrent Process Validation, the logical correctness
of component coordination is validated. This layer guaran-
tees that safety and liveness properties hold for any possible

44

Concurrent Process Validation

Meta−Simulation Validation

− no deadlocks for timed transitions for all attributes

− liveness for all components throughout simulation run

− sequence of valid possible transitions

Perfect Model Validation Validity =

 − no deadlocks
For instantaneous transitions, for all possible interleaved executions

 − safety

 − liveness

Validity = Safety + Liveness (over time)

Validity = Safety + Liveness (for all states)

A
cc

u
ra

cy
 +

 C
o
m

p
le

xi
ty

L(M)VεL(M∗)

Figure 1. Layered Approach to Semantic Validation

interleaved execution of the concurrent processes. Further-
more, if deadlock is possible, we check that the composed
model is deadlock free in the context of instantaneous tran-
sitions. Following Lamport’s definition, safety means that
“nothing bad will ever happen”, while liveness means that
means that “something good will eventually happen” [7].
In the context of model checking in our proposed approach,
safety means that the component does not invalidate some
logical properties, and liveness guarantees the component
reaches a specific pre-defined state in all execution traces.

The behavior of each meta-component modeled as a state
machine is translated into a logical specification describing
the composition together with the desired safety and live-
ness properties. To prevent state explosion each compo-
nent state machine is reduced by considering only commu-
nication states and attributes that influence state transitions.
The actions of non-communicating states are abstracted as
a single atomic operation. Similarly, time is not modeled
and transitions are considered instantaneous. Furthermore,
because the component communication is meaningful and
correct, the data sent through the communication channels
is abstracted as a single message type. The resulting specifi-
cation is next verified using a model checker. For example,
a Promela Converter program translates the topology into a
Promela specification [2], and the Promela specification can
be validated using the Spin model checker [2].

3.2 Meta-simulation Validation

The Meta-Simulation Validation layer validates the com-
position run through time. The main aim is to validate that
the logical properties demonstrated in the previous layer
hold throughout the simulation run. State machines of meta-
components together with all time delay mechanisms and
other participating attributes are run concurrently in a meta-
simulation to validate properties such as safety and liveness.
This layer guarantees that for all sampled runs and for all
meta-components, the safety and liveness properties hold
through time.

Safety properties are specified through validity points
provided by the user. A validity point is a connection point
in the topology through which a certain type of data must
pass. Safety errors are issued if incompatible data flows
through the validity points at any point during the meta-
simulation run. Liveness is validated by assigning a tran-
sient predicate to each component. Such a component spe-
cific transient predicate guarantees that if it becomes true
during the meta-simulation, then it will become false be-
fore a timeout elapses. The transient predicate is defined
such that a change in its truth value signifies a change in the
component state. The transient predicate value is ideally
given by the component creator in the meta-component, but
it could also be deduced from the state machine.

3.3 Perfect Model Validation
While the previous layers validate important properties

such as safety and liveness over time, the Perfect Model Val-
idation layer provides a formal measure of composition va-
lidity. A new semantic distance metric relation measures the
composition validity between the composition and a perfect
composition. This layer depends on the previous layers for
deadlock free, safety, and liveness guarantees as well as for
sampled time values. The outcome of this layer is a credible
and comparable measure of the validity of the composition,
obtained through formal mathematical reasoning.

As shown in the simple example from Figure 2, we di-
vide perfect model validation into five main steps, namely
Formal Component Representation, Unfolding and Sam-
pling, Composition, Simulation, and Validation. For illus-
tration, we apply these steps on a single-server queue ex-
ample consisting of Queueing Networks base components.
A more detailed discussion of this example is presented in
Section 4. We formally represent a component as a function
of states over time in Figure 2(a). We unfold this function
over the simulation time using sampled values for the time
attributes in Figure 2(b). The mathematical functional com-
posability of the component functions is validated using our
composability definition in Figure 2(c). If the functions are

55

�� ����

�� ��

�
�
�
����� ����

��
��
��
��

C
1

C
2

C
3

C
1
*

C
2

*

C*
3

(a
)

F
o
rm

a
l

C
o
m

p
o
n

en
t

R
ep

re
se

n
ta

ti
o
n

(b
)

U
n

fo
ld

in
g
 a

n
d

 S
a
m

p
li

n
g

(c
)

C
o
m

p
o
si

ti
o
n

(d
)

S
im

u
la

ti
o
n

M* −> L(M*) ...

