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Abstract

Objectives The aims of this work were: to define an abstract notationrftaractive de-
cision trees; to formally analyse exploration errors inhstrees through automated trans-
lation to LoTos (Language Of Temporal Ordering Specification); to genetrate imple-
mentations through automated translation for an existieg viewer, and to demonstrate
the approach on healthcare examples created by the CGTog@ kBuidance Tree) project.

Approach An abstract and machine-readable notation was developedefribing
Clinical Guidance Trees: AT (Abstract Decision/Interactive Trees). A methodology has
been designed for creating trees usingiA In particular, tree structure is separated from
tree content. Tree structure and flow are designed and ¢gdlbafore committing to de-
tailed content of the tree. Software tools have been crdatgdnslate AI1T tree descrip-
tions into Lotosand into CGT Viewer format. These representations suppontidl anal-
ysis and interactive exploration of decision trees. Thioagtomated conversion of existing
CGT trees, realistic healthcare applications have beehtosealidate the approach.

Results All key objectives of the work have been achieved. An abstraxtation has
been created for decision trees, and is supported by awtdnti@nslation and analysis.
Although healthcare applications have been the main fardate, the approach is generic
and of value in almost any domain where decision trees afaluse
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1 Introduction
1.1 The Role of Clinical Guidance Trees

Decision trees are often used for decision making, inclyidudespread use for
decision support in healthcare. This paper discusses anded kind of decision
tree that is oriented towards interactive use by non-spsisa

A Clinical Guidance Tree (CGT) is an enhanced form of deaidree for use in
clinical practice. Compared to conventional medical deaisrees, Clinical Guid-
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ance Trees focus on use by non-specialists, and provideduppinteractive ex-
ploration. Although these trees may be less common in medeasion-making,
various authors have argued that they have a useful role[24.@5]).

A Clinical Guidance Tree has conventional decision, chara terminal nodes,
and also uses probabilities and utilities (valuations dtomes). However, such a
tree differs in a number of respects from the conventionadi&iof trees used in
medical decision making. From hereon, the terms CGT and caktiee will be
used for brevity to mean these kinds of trees.

CGTs are patrticularly designed to support health decidigrlay users. However,
the approach is generic and is not restricted to healthEareexample, it can read-
ily support decision making in business, finance and riskssaent. However, the
main applications so far have been in healthcare applesitio

The work reported in this paper was inspired by the CGT pt¢je2]. This created

an enhanced form of decision tree that is particularly bletéor interactive explo-

ration by patients. The project developed a textual natdimo defining guidance

trees. Thisis supported by a viewer program that allows $iee to interactively ex-

plore treatment options and to evaluate the likely outconfi¢sese. The approach
is oriented towards patients, who need a user-friendlygtodreatment choices.
However, it also has value to medical professionals, whoveam the evidence for

different choices and the implications of these. The foltaypdiscussion is a broad
overview and does not imply sharp distinctions betweenytpes of tree:

Users: Medical trees are usually designed for use by cliniciansetp them eval-
uate a range of treatments or interventions. They often aakeunt of patient
views and values in assessing various outcomes. Howeepriimary user is
expected to be a medical professional.

A CGT is mostly oriented towards by use by non-specialisig. (gatients)
to help them choose treatments and lifestyle changes. Wantaje of a CGT
is that the user can explore choices at leisure, and can \aéwate options that
might otherwise not be considered. It is even possible @ pts might be more
honest with themselves when exploring options in private.

A CGT is also useful to those with medical training but notcalkst expertise
(e.g. nurses or even General Practitioners). It can be usedtraining aid for
those wishing to update their knowledge of available tresiis

These considerations mean that a CGT and its supportinga@fineed to be
designed in an accessible manner that non-specialistsereafibfrom.

Interactivity: Medical trees are normally designed to allow a set of treatrde-
cisions to be evaluated. Based on information supplied byspecialist, alter-
native strategies can be evaluated. This may lead to a siagtenmendation,
though sensitivity analysis is usually performed to deteamvhether a range of
recommendations should be considered.

In contrast, a CGT is focused more on exploration and exf@m#han on
evaluation and decision. As a result, CGTs are designechferdctive explo-
ration. The user can follow various paths through the trestuding backtracking
to earlier points and following other branches — perhapsyniares.



Explanation: Medical trees are usually designed for use by specialistswikh
to evaluate a range of options. As a result, explanation islgniimited to stating
how certain recommendations are arrived at and what thenattees are.

Because CGTs emphasise use by non-specialists, theyrwomiah more in-
formation. This provides explanations such a layman’sietscn of some treat-
ment or research evidence justifying a choice. This infdromamay be dynamic
as it depends on information gathered so far.

CGTs are also usually designed to offer explanations forerknowledgeable
users. This kind of explanation typically describes curmaedical knowledge
and refers to the literature to back up the statements made.

Information Gathering: Medical trees usually incorporate information just once
(e.g. probability or utility values). Some medical tredswaldata to be collected
as the tree is evaluated (e.g. a variable has not yet beem givalue).

