
Generation of Labelled Transition Systems for Alvis
Models Using Haskell Model Representation

Marcin Szpyrka, Piotr Matyasik, and Michał Wypych

AGH University of Science and Technology
Department of Applied Computer Science

Al. Mickiewicza 30, 30-059 Kraków, Poland
{mszpyrka,ptm,mwypych}@agh.edu.pl

Abstract. Alvis is a formal modelling language for concurrent systems with the
following advantages: a graphical modelling language used to define intercon-
nections among agents, a high level programming language used to define the
behaviour of agents and the possibility of a formal model verification. An Alvis
model semantics find expression in an LTS graph (labelled transition system).
Execution of any language statement is expressed as a transition between for-
mally defined states of such a model. An LTS graph is generated using Haskell
representation of an Alvis model and user defined Haskell functions can be used
to explore the graph. The paper deals with the problem of translation of an Alvis
model into its Haskell representation and discusses possibilities of model verifi-
cation with the so-called Haskell filtering functions.

Keywords: Alvis, formal verification, Haskell, labelled transition system

1 Introduction

Alvis [1], [2], [3] is a formal modelling language being developed at AGH-UST in
Krakow, Department of Applied Computer Science. The main aim of the project is to
provide a flexible modelling language for concurrent systems with possibilities of a
formal models verification. Alvis combines advantages of high level programming lan-
guages with a graphical language for modelling interconnections between subsystems
(called agents) of a concurrent system. States of a model and transitions among them
are represented using a labelled transition system (LTS graph for short [4]) which is
used to verify the model formally by using model checking techniques [5], [6], [7],
[8]. Previous research on Alvis was focused on the untimed version of the language
with α0 system layer (multiprocessor environments) [1], [2]. Using this system layer
makes Alvis an alternative for other formalisms as Petri nets [9], [10], [11], process
algebras [12] etc., but main advantages of Alvis approach for systems modelling are:
similarity of Alvis syntax and syntax of procedural languages, graphical language for
modelling interconnections between agents and the method of models states description
which is similar to information provided by software debuggers.

The scheme of the modelling and verification process with Alvis is shown in Fig. 1.
From the users point of view, the process starts from designing a model using prototype
modelling environment called Alvis Editor. The designed model is stored using XML



410 M. Szpyrka, P. Matyasik, M. Wypych

Design of

communication

diagram

Implementation

of code layer

Implementation

of �lter functions

Speci�cation

of requirements

(µ calculus)

Veri�cation with

�lter functions

Model checking

Alvis

Editor

Alvis

Translator

editor

GHC

CADP

Model design

translation

LTS graph
generation

Fig. 1. Modelling and verification process with Alvis

file format. Then it is translated into Haskell [13] source code and its Haskell repre-
sentation is used to generate the LTS graph. The Haskell functional language has been
chosen as middle-stage representation of an Alvis model because Haskell is also used as
a part of Alvis language i.e. Alvis uses Haskell to define parameters, data types and data
manipulation functions. Haskell has been also used to implement the LTS graph gene-
ration algorithm. Such an LTS graph is stored as a Haskell list. A designer has access
to such a source code, so user-defined Haskell functions (called filtering functions) that
search an LTS graph for some states or parts of the graph that meet given requirements
can be included into the model. The source code is compiled with GHC compiler. The
results of received program execution are the LTS graph for the given model and the
report of the model verification with filtering functions.

Another approach to Alvis model verification relies on using CADP toolbox [14].
CADP offers a wide set of functionalities, ranging from step-by-step simulation to mas-
sively parallel model-checking [5], [6], [7]. An Alvis LTS graph can be converted into
BCG (Binary Coded Graphs) format which is one of acceptable input formats for CADP
Toolbox. Then the CADP evaluator is used to check whether the model satisfies require-
ments given as regular alternation-free µ-calculus formulae [6], [15], [7].



Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 411

The paper deals with the problem of translation of an Alvis model into its Haskell
representation and discusses possibilities of model verification with filtering functions.
Selected ideas connected with Alvis and LTS graphs are presented in Secion 2. Sec-
tion 3 deals with the middle-stage Haskell model representation. Methods of LTS graph
exploration are considered in Section 4. A short summary is given in the final section.