M −> L(M) ...

(e
)

V
a
li

d
a
ti

o
n

C
2

C
3

C
1

Xi = Ii × Si × Ti
Yi = Oi × Si × Ti

fi : Xi → Yi
X∗i = I∗i × S∗i × T ∗i
Yi = O∗i × S∗i × T ∗i

f ∗i : X∗i → Y ∗i

= f1

= f2

= f3

= f ∗1

= f ∗2

= f ∗3

M = f1 ◦ f2 ◦ f3 M∗ = f ∗1 ◦ f ∗2 ◦ f ∗3

f2(I2, s
2
3, r ≥ t + 6)→ (O2, s

2
4, r + 1)

f2(I2, s
2
2, t ≥ x + 11)→ (O2, s

2
3, t + 6)

f2(I2, s
2
1, x ≥ 0)→ (O2, s

2
2, x + 11)

f1(∅, s1
1, 0)→ (O1, s

1
2, 6)

f1(∅, s1
2, 6)→ (O1, s

1
3, 8)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f3(I3, s
3
3, r
′ ≥ t′ + 1)→ (∅, s3

4, r
′ + 1)

f3(I3, s
3
2, t
′ ≥ x′ + 1)→ (∅, s3

3, t
′ + 1)

f3(I3, s
3
1, x
′ ≥ 0)→ (∅, s3

2, x
′ + 1)

x′ ≥ 0; x′ ≥ x + 11 + ∆w′1
t′ ≥ x′ + 1; t′ ≥ t + 6 + ∆w′2

x ≥ 0; x ≥ 6 + ∆w1

t ≥ x + 11; t ≥ 8 + ∆w2

r ≥ t + 6; r ≥ 12 + ∆w3

r′ ≥ t′ + 1; r′ ≥ r + 1 + ∆w′3
∆w1 = 2, ∆w2 = 3, ∆w3 = 1

∆w′1 = 4, ∆w′2 = 3, ∆w′3 = 2

(x
′∗ = 23, t

′∗ = 28, r
′∗ = 29)

(x = 8, t = 19, r = 25)

(x′ = 23, t′ = 28, r′ = 29)

(x∗ = 8, t∗ = 19, r∗ = 25)

f1(∅, s1
1, 0)→ (O1, s

1
2, 6)

f1(∅, s1
2, 6)→ (O1, s

1
3, 8)

f2(I2, s
2
1, 8)→ (O2, s

2
2, 12)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f2(I2, s
2
2, 19)→ (O2, s

2
3, 25)

f3(I3, s
3
1, 23)→ (∅, s3

2, 24)

f2(I2, s
2
3, 25)→ (O2, s

2
4, 26)

f3(I3, s
3
2, 28)→ (∅, s3

3, 29)

f3(I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗1 (∅, s1
1, 0)→ (O1, s

1
2, 6)

f ∗1 (∅, s1
2, 6)→ (O1, s

1
3, 8)

f ∗2 (I2, s
2
1, 8)→ (O2, s

2
2, 19)

f ∗2 (I2, s
2
2, 19)→ (O2, s

2
3, 25)

f ∗3 (I3, s
3
1, 23)→ (∅, s3

2, 24)

f ∗2 (I2, s
2
3, 25)→ (O2, s

2
4, 26)

f ∗3 (I3, s
3
2, 28)→ (∅, s3

3, 29)

f ∗3 (I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗1 (∅, s1
3, 8)→ (O1, s

