
SCOOP: A Tool for SymboliC Optimisations
Of Probabilistic Processes

Mark Timmer
Formal Methods and Tools Group

University of Twente, The Netherlands
Email: timmer@cs.utwente.nl

Abstract—This paper presents SCOOP: a tool that symbol-
ically optimises process-algebraic specifications of probabilistic
processes. It takes specifications in the prCRL language (com-
bining data and probabilities), which are linearised first to an
intermediate format: the LPPE. On this format, optimisations
such as dead-variable reduction and confluence reduction are
applied automatically by SCOOP. That way, drastic state space
reductions are achieved while never having to generate the
complete state space, as data variables are unfolded only locally.
The optimised state spaces are ready to be analysed by for
instance CADP or PRISM.

I. INTRODUCTION

Several algorithms and tools exist for model checking
qualitative and quantitative properties for a wide range of
probabilistic models, modelling for instance randomised pro-
tocols or biological processes. Although these techniques are
promising, their applicability is limited by the well-known
state-space explosion and the restricted treatment of data.

Probabilistic process algebras typically only allow a random
choice over a fixed distribution, and input languages for prob-
abilistic model checkers such as the PRISM language [5] or
the probabilistic variant of Promela [1] only support basic data
types. However, to model realistic systems, more elaborate and
convenient means for data modelling are indispensable.

The incorporation of data yields a significant increase of
state space size. However, most of today’s probabilistic min-
imisation techniques are not well-suited to be applied in the
presence of data. Although several reduction techniques can
be applied at the model level, this requires the complete model
to be constructed first. Our approach is to symbolically reduce
at the process-algebraic level, minimising state spaces prior to
their generation by means of syntactic transformations.

We developed the probabilistic process-algebraic language
prCRL [6], [7], generalising the µCRL language [4] by adding
a probabilistic choice operator. We also defined a restricted
variant of prCRL, called the LPPE (linear probabilistic process
equation). Any prCRL specification fulfilling some mild condi-
tions can be transformed (linearised) into an LPPE, which then
allows symbolic reductions and easy state space generation
(in the form of a probabilistic automaton). On the LPPE
format, reductions can be applied. Most of these transform
an LPPE into an equivalent LPPE, others work during state
space generation. Figure 1 illustrates the approach.

The SCOOP tool we present takes a prCRL specification,
linearises it, applies reduction techniques, and generates the

Probabilistic specification (prCRL)

Intermediate format (LPPE)

State space (PA)

CADPPRISM · · ·

Analysis

Linearisation

Instantiation
- Confluence reduction

LPPE → LPPE

- Constant elimination
- Summation elimination
- Expression simplification
- Dead variable reduction

Fig. 1. The LPPE-based verification approach.

(often significantly) reduced state space, without having to
construct the complete state space first. The tool is publicly
available, open source and has a user-friendly web interface1.

II. THE INPUT LANGUAGE

The input language for SCOOP is the prCRL language,
introduced in [6], [7]. The core of the language consists of
process terms p, conforming to the following grammar:

p ::= Y (t) | c⇒ p | p+ p |
∑
x:D

p | a(t)
∑
•

x:D

f : p

Here, Y is a process name, t a vector of expressions, c a
boolean expression, x a vector of variables ranging over
countable type D, a a (parameterised) atomic action, and f
a real-valued expression yielding values in [0, 1]. A system
specification then consists of a set of processes (defined by
such process terms), an initial state and a data specification. As
an illustration of the language, observe the following example.

X =
∑

n:{1,2,3}

write(n)
∑
•

i:{1,2}

i
3 : (i = 1⇒ X + i = 2⇒ beep ·X)

This system continuously chooses and writes a number 1, 2
or 3 in a nondeterministic manner. Between each pair of write
actions, it beeps with probability 2/3.

The language also supports parallel composition of pro-
cesses, as well as action renaming, encapsulation and hiding.

The LPPE format is a restriction of the prCRL language,
only allowing a single process definition in which every
probabilistic choice is immediately followed by a process
instantiation. For more details on prCRL and the LPPE format,
we refer to [6], [7]. There, we also show how every reasonable
prCRL specification can be linearised to an equivalent LPPE.

1The implementation, including the web-based interface, can be found at
http://www.ewi.utwente.nl/~timmer/scoop/.



III. OPTIMISATION TECHNIQUES

Using the LPPE, several reduction techniques can be ap-
plied. We distinguish between (1) LPPE simplification tech-
niques and (2) state space reduction techniques.

SCOOP implements three LPPE simplification techniques,
which do not change the actual state space, but improve
readability and speed up state space generation. (1) Constant
elimination detects if a parameter of an LPPE never changes
its value. Then, the parameter is omitted and every reference
to it is replaced by its initial value. (2) Summation elimination
simplifies nondeterministic choices for which only one of
the possible alternatives enables real behaviour. This kind of
construction often occurs when composing parallel compo-
nents that communicate using message passing. (3) Expression
simplification rewrites conditions, action parameters and next
state parameters using for instance basic logical identities and
the evaluation of functions, where possible using heuristics.