2 Alvis Models

An Alvis model is defined as a triple A = (H,B,ϕ), whereH is a hierarchical commu-
nication diagram,B is a syntactically correct code layer, and ϕ is a system layer. In this
paper we consider models with α0 system layer only. This layer is based on the assump-
tion that each active agent has access to its own processor and in case of conflicts agents
priorities are taken under consideration. If two or more agents with the same highest
priority compete for the same resources, the system works non-deterministically. More-
over, before generation of the Haskell model representation models are transformed into
equivalent non-hierarchical form. Thus, from now on we will consider models defined
as A = (D,B, α0), where D = (A, C, σ) is a non-hierarchical communication dia-
gram, where: A = {X1, . . . , Xn} is the set of agents consisting of two disjoint sets,
AA, AP such that A = AA ∪ AP , containing active and passive agents respectively;
C ⊆ P × P , where P is the set of all ports, is the communication relation, such that:

– a connection cannot be defined between ports of the same agent;
– procedure ports are either input or output ones i.e. ports defined as procedures are

used to transfer signals (values) either to or from a passive agent;
– a connection between an active and a passive agent must be a procedure call;
– a connection between two passive agents must be a procedure call from a non-

procedure port.

The start function σ makes it possible to delay activation of some agents.
Active agents perform some activities and are similar to tasks in Ada programming

language [16]. Each of them can be treated as a thread of control in a concurrent system.
By contrast, passive agents do not perform any individual activities, and are similar to
protected objects (shared variables). Passive agents provide other agents with a set of
procedures (services). For more details see [2]. A description of the Alvis syntax can
be also found at the Alvis project web site http://fm.kis.agh.edu.pl.

An example of Alvis model for a sender-buffer-receiver system is given in Fig. 2.
Agent S (sender) puts sequentially valueless signals to the buffer (agent B) and agent
R (receiver) gets such signals from the buffer. AgentB offers two procedures (services,
ports) to connected agents.

States of an Alvis model and transitions among them are represented using a la-
belled transition system. An LTS graph is an ordered graph with nodes representing
states of the considered system and edges representing transitions among states.

Definition 1. A Labelled Transition System is a tuple LTS = (S,A,→, s0), where:

– S is the set of states and s0 ∈ S is the initial state;
– A is the set of actions;
– →⊆ S ×A× S is the transition relation.



412 M. Szpyrka, P. Matyasik, M. Wypych

agent Sender {
loop { out put; }} -- 1, 2

agent Buffer {
i :: Int = 0;
proc (i == 0) put { in put; i = 1; } -- 1, 2
proc (i /= 0) get { out get; i = 0; }} -- 3, 4

agent Receiver {
loop { in get; }} -- 1, 2

Fig. 2. Alvis model for sender-buffer-receiver system

The usage of LTS graphs is a universal method of a state space representation and
is omnipresent in formal modelling languages. Different languages like Petri nets, time
automata, process algebras etc. use different methods of describing nodes and edges in
LTS graphs. They also use different names for them e.g. reachability graphs in Petri
nets [9], [11], but the general structure of these graphs is still the same. The common
feature of these approaches is the encoding of the considered system states using math-
ematical ideas typical for the chosen formalism. On the other hand they differ from
methods used in programming languages significantly. In contrast to this, Alvis syntax
is very similar to procedural programming languages and the used method of a model
state description is similar to information provided by software debuggers. A state of
an Alvis model is represented as a sequence of agents states [4], [2]. To describe the
current state of an agent we use the following pieces of information.

– Agent mode (am) represents the type of the current agent activity e.g., Running (X)
means that an agent is performing one of its statements, while waiting (W) means
that the agent is waiting for an event (for active agents). For passive agents, waiting
means that the corresponding agent is inactive and waits for another agent to call
one of its accessible procedures. On the other hand, Taken (T) means that one of
the passive agent procedures has been called and the agent is executing it.