1
4, 12)

f∗2

< f∗1 , 0, 6, O1 > < f∗2 , 7, 11, O2 >< f∗1 , 6, 2, O1 >

f∗1f∗1

< f1, 0, 6, O1 > < f2, 7, 11, O2 >

f1f1 f2

< f1, 6, 2, O1 >

1. Strong equivalence L(M)⇔ L(M∗) or L(M∗) ⊆ L(M)

2. Weak bisimulation semantic relation: L(M)VεL(M∗)

Figure 2. Perfect Model Validation

composable, then an interleaved execution schedule of all
functions is obtained in Figure 2(d). This schedule repre-
sents a simulation run of the composition. To validate the
composition, we consider that for each type of base compo-
nent there exists a perfect model in the repository, formally
represented as a a perfect function of its states over time.
The perfect functions are defined by application domain ex-
perts, when the application domain is added to the CoDES
framework and are annotated with a star (∗) symbol. The
perfect functions are composed and a simulation run of the
perfect composition is obtained by repeating the above pro-
cess. We represent the simulation of the composition and
the perfect composition using Labeled Transition Systems
[9]. In this context, we formally define semantic compos-
ability and compare between the two labeled transition sys-
tems (Figure 2(e)).

Definition 1 (Formal Component Representation). The for-
mal representation for a component Ci is a function fi :
Xi → Yi, where Xi = Ii×Si×Ti, and Yi = Oi×Si×Ti.
Ii and Oi are the set of input/output messages, Si is the
set of states and Ti is the set of simulation time intervals at
which the component changes state.

By representing a simulation component as a mathemat-
ical function we leverage on Petty and Weisel’s formal the-
ory of composability [8]. However, our approach differs
by including time and state as domain coordinates, which
allows for a meaningful and detailed definition of a valid
model. Based on this, we refine and specialize the for-
mal validation process to a form applicable to environments
for component-based simulation development in which time
and state are of paramount importance.

The domain of each functional representation is Xi =
Ii × Si × Ti. Ii represents semantically rich inputs, with
correspondents in the COSMO ontology. Next, Si repre-
sents all possible component states, i.e. all values of the
component attributes. Lastly, Ti represents the set of sim-

ulation time moments at which state transitions occur. The
time moment values are the sampled time values that have
been used in the Meta-Simulation Validation layer.

The Unfolding and Sampling step unfolds the func-
tion definition over a period of simulation time using
sampled values. For example, the state machine for
meta-component C1 defined as S1(∆t) → O1S1[A1]
is unfolded for τ = 3 times with the following sam-
pled values for ∆t: ∆t = 6,∆t = 2,∆t = 4, as
the sequence: f1(∅, s11, 0) → (O1, s

1
2, 6), f1(∅, s12, 6) →

(O1, s
1
3, 8), f1(∅, s13, 8)→ (O1, s

1
4, 12). We repeat this step

for all functions and perfect functions in the composition.
For components that require input to proceed, we consider
the average time spent by messages in the connectors, de-
picted in Figure 2 by ∆w.

The Composition step validates that the functions are
mathematically composable.

Definition 2 (Mathematical Composability). Given fi and
fj describe adjacent components, with fj requiring input
from fi and T outi = {t(i)m |1 ≤ m ≤ |Oi|}, and T inj =

{t(j)n |1 ≤ n ≤ |Ij |}, the time values for fi and fj when fi
produces output and fj requires input respectively. Then fi
and fj are composable iif there exists the bijective binary
relation R = {(t(j)n , t

(i)
m) ∈ T inj × T outi |t

(j)
n > t

(j)
m }.

Informally, all sampled time values for components that
require input must be greater than the time moment values
for the components that provide them with output. The
above definition is the usual mathematical composability
definition but only considers time moment values from the
three coordinate function domain. The input and output data
is already validated in the constraint validation process, and
the individual component states are irrelevant at this point
in the validation. The time value in-equations can be solved
using a constraint solver such as Choco.

In the Simulation step, an interleaved simulation run is
obtained for model M and for perfect model M∗. The in-

66

terleaved simulation run orders the function calls based on
the time values obtained in the previous step. The simu-
lation runs are represented as Labeled Transition Systems
(LTS), L(M) and L(M∗) respectively. Each node rep-
resent an annotated composition state given by the tuple
Sj=1,n∗τ = [{state(Ci)i=1,n}, fin, fout], where state(Ci)
is the state of component Ci, n is the number of compo-
nents, fin is the function called to enter this node, and
fout is the function called for exiting this node. Edges
are the function call fi and f∗i , and labels are the tuple
<function name, duration, output>, where duration rep-
resents the function execution time. Our proposed labels
consider the duration rather than the time moment when
the function begins to execute, because the time moments
are already ordered through the directed nature of the LTS.