SCOOP implements two state space reduction techniques,
that do change the LPPE or instantiation in such a way that
the resulting state space will be smaller. (1) Dead variable
reduction was generalised easily from the non-probabilistic
variant, introduced in [9]. It reduces state spaces while preserv-
ing strong bisimulation, by resetting irrelevant variables based
on the control flow of an L(P)PE. (2) Confluence reduction
was introduced in [2] for LPEs, to reduce state spaces while
preserving branching bisimulation. Basically, it detects internal
τ -transitions that do not influence a system’s behaviour, and
uses this information when generating the state space. This
reduces the number of states that have to be visited during
state space generation, and even more the number of states that
actually have to be stored. A generalisation to the probabilistic
setting was presented in [8].

All these techniques work on the syntactic level, i.e., they do
not unfold the data types at all, or only locally to avoid a data
explosion. Hence, a smaller state space is obtained without
first having to generate the original one.

IV. THE SCOOP TOOL

SCOOP was developed in Haskell (6640 lines of code ex-
cluding comments), based on a simple data language to allow
the modelling of several kinds of protocols and systems. A
web-based interface makes it convenient to use; it provides the
user with 30 seconds of server-time per request. Alternatively,
SCOOP can be downloaded to run locally on any platform.

The tool automatically linearises prCRL specifications while
applying the LPPE simplification techniques, and allows the
user to choose whether or not to apply dead variable reduction
and/or confluence reduction.

After generating and optimising an LPPE, SCOOP can also
generate its state space and display it in several ways. It can ex-
port to the AUT format for analysis with the CADP toolset [3],
or to a transition matrix for analysis using PRISM [5]. Al-
ternatively, under some conditions SCOOP can translate the
optimised LPPE directly to the PRISM language, allowing
the use of this probabilistic model checker to symbolically
compute (quantitative) properties of the model.

TABLE I
STATE SPACE REDUCTION USING SCOOP.

Original Reduced Visited Running time (sec)
Spec. States States States Before After
l-3-15 1,043,635 68,926 251,226 313.35 65.96
l-3-18 2,028,181 118,675 428,940 1161.58 124.74
l-3-21 out of mem. 187,972 675,225 − 205.90
l-3-27 out of mem. 398,170 1,418,220 − 497.94
l-4-5 759,952 61,920 300,569 322.62 75.14
l-4-6 1,648,975 127,579 608,799 1073.16 155.74
l-4-7 out of mem. 235,310 1,108,391 − 291.25
l-4-8 out of mem, 400,125 1,865,627 − 1069.56
l-5-2 260,994 14,978 97,006 155.37 29.40
l-5-3 out of mem. 112,559 694,182 − 213.10

Case studies. To illustrate the strengths of SCOOP, we
applied it to several variants of a leader election protocol
with i parties each throwing a j-sided die (referred to in
Table I by l-i-j. Both state space reduction techniques were
applied, decreasing the number of states by 90% – 95%. The
number of transitions (not shown here) decreased even more.

The time needed to generate the reduced state spaces was
always at most one fourth of the time to generate the original
ones (up until the point where swapping was needed; then, the
generation of the smaller state spaces is even faster, relatively).

ACKNOWLEDGMENT

This research has been partially funded by NWO under
grant 612.063.817 (SYRUP) and grant Dn 63-257 (ROCKS),
and by the EU under FP7-ICT-2007-1 grant 214755 (QUASI-
MODO). We thank Axel Belinfante for providing a web-based
interface for the SCOOP tool using his generic framework for
command-line tools (http://www.purl.org/net/puptol).

REFERENCES

[1] C. Baier, F. Ciesinski, and M. Größer. PROBMELA: a modeling language
for communicating probabilistic processes. In Proc. of the 2nd ACM/IEEE
Int. Conf. on Formal Methods and Models for Co-Design (MEMOCODE),
pages 57–66. IEEE, 2004.

[2] S.C.C. Blom and J.C. van de Pol. State space reduction by proving
confluence. In Proc. of the 14th Int. Conf. on Computer Aided Verification
(CAV), volume 2404 of LNCS, pages 596–609. Springer, 2002.

[3] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A toolbox
for the construction and analysis of distributed processes. In Proc. of the
17th Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 6605 of LNCS, pages 372–387. Springer,
2011.

[4] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Proc. of
Algebra of Communicating Processes, Workshops in Computing, pages
26–62. Springer, 1995.

[5] A. Hinton, M.Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool
for automatic verification of probabilistic systems. In Proc. of the 12th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 3920 of LNCS, pages 441–444. Springer, 2006.

[6] J.-P. Katoen, J.C. van de Pol, M.I.A. Stoelinga, and M. Timmer. A linear
process-algebraic format for probabilistic systems with data. In Proc.
of the 10th Int. Conf. on Application of Concurrency to System Design
(ACSD), pages 213–222. IEEE Computer Society, 2010.

[7] J.-P. Katoen, J.C. van de Pol, M.I.A. Stoelinga, and M. Timmer. A linear
process-algebraic format with data for probabilistic automata. Theoretical
Computer Science, to be published, 2011.

[8] M. Timmer, M.I.A. Stoelinga, and J.C. van de Pol. Confluence reduction
for probabilistic systems. In Proc. of the 17th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 6605 of LNCS, pages 311–325. Springer, 2011.

[9] J.C. van de Pol and M. Timmer. State space reduction of linear processes
using control flow reconstruction. In Proc. of the 7th Int. Symp. on
Automated Technology for Verification and Analysis (ATVA), volume 5799
of LNCS, pages 54–68. Springer, 2009.