– Program counter (pc) points out the current statement of an agent.
– Context information list (ci) contains additional information about the current state

of an agent e.g. if an agent is in the waiting mode, ci contains information about
events the agent is waiting for.

– Parameters values list contains the current values of the corresponding agent pa-
rameters.

LTS graph for model from Fig. 2 is shown in Fig. 3. Let us consider state 11:

– am(B) = T, pc(B) = 1 – agent B is taken and performs its first step;



Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 413

– ci(S) = [proc(B.put, put)] – agent S has called procedure B.put via port S.put;
– am(R) = W, pc(R) = 2, ci(R) = [in(get)] – agent R is waiting after performing

step 2 (out statement), context information list points out that the agent is waiting
for finalisation of the communication that has been initialised via port R.get.

(0)
S: (X,1,[],())

B: (W,0,[in(put)],0)
R: (X,1,[],())

(1)
S: (X,2,[],())

B: (W,0,[in(put)],0)
R: (X,1,[],())

loop(S)

(2)
S: (X,1,[],())

B: (W,0,[in(put)],0)
R: (X,2,[],())

loop(R)

(3)
S: (X,2,[proc(B.put,put)],())

B: (T,1,[],0)
R: (X,1,[],())

out(S.put)

(4)
S: (X,2,[],())

B: (W,0,[in(put)],0)
R: (X,2,[],())

loop(R)loop(S)

(5)
S: (X,1,[],())

B: (W,0,[in(put)],0)
R: (W,2,[in(get)],())

in(R.get)

(6)
S: (X,2,[proc(B.put,put)],())

B: (T,2,[],0)
R: (X,1,[],())

in(B.put)

(7)
S: (X,2,[proc(B.put,put)],())

B: (T,1,[],0)
R: (X,2,[],())

loop(R) out(S.put)

(8)
S: (X,2,[],())

B: (W,0,[in(put)],0)
R: (W,2,[in(get)],())

in(R.get)loop(S)

(9)
S: (X,1,[],())

B: (W,0,[out(get)],1)
R: (X,1,[],())

exec(B)

(10)
S: (X,2,[proc(B.put,put)],())

B: (T,2,[],0)
R: (X,2,[],())

loop(R) in(B.put)

(11)
S: (X,2,[proc(B.put,put)],())

B: (T,1,[],0)
R: (W,2,[in(get)],())

in(R.get) out(S.put)

(12)
S: (X,2,[],())

B: (W,0,[out(get)],1)
R: (X,1,[],())

loop(S)

(13)
S: (X,1,[],())

B: (W,0,[out(get)],1)
R: (X,2,[],())

loop(R) exec(B)

(14)
S: (X,2,[proc(B.put,put)],())

B: (T,2,[],0)
R: (W,2,[in(get)],())

in(R.get) in(B.put)

(15)
S: (W,2,[out(put)],())
B: (W,0,[out(get)],1)

R: (X,1,[],())

out(S.put)

(16)
S: (X,2,[],())

B: (W,0,[out(get)],1)
R: (X,2,[],())

loop(R) loop(S)

(17)
S: (X,1,[],())
B: (T,3,[],1)

R: (X,2,[proc(B.get,get)],())

in(R.get) exec(B)

(18)
S: (W,2,[out(put)],())
B: (W,0,[out(get)],1)

R: (X,2,[],())

loop(R) out(S.put)

(19)
S: (X,2,[],())
B: (T,3,[],1)

R: (X,2,[proc(B.get,get)],())

in(R.get) loop(S)

(20)
S: (X,1,[],())
B: (T,4,[],1)

R: (X,2,[proc(B.get,get)],())

out(B.get)

(21)
S: (W,2,[out(put)],())

B: (T,3,[],1)
R: (X,2,[proc(B.get,get)],())

in(R.get) out(S.put)

(22)
S: (X,2,[],())
B: (T,4,[],1)

R: (X,2,[proc(B.get,get)],())

out(B.get)

exec(B)

loop(S)

(23)
S: (W,2,[out(put)],())