The Validation step is divided into two stages. Firstly, we
attempt to prove the equivalence or inclusion between the
L(M) and L(M∗) using a strong bisimilarity relation [9],
in which only the sequence of labels and states is impor-
tant. This can be done automatically using a bisimulation
toolset such as CADP [3]. If we are unable to prove strong
equivalence, we relax the constraints in the second stage by
defining a semantic metric relation V with parameter ε. Vε
considers only LTS nodes for which our defined semantic
distance is smaller than ε. Next, if Vε is a weak bisimu-
lation metric relation [9] between L(M) and L(M∗), then
C1, . . . , Cn are semantically composable and L(M) is se-
mantically valid.
Definition 3 (Semantic Parametric Metric Relation). Let
P ⊆ {S1, . . . , Sn}, Q ⊆ {S∗1 , . . . , S∗n} a sub-
set of the annotated composition states for L(M) and
L(M∗) respectively, with p ∈ P , q ∈ Q, p =
[s(p), fin(p), fout(p)], q = [s∗(q), f∗in(q), f∗out(q)], with
s(p) = [state(C1), . . . , state(Cn)] and s∗(q) =
[state(C∗1), . . . , state(C∗n)] vectors representing compo-
nent states. We define the semantic relation with parameter
ε, Vε ⊆ P ×Q, as V (p, q) = {(p, q) ∈ P ×Q|‖p− q‖σ ≤
ε}. The semantic vector norm, ‖p− q‖σ , is defined as

‖p− q‖σ =
DS(s(p), s∗(q)) + DF (fin,f

∗
in)+DF (fout,f

∗
out)

2

2

where DS(s(p), s∗(q)) is the semantic distance between
composition states, and DF (fi, f∗j) is the semantic func-
tional distance between the function names.

The semantic metric relation with parameter ε, Vε, de-
termines the semantically related states between the com-
position and perfect composition LTS. The semantic vec-
tor norm has two components, DS and DF . The semantic
state distance, DS, measures the semantic differences be-
tween component attribute values. The semantic functional
distance, DF , determines whether the functions called to
enter and exit the LTS nodes are related.

Definition 4 (Semantic State Distance). Let
s(p) = [state(C1), . . . , state(Cn)], s∗(q) =
[state(C∗1), . . . , state(C∗n)]. The semantic state dis-
tance between vectors p and q is defined as

DS(s(p), s∗(q)) =

n∑
i=1

|ds(state(Ci), state(C∗i))|

n

where

ds(state(Ci), state(C∗i)) =

∑
ai∈A(Ci),a∗j∈A(C∗j)

d(ai, a∗j)

m
,

A(Ci) is the set of attributes for component Ci, m =
|A(Ci)| and d(ai, a∗j) is defined as

d(ai, a∗j) =


0 if related(ai, a∗j) and value(ai) = value(a∗j)
0.5 if related(ai, a∗j) and value(ai) 6= value(a∗j)
1 if @a∗j ∈ A(C∗i) s.t. related(ai, a∗j) = true

where related(ai, aj) signifies that ai and aj are related in
the COSMO ontology.

Definition 5 (Semantic Function Distance). Let
fi(p), f∗j (q) the functions called to enter or exit nodes p
and q in L(M) and L(M∗) respectively. The semantic
state distance DF is defined as

DF (fi(p), f∗j (q)) =
{

1, i 6= j
0, i = j

Definition 6 (Semantic Composability). Let M = f1 ◦ f2 ◦
. . .◦fn and M∗ = f∗1 ◦f∗2 ◦ . . .◦f∗n the composition model
and perfect model respectively. Then f1, f2 . . . fn are se-
mantically composable iif f1 ◦ f2 ◦ . . . ◦ fn exists (by Def-
inition 2) and Vε (from Definition 3) is a weak bisimulation
relation betweenL(f1◦f2◦. . .◦fn) andL(f∗1 ◦f∗2 ◦. . .◦f∗n).

The above definition is similar to that of Petty and Weisel
[8]. However, the fundamental difference and our major im-
provement comes from forcing the weak bisimulation rela-
tion to be Vε which we previously defined. Vε is a semantic
metric relation which considers related composition states
according to the COSMO ontology according to a well de-
fined component and attribute hierarchy. By representing
components as functions of times and states, L(M) and
L(M∗) can be compared based on the timed sequences of
component executions. Next, through Vε, the model can be
compared with a perfect model based on rigorously defined
concepts in an ontology.

77

4 Example
We demonstrate our approach using a simple single-

server queue example presented in Figure 3. Each compo-
nent has an attached implementation described in the meta-
component shown in Table 1. To focus on our approach, we
consider only simplified component state machines. More
complex examples are discussed in [11].

�
�
�

�
�
�
�� ����

��
��
��

��
��
��

C
2

C
1

C
3

Figure 3. Single-Server Queue Model

4.1 Concurrent Process Validation

Figure 4 shows component state machines translated into
a Promela specification. Each state is transformed into
a Promela label, which includes input and/or output ac-
tions as specified by the meta-component behavior, as well
as conditions on attribute values and attribute modifica-
tions. Transitions between states are assumed to be instan-
taneous. Nonetheless, for component C1 described in pro-
cess SOURCE1 on line 5 we simulate time through the
additional process SourceCounter shown on line 9. The
role of the SourceCounter process is to modify the inter-
arrival time (interArrivalT ime) until it reaches a prede-
fined value, at which point SOURCE1 is activated and
produces a message on its out channel. To prevent state
explosion, we integrate counter processes only for com-
ponents that inject jobs into the system. Each connector

1 mtype {Job}; chan to1 = [10] of {mtype}; ...
2 hidden byte sourceIAMax = 10; byte sourceIATime; ...
3 proctype CON ONE TO ONE(chan in, out){
4 do :: in ? Job −> out ! Job; od}
5 proctype SOURCE1(int id, noJobsMax; chan out){
6 do :: (sourceIATime == sourceIAMax) −> sourceIATime =0;
7 if :: out ! Job −>
8 progress: printf ("[Source] Job sent\n"); fi od }
9 proctype SourceCounter()

10 {do :: (sourceIATime < sourceIAMax) −> sourceIATime++; od}
11 proctype Sink (){...}
12 proctype SERVER3(int id; chan in , out){ S1: { if :: in ?
13 Job −> busy=1;goto S2; fi }
14 S2: { if :: out ! Job −> progress: busy=0; goto S1;}}
15 init {
16 run SourceCounter (); run SOURCE1(1, from1);
17 run SINK1(3, to3); run SERVER3(3, to2, from2);
18 run CON ONE TO ONE(from1, to2); ... }

Figure 4. Single-Server Queue Model in
Promela

type is defined as a Promela process. For example, pro-
cess CON ONE TO ONE on line 3 describes the one-to-one
connector. In the init method on line 15, communication
channels are assigned to connectors and components based
on their connection topology. The Spin model checker val-
idates that there is no deadlock or any unreachable states in

the system. To specify liveness, we assign a progress
label to each component state that produces output.

4.2 Meta-simulation Validation

Our implementation of the meta-simulation validation
layer translates the complete state machine of each compo-
nent into a Java class hierarchy. Attributes and their values
provided by the user, state transitions and time are mod-
elled. Next, we construct a meta-simulation of the com-
posed model using the translated classes. During the meta-
simulation run, sampling is performed for attributes that re-
quire so. This is the case especially for time attributes such
as ∆interArrivalT ime in Table 1. The meta-simulation
is run for N = n ∗ noSampling times, where n is the total
number of components and noSampling is the total num-
ber of locations where sampling is done.

From a practical perspective, the simulator developer
specifies the safety property by describing desired valid out-
put through validity points at various connection points in
the composition. A validity point contains semantic de-
scription of data that must pass through its assigned con-
nection point. For example, the two validity points for the
data that passes through the second connector in Figure 3
could be V P1 = d1{origin = Server, destination =
Sink, range = 10; 35, type = double}, and V P2 =
d2{origin = Server, destination = Sink, range =
1; 2}. A safety error is issued if semantically incompati-
ble data passes through the connection point. Liveness is
validated by considering a transient predicate assigned to
each component as shown in Table 1. A component is con-
sidered alive if its assigned liveness observer has evaluated
the transient predicate to true and then to false in an in-
terval of time smaller than the specified timeout. For ex-
ample, the transient predicate for component C2 could be
transient(C2) = (busy == true).