B: (T,4,[],1)
R: (X,2,[proc(B.get,get)],())

out(B.get)

exec(B)

out(S.put)

exec(B)

Fig. 3. LTS graph for model from Fig. 2



414 M. Szpyrka, P. Matyasik, M. Wypych

A state of a model can be changed as a result of executing a step. Most of the
Alvis statements e.g. exec, exit , etc. are single-step statements. By contrast, if , loop
and select are multi-step statements. We use recursion to count the number of steps for
multi-step statements. For each of them the first step enters the statement interior. Then
we count steps of statements put inside curly brackets. The set of all possible steps for
the considered Alvis models contains the following elements:

– exec – performs an evaluation and assignment;
– exit – terminates an agent or a procedure,
– if – enters an if statement,
– in – performs communication (input side),
– jump – jumps to a label,
– loop – enters a loop,
– null – performs an empty statement,
– out – performs communication (output side),
– select – enters a select statement,
– start – starts an inactive agent,
– io – performs communication (both sides).

Results of all these steps execution have been formally defined in [2].

3 Haskell Model Representation

An Alvis model is translated into Haskell source code and this middle-stage represen-
tation is used for LTS graph generation and for verification purposes. In order to obtain
it following steps has to be performed:

– flattening Alvis hierarchical model,
– constructing agents list,
– generating state tuple for every agent,
– generating system state tuple by combining individual agents states, ordered re-

spectively to agent list generated earlier,
– generating the enable function according to Alvis language rules [1], [2],
– generating the fire function,
– appending LTS generation code,
– appending LTS export code,
– appending main function.

Some elements common for all Alvis models are defined inside Alvis module, which
is included into any model source file. This module contains for example enumerated
data types for possible steps, entries of context information lists etc. Individual source
files generated for models have the following structure:

1. User defined data types (if any).
2. User implemented functions for parameters manipulation (if any).
3. Definition of individual agents state types and the corresponding model state type.
4. Definition of the initial state.
5. Implementation of enable and fire functions.
6. Implementation of LTS graph generation algorithm.
7. Implementation of export functions into: text, dot and aldebaran formats.



Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 415

8. User implemented filtering functions.
9. The main function.

The initial part of the Haskell source file for the model from Fig. 2 is shown in
Fig. 4. It contains: the list of the model agents, data types for these agents’ states and
for the model state (type State), data type for LTS graph node representation (type
Node) and the initial model state. The Node type contains: the node index, a model
state and a list of enabled steps in that state (a step label and the target node number).

module Main where
import Alvis

agents = ["S", "B", "R"]

type SState = (Mode, Int, [ContentsInfo], ())
type BState = (Mode, Int, [ContentsInfo], (Int))
type RState = (Mode, Int, [ContentsInfo], ())

type State = (SState, BState, RState)
type Node = (Int, State, [(String, Int)])

s0 :: State
s0 = ((X,1,[],()), (W,0,[CIn "put"],(0)), (X,1,[],()))

Fig. 4. Part of Haskell source file for model from Fig. 2

The Haskell representation of an Alvis model behaviour is based on the so-called
enable-fire approach which takes inspiration from Petri nets. The enable function takes
a model state and an agent name and provides a list of the agent steps that are enabled
(can be performed) in the state. The fire function takes an enabled step and a state and
gives a new state that is the result of the step execution. A pseudo-code representation
of the LTS graphs generation algorithm is shown in Fig. 5. It requires three elements to
be given based on selected system layer, model structure and agents code. The first one
is an initial state which can be straightforward extracted from system description. The
second and third ones are enable and fire functions mentioned before.

The algorithm runs until it processes all elements form nodeList. This list after
computation contains the resulting LTS. The stateList is a helper list for quick check if
a given state was already computed. For each state (line 5) algorithm computes a list of
all enabled transitions (line 7). Afterwards it fires every transition and checks whether
the resulting state has already been computed (line 11). Effectiveness of this step is
crucial for computation time of the whole algorithm. If the state is present on stateList
a new transition is added to the currently checked state (line 14). Otherwise a new
state is added to nodeList and stateList (lines 17-18) and a transition from currently
investigated state to the new one is appended (line 16). A small part of the enable and
fire functions generated for the considered example is given in Fig. 6.



416 M. Szpyrka, P. Matyasik, M. Wypych

1: nodeList ← [(0, s0, [])]
2: curIdx ← 0
3: stateList ← [(0, s0)] . for quick access to index of a given state
4: while curIdx < #nodeList do
5: s← nodeList [curIdx ].state
6: tl← nodeList [curIdx ].transitions
7: transList ← transitions enabled in state s
8: while transList not empty do
9: trans ←get and remove first element from transList

10: state ← fire(trans, s)
11: i← index of state in stateList
12: last ← #nodeList − 1 . indexing from 0
13: if ∃i then . state already on list
14: nodeList [curIdx ]← (curIdx , s, tl ++[t, i])
15: else . state is new
16: nodeList [curIdx ]← (curIdx , s, tl ++[t, last + 1])
17: nodeList append (last + 1, state, [])
18: stateList append (last + 1, state)
19: end if
20: end while
21: curIdx ← curIdx + 1
22: end while

Fig. 5. LTS graph generation algorithm

enable :: State -> String -> [TTransition]
enable ((am1,pc1,ci1,()),(am2,pc2,ci2,pv2),(am3,pc3,ci3,())) "S"
| am1 == X && pc1 == 1 = [TLoop "S" 1]
| am1 == X && pc1 == 2 && (procfree ci1) && am2 == W
&& elem (CIn "put") ci2 = [TOutAP "S.put" "B.put" 2]
| am1 == X && pc1 == 2 && (procfree ci1) = [TOut "S.put" 2]
| otherwise = []

fire :: TTransition -> State -> State
fire (TOutAP "S.put" "B.put" 2)
((am1,pc1,ci1,pv1),(am2,pc2,ci2,pv2),(am3,pc3,ci3,pv3))
= ((am1,pc1,ci1 ++ [CProc "B.put,put"],pv1),(T,1,[],pv2),
(am3,pc3,ci3,pv3))

Fig. 6. Part of the source code for enable and fire functions for model from Fig. 2

The generation of LTS graphs is the main aim of using the Haskell model represen-
tation. However, it should be underlined that the source file contains also functions for
exporting LTS graphs into different formats. The most important one is the aldebaran
format. LTS graphs stored in the aldebaran format can be automatically converted into
BCG (Binary Coded Graphs) format which is one of the acceptable input formats for
the CADP Toolbox. The conversion method is provided by one of CADP tools.



Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 417

4 Model Verification with Filtering Functions

The Haskell approach to Alvis model verification requires Haskell programming skills,
because the so-called filtering functions must be user-defined and included into the
generated source file. Some of the functions are universal and can be included into
any model, so it is possible to import them from an external Haskell module. However,
most of these functions are based on the considered model State type and must be
defined for a model individually.

deadState :: Node -> Bool
deadState (n,s,ls) = ls == []
-- filter deadState lts

singleOutState :: Node -> Bool
singleOutState (n,s,ls) = (length ls) == 1
-- filter singleOutState lts

Fig. 7. Examples of universal filtering functions

Examples of universal filtering functions are given in Fig. 7. The deadState func-
tion searches for states without outgoing arcs (dead states), while the singleOutState
function searches for states with single outgoing arc. Included comments illustrate the
usage of these functions.

sRunning :: Node -> Bool
sRunning (_,((X,_,_,_),_,_),_) = True
sRunning _ = False

twoWaiting :: Node -> Bool
twoWaiting (_,((W,_,_,_),(W,_,_,_),_),_) = True
twoWaiting (_,((W,_,_,_),_,(W,_,_,_)),_) = True
twoWaiting (_,(_,(W,_,_,_),(W,_,_,_)),_) = True
twoWaiting _ = False

procfree :: [ContentsInfo] -> Bool
procfree [] = True
procfree ((CProc _):_) = False
procfree (_:xs) = procfree xs

noProc :: Node -> Bool
noProc (_, ((_,_,ci1,_),_,(_,_,ci3,_)), _)
| procfree ci1 && procfree ci3 = True
| otherwise = False