4.3 Perfect Model Validation

In the following we present the detailed validation pro-
cess only for the selected components Ci represented for-
mally as functions fi. The same process is repeated for
perfect functions f∗i . For this example, we consider the be-
havior of the perfect components represented by f∗i to be
the same with respect to input/output transformations to the
behavior represented by fi.

In the Formal Component Representation step, the state
machine for component C1 as specified in Table 1 is trans-
lated to a formal component representation specified by f1
which is defined as

f1 : ∅ × S1 × T1 → {O1} × S1 × T1,

f1(∅, si, t)→ (O1, s
′
i, t+ ∆t)

where ∆t is sampled from a specified distribution and the

88

C1 C2 C3

Attribute

noJobsGenerated = 0 noJobsServiced = 0 noJobsPrinted = 0
timeout = 20 timeout = 20 timeout = 20

interArrivalTime: exponential(3) serviceTime : exponential(6) ∆printingT ime = 1
busy = false

transient(C1) : (noJobsGenerated == 1) transient(C2) : (busy == true) transient(C3) : (noJobsPrinted == 1)

Input -
origin = Source|Server origin = Server

Constraints range = 10; 35
type = double

Output destination = Server destination = Server|Sink
-Constraints range = 11; 15 range = 10; 20

type = int type = double

State Machine

S1(∆interArrivalT ime)→ S2 I1S1 → S2[A1;A3] I1S1 → S2

S2 → S1O1[A1] S2(∆serviceT ime)→ S1O1[A2] S2(∆printingT ime)→ S1[A1]

[A1] = noJobsGenerated+ +;
[A1] = (busy = true);

[A1] = noJobsPrinted+ +;[A2] = (busy = false);
[A3] = noJobsServiced+ +;

Table 1. Meta-component Information

function is re-called until t > T , where the simulation runs
for time T = 40 wall clock units.

To obtain specific values for t and ∆t, we unfold the
function call graph for τ = 3 times and sample the values
for ∆t, using mean and sampled values from the previous
layer, as shown in Table 2.

Unfold ∆t Formula

f1

1 6 f1(∅, s11, 0) → (O1, s
1
2, 6)

2 2 f1(∅, s12, 6) → (O1, s
1
3, 8)

3 4 f1(∅, s13, 8) → (O1, s
1
4, 12)

f2

1 11 f2(I2, s21, x ≥ 0) → (O2, s
2
2, x+ 11)

2 6 f2(I2, s22, t ≥ x+ 11) → (O2, s
2
3, t+ 6)

3 1 f2(I2, s23, r ≥ t+ 6) → (O2, s
2
4, r + 1)

f3

1 1 f3(I3, s31, x
′ ≥ 0) → (∅, s32, x′ + 1)

2 1 f3(I3, s32, t
′ ≥ x′ + 1) → (∅, s33, t′ + 1)

3 1 f3(I3, s33, r
′ ≥ t′ + 1) → (∅, s34, r′ + 1)

Table 2. Formal Component Representation

Next, the Composition step validates the function com-
posability. Following Definition 2, we obtain constraints
for the values of x, t, r and x′, t′, r′ respectively. We con-
sider the time moments at which components produce or
require data, as well as the average time spent by messages
is the connector queues, ∆w1 = 2,∆w2 = 3,∆w3 = 1 and
∆w′1 = 4,∆w′2 = 3,∆w′3 = 2 for f2 and f3 respectively:

x ≥ ∆w1, t ≥ x+11, t ≥ 8+∆w2, r ≥ t+6, r ≥ 12+∆w3

(1)
x′ ≥ x+11+∆w′1, t

′ ≥ x′+1, t′ ≥ t+6+∆w′2, r
′ ≥ t′+1,

r′ ≥ r + 1 + ∆w′3 (2)

Assume that a solution is:

(x = 8, t = 19, r = 25), (x′ = 23, t′ = 28, r′ = 29),

(x∗ = 8, t∗ = 19, r∗ = 25), (x
′∗ = 23, t

′∗ = 28, r
′∗ = 29).

Interleaved execution schedules are next obtained for
both composition and perfect composition, in Figure 5(a)

f1(∅, s1
1, 0)→ (O1, s

1
2, 6)

f1(∅, s1
2, 6)→ (O1, s

1
3, 8)

f1(∅, s1
3, 8)→ (O1, s

1
4, 12)

f3(I3, s
3
2, 28)→ (∅, s3

3, 29)

f3(I3, s
3
3, 29)→ (∅, s3

4, 30)

f2(I2, s
2
2, 19)→ (O2, s

2
3, 25)

f3(I3, s
3
1, 23)→ (∅, s3

2, 24)

f2(I2, s
2
3, 25)→ (O2, s

2
4, 26)

f2(I2, s
2
1, 8)→ (O2, s

2
2, 19)

(a) Composition

f ∗1 (∅, s1
1, 0)→ (O1, s

1
2, 6)

f ∗1 (∅, s1
2, 6)→ (O1, s

1
3, 8)

f ∗2 (I2, s
2
1, 8)→ (O2, s

2
2, 19)

f ∗1 (∅, s1
3, 8)→ (O1, s

1
4, 12)

f ∗3 (I3, s
3
1, 23)→ (∅, s3

2, 24)

f ∗2 (I2, s
2
3, 25)→ (O2, s

2
4, 26)

f ∗3 (I3, s
3
2, 28)→ (∅, s3

3, 29)

f ∗3 (I3, s
3
3, 29)→ (∅, s3

4, 30)

f ∗2 (I2, s
2
2, 19)→ (O2, s

2
3, 25)

(b) Perfect Composition

Figure 5. Interleaved Execution Schedules

and Figure 5(b). Each interleaved execution is represented
as a Labeled Transition System, L(M) and L(M∗) respec-
tively, as shown in Figure 6.

S
1

S
2

S
3

S
4

S*
1

S*
2

S*
3

S*
4

...

M*:

M: ...

< f ∗2 , 11, O2 >< f ∗1 , 2, O1 >< f ∗1 , 6, O1 >

< f1, 2, O1 > < f2, 11, O2 >< f1, 6, O1 >

Figure 6. LTS Representation of Model Exe-
cution

In the Validation step, strong equivalence betweenL(M)
and L(M∗) is validated using the BISIMULATOR checker,
part of the CADP toolset. For this simple example, the
BISIMULATOR returns true. As such, there is no need
to validate a possible weak equivalence by calculating the
semantic metric relation Vε. Space constraints prevent us
from showing an example of the calculation of Vε.

5 Related Work
Petty and Weisel pioneered a formal theory of compos-

ability validation which allows for a composed simulation
model to be checked for semantic validity [8]. A composi-
tion is modeled as a mathematical functional composition.

99

The composition simulation is represented as an LTS where
nodes are model states, edges are function executions, and
labels are model inputs. A composition is valid if and only
if its simulation is close by a relation to the simulation of
a perfect model. However, time is not modelled and the
function representing a component makes an instantaneous
transition from input to output. This permits only a static
representation of the composition. Furthermore, the LTS
representation considers the functions strictly in the order
they appear in the mathematical composition, which might
not be representative of complex compositions. In contrast,
we propose a new formal component definition where states
change over time. Based on this definition, we represent
composition simulations as interleaved schedules of com-
ponent execution, considering the execution duration and
output as labels in the simulation LTS. Thus we are able to
represent the dynamic change of the entire simulation over
time. To provide a more accurate measure of validity, we
consider semantically related composition states in the def-
inition of Vε. This would not be possible in the Petty and
Weisel approach where a component is abstracted as a one-
dimensional integer domain function.