Fig. 8. Examples of special filtering functions



418 M. Szpyrka, P. Matyasik, M. Wypych

These functions do not use the internal structure of the LTS graph node, thus can
be used in any model. However, knowledge of the State type details is fundamen-
tal for implementing more sophisticated filtering functions. The main disadvantage of
such functions is their adaptation to the given model. Examples of special filtering func-
tions implemented for the model from Fig. 2 are shown in Fig. 8. The sRunning func-
tion searches for states with agent S in the running mode. Presented functions use the
Haskell pattern matching mechanism. The underscore sign is a wild-card and its role
changes depending on the place e.g. the first one replaces the number of a node, the
second one – the program counter of agent S and the fifth – the state of agent B. The
twoWaiting function searches for states with two agents in the waiting mode. The
last noProc function searches for states when no procedure is executed. The auxiliary
recursive procfree function searches a context information list for proc entries.

The functions presented so far are used to search for states which fulfil given filter
condition. As shown in Fig. 7, they are used together with the standard filter func-
tion. More elaborated functions may search an LTS graph oneself. Example of such a
function is given in Fig. 9. The node2node function returns pairs of nodes connected
with an arc with the given label. It uses two auxiliary functions: iNode searches for a
node with the given number and endNodeNo searches for the number of the end node
for the given arc.

iNode :: Int -> [Node] -> Node
iNode i ((n,s,ls):ns)
| i == n = (n,s,ls)
| otherwise = iNode i ns

endNodeNo :: String -> [(String, Int)] -> Int
endNodeNo _ [] = -1
endNodeNo s ((a,i):ls)
| s == a = i
| otherwise = endNodeNo s ls

node2node :: String -> [Node] -> [Node] -> [(Node,Node)]
node2node _ _ [] = []
node2node label ltscopy ((n,s,ls):ns) =
if k /= -1
then ((n,s,ls),(iNode k ltscopy))
: (node2node label ltscopy ns)

else node2node label ltscopy ns
where k = endNodeNo label ls

Fig. 9. Filtering function searching for parts of an LTS graph

5 Summary

Alvis is being developed to provide a simple tool for formal modelling and verification
of concurrent systems. Compared to the most popular formalisms like Petri nets, process



Generation of Labelled Transition Systems for Alvis Models Using Haskell ... 419

algebras etc. its syntax is simple and very similar to procedural programming languages.
The knowledge of all of the formal definitions presented in [2] is obsolete for the end
user. From user’s point of view, the most important are an Alvis model and its LTS
graph generated for the model automatically.

The paper deals with the problem of LTS graphs generation for Alvis models. It
has been solved using a middle-stage Haskell model representation. This approach has
been chosen out of consideration for the usage of Haskell in Alvis models. The Haskell
representation of an Alvis model is based on two functions called enable and fire that
provide the list of transitions enabled in the given states and results of these transitions
execution. The functions are used in the presented algorithm for LTS graphs generation.
It should be emphasized that this enable-fire approach can be used for generation states
spaces for other formalism. For example, it has been successfully used for XCCS pro-
cess algebra [17], [18]. In this case, instead of Alvis 4-tuples string values have been
used to represent states of individual agents (algebraic equations). Nevertheless, exactly
the same Haskell implementation of the LTS generation algorithm has been used to gen-
erate LTS graphs. This stresses the flexibility of this approach. It is enough to adapt the
enable and fire functions to a considered formalism and presented approach can be used
for verification purposes.