6 Conclusion

We present a three-layer approach for semantic valida-
tion of compositions in simulation model integration with
increasing accuracy and complexity. The first layer vali-
dates the logical coordination of composed components by
guaranteeing that the composition is free from deadlock and
invalid states, and that components are alive. The second
layer focuses on composition safety and liveness through
time by validating safety properties and component specific
transient predicates. Lastly, we propose a formal validation
process, by extending current work on formalizing simu-
lation composability. We introduce new formal definitions
and propose a novel five-step formal validation procedure.
In contrast to current work, a component is represented as
a function of its states over time, an attribute of paramount
importance in simulation. The validation process formally
compares the composition execution schedule to that of a
perfect composition. This is based on a new semantic met-
ric relation, which considers semantically related compo-
sition states. Space constraints prevent us from providing
proofs for the time complexity of each layer. However,
the validation process is decidable with the first two lay-
ers having exponential complexity and the last with poly-
nomial complexity in terms of the number of components.
Beside advancing the understanding of semantic compos-
ability validation and its complexities, it is also our objec-
tive to translate our approach into a practical implementa-
tion using existing model checkers and constraint solvers.
We have fully automated and integrated the first two layers
in the CoDES framework. Base components are translated

into the Promela specification and validated using the Spin
model checker and perfect model validation is being imple-
mented using the CADP toolset. This paper addresses the
semantic validation of simulation model developed using
base components. We are extending the validation process
to include the more complex reused model components.

References

[1] O. Balci. Verification, Validation and Accreditation of Sim-
ulation Models. In Proceedings of the Winter Simulation
Conference, pages 135–141, Atlanta, USA, 1997.

[2] M. Ben-Ari. Principles of the Spin model checker. Springer
Verlag, 2008.

[3] H. Garavel. CADP 2006: A Toolbox for the Construction
and Analysis of Distributed Processes. In Proceedings of
the 19th International Conference on Computer Aided Veri-
fication, pages 158–163, Berlin, Germany, 2007.

[4] R. Gore and P. Reynolds. Applying Causal Inference to Un-
derstand Emergent Behavior. In Proceedings of the Winter
Simulation Conference, pages 712–721, Miami, USA, 2008.

[5] S. Kasputis and H. Ng. Composable Simulations. In Pro-
ceedings of the Winter Simulation Conference, pages 1577–
1584, Orlando, USA, 2000.

[6] F. Moradi, R. Ayani, S. Mokarizadeh, G. H. A. Shahmirzadi,
and G. Tan. A Rule-based Approach to Syntactic and Se-
mantic Composition of BOMs. In Proceedings of the 11th
IEEE Symposium on Distributed Simulation and Real-Time
Applications, pages 145–155, Crete, Greece, 2007.

[7] S. Owicki and L. Lamport. Proving Liveness Properties of
Concurrent Programs. ACM Transactions on Programming
Languages and Systems (TOPLAS), 4:455–495, 1982.

[8] M. Petty and E. W. Weisel. A Composability Lexicon. In
Proceedings of the Spring Simulation Interoperability Work-
shop, pages 181–187, Orlando, USA, 2003.

[9] J. Srba. On the Power of Labels in Transition Systems. In
Proceedings of the 12th International Conference on Con-
currency Theory, pages 277–291, Aalborg, Denmark, 2001.

[10] C. Szabo and Y. Teo. On Syntactic Composability and
Model Reuse. In Proceedings of the International Confer-
ence on Modeling and Simulation, pages 230–237, Phuket,
Thailand, 2007.

[11] C. Szabo and Y. M. Teo. Validation of Semantic Compos-
ability in Simulation Models. Technical Report APSTC-TR-
2009-01, Department of Computer Science, National Uni-
versity of Singapore, 2009.

[12] Y. Teo and C. Szabo. CODES: An Integrated Approach to
Composable Modeling and Simulation. In Proceedings of
the 41st Annual Simulation Symposium, pages 103–110, Ot-
tawa, Canada, 2008.

[13] A. Tolk. What Comes After the Semantic Web - PADS Im-
plications for the Dynamic Web. In Proceedings of the 20th
Workshop on Principles of Advanced and Distributed Simu-
lation, pages 55–62, Singapore, 2006.

[14] M. K. Traore. Analyzing Static and Temporal Properties of
Simulation Models. In Proceedings of the Winter Simulation
Conference, pages 897–904, Monterey, USA, 2006.

[15] B. Ziegler, H. Prahofer, and T. Kim. Theory of Modeling
and Simulation. Academic Press, 2000.

1010