The second advantage of the considered approach is the possibility of model ver-
ification using Haskell implemented algorithms (functions). The generated LTS graph
is stored as a Haskell list, thus not only is it possible to translate it into the aldebaran
format and use CADP toolbox to verify its properties, but also user defined Haskell
functions can be used to explore an LTS graph. This Haskell based approach is a com-
pletion of the CADP based verification. Analysis of Alvis models can be realized using
the CADP evaluator tool. In such approach, a specification of requirements is given as
a set of µ-calculus formulas [6] and the tool is used to check whether the model LTS
graph satisfies them. It should be emphasized that this is an action based approach. A
µ-calculus formula concerns actions labels while states of considered model are repre-
sented using their numbers only. On the other hand, the Haskell approach is rather states
oriented. We can use the Haskell pattern matching mechanism to filter states that ful-
fil given requirements. Moreover, the Haskell approach can be used to implement user
defined verification algorithms that search for some specified parts of an LTS graph
and are not provided by verification toolbox. For example, this is a good path to test
user-defined non-standard verification procedures fast. Moreover, Haskell expressive-
ness allows to fit even quite complicated algorithms in a few lines of code as compared
to imperative languages.

References

1. Szpyrka, M., Matyasik, P., Mrówka, R.: Alvis – modelling language for concurrent sys-
tems. In Bouvry, P., Gonzalez-Velez, H., Kołodziej, J., eds.: Intelligent Decision Systems
in Large-Scale Distributed Environments. Volume 362 of Studies in Computational Intelli-
gence. Springer-Verlag (2011) 315–341

2. Szpyrka, M., Matyasik, P., Mrówka, R., Kotulski, L.: Formal description of Alvis language
with α0 system layer. Fundamenta Informaticae (2013) (to appear).



420 M. Szpyrka, P. Matyasik, M. Wypych

3. Szpyrka, M., Matyasik, P., Wypych, M.: Alvis language with time dependence. In: Proceed-
ings of the Federated Conference on Computer Science and Information Systems, Krakow,
Poland (2013) 1607–1612

4. Kotulski, L., Szpyrka, M., Sędziwy, A.: Labelled transition system generation from Alvis
language. In König, A., et al., eds.: Knowledge-Based and Intelligent Information and Engi-
neering Systems – KES 2011. Volume 6881 of LNCS. Springer-Verlag (2011) 180–189

5. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press, London, UK (2008)
6. Emerson, E.A.: Model checking and the Mu-calculus. In Immerman, N., Kolaitis, P.G.,

eds.: Descriptive Complexity and Finite Models. Volume 31 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society (1997)
185–214

7. Mateescu, R., Sighireanu, M.: Efficient on-the-fly model-checking for regular alternation-
free µ-calculus. Technical Report 3899, INRIA (2000)

8. Penczek, W., Półrola, A.: Advances in Verification of Time Petri nets and Timed Automata.
A Temporal Logic Approach. Volume 20 of Studies in Computational Intelligence. Springer-
Verlag (2006)

9. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4)
(1989) 541–580

10. Suraj, Z., Fryc, B.: Timed approximate Petri nets. Fundamenta Informaticae 71(1) (2006)
83–99

11. Szpyrka, M.: Analysis of RTCP-nets with reachability graphs. Fundamenta Informaticae
74(2–3) (2006) 375–390

12. Bergstra, J.A., Ponse, A., Smolka, S.A., eds.: Handbook of Process Algebra. Elsevier Sci-
ence, Upper Saddle River, NJ, USA (2001)

13. O’Sullivan, B., Goerzen, J., Stewart, D.: Real World Haskell. O’Reilly Media, Sebastopol,
USA (2008)

14. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2006: A toolbox for the construction
and analysis of distributed processes. In Damm, W., Hermanns, H., eds.: Computer Aided
Verification. Volume 4590 of LNCS., Springer-Verlag (2007) 158–163

15. Kozen, D.: Results on the propositional µ-calculus. Theoretical Computer Science 27(3)
(1983) 333–354

16. Barnes, J.: Programming in Ada 2005. Addison Wesley (2006)
17. Balicki, K., Szpyrka, M.: Tag abstraction for XCCS modelling language. In: Proceedings of

the Concurrency Specification and Programming Workshop (CSP 2009). Volume 1., Krakow,
Poland (September 28-30 2009) 26–37

18. Balicki, K., Szpyrka, M.: Formal definition of XCCS modelling language. Fundamenta
Informaticae 93(1-3) (2009) 1–15