Because a CGT is intended for interactive exploration,rmfttion is gath-
ered as the tree is explored. Since backtracking is eXpliaitowed, informa-
tion given earlier may be changed during exploration. Sarf@ination may be
given once (e.g. a patient’s height or weight). However,sorformation may be
more malleable (e.g. whether a patient is willing to exeramre, stop smoking,
or choose a particular treatment). A CGT allows the user oeg the con-
sequences of such information. For example, someone wikrlgnsion may
initially be unwilling to make lifestyle changes. On seethg consequences of
this, they may go back to earlier choices and see the bengfitaking changes.

As well as allowing this kind of information to be changed,@Tuser is able
to set or change the utility values associated with diffecenicomes. Again, the
exploratory nature of a CGT encourages users to evaludéeaht utilities (e.g.
they may modify their initial assessment of life with a chimoondition).

Design: Considerable experience has been gained in designing ahéxdies, in-
cluding advice on structuring and analysis. The same metbgg can be used
to design the similar aspects of CGTs. However, there is nihnodelogy for
designing the aspects of CGTs that make them distinctivialhpinteractivity).

Analysis: The most important analysis performed on medical treesnsitaty
analysis. This reflects their primary role in evaluatingisien alternatives. Other
analyses include looking for balance in trees, i.e. thasipds outcomes have a
similar share of both risks and benefits [8]. Since a CGT isxdangled form
of decision tree, it would be pointless to re-invent theshneques for CGTSs.
However, the interactive and exploratory nature of CGTsasithe need for new
kinds of analysis. The way that a CGT is explored and the way ittgathers
information can lead to new kinds of flaws that do not arise @dival trees.

Visibility: Medical trees usually have a fixed structure. CGTs also hdueed
structure, but the need for interactivity makes it desgdblallow sub-trees to be
hidden if circumstances dictate. For example, if a patieesthot have diabetes
then the treatment options presented during exploratignmaad to change. The
result is that users see trees that are tailored to theicpkat circumstances.

Combination: Suppose a tree has number of outcomes that may be combined in
arbitrary ways. For example, the Benign Prostatic Hypeaiplatudy mentioned



in this paper allows for the combination of two outcomes:liayement in symp-
toms and side effects of medication. A conventional medre& would have in-
dividual nodes that reflect these combinations (four inélksmple). Since some
clinical trees combine many such factors, this can becom#eusome.

In the case of a CGT, the combination brings extra compbeati Each out-
come is associated with an explanation for the lay user, &ed with medical
evidence for the specialist. This information would therrégeated in various
combinations for all the nodes. To avoid this, a CGT suppootaposition of
individual nodes. These virtual nodes automatically aegthie explanation and
reasoning defined for each case.

This paper refers to the structure of a tree: the tree nodestliey are combined,
and what their parameters are (e.g. probability of a charmech, utility of a ter-
minal node). A conventional medical tree is not likely to @a@euch more than this
level of description. For a concrete example of tree stmactsee the tree diagram
in figure 4 and its AIT representation in figure 5 in section 3.4.1.

It will be evident from the above that CGTs typically carry chumore information
than medical trees. This supplementary information isrreteto as the content of
atree. When defining CGTs, itis common for tree structurestjubt a few percent
in size of the tree content. For a concrete example of treéengrsee the AIT
representation in figure 6 in section 3.4.2.

1.2 Abstraction and Formal Analysis of Clinical Guidanceds

The results of the CGT project provided the baseline for tbekweported in this
paper. Although this project achieved useful capabilitied flexibility, the author
found that a number of fundamental improvements were netxstlengthen the
results of the CGT project:

e The CGT project notation for describing trees is almost adetfile. The struc-
ture is indicated only by keywords and layout. This is notéejging with mod-
ern methods of representing structured information (sscKML). It would be
highly desirable to have some common representation o$idecirees.

e The CGT project notation also mixes tree structure and oonte particular,
tree nodes often have substantial additional informatgsoeiated with them,
making it difficult to understand and review the overall stuwe. Since the trees
can become very complex, designing structure independiath content leads
to a beneficial separation of concerns.

¢ No rigorous methodology existed previously for creatingTSGRather, they
have been created through collaboration between medidal@nputing profes-
sionals. Trees have been validated only through manualgggty (i.e. manual
exploration of trees).

e When CGTs are used in healthcare, it is important that thesiigsh can be relied
on — a patient or a professional may make important choicesdoan the guid-
ance they receive from the tree. Formal (mathematical) ogstBupport rigorous
analysis, and so are appropriate for maximising confidemtee design.

e Aswill be seen, the CGT project developed enhanced faslfor decision trees.



Although these offer much greater flexibility and interaityi, the price is that
tree behaviour can become very complex. Indeed the behasiotten infinite,
with the possibility of loops and unusual transitions beswé&ee branches. It is
therefore hard to establish full confidence in a tree desigalp through manual
debugging. Again, an automated and formally-based arsakybkighly desirable.

CGTs are an extension of conventional decision trees. Asualtreeonventional
analyses (e.g. sensitivity analysis) can also be appli¢idetm. The work reported
in this paper has therefore concentrated on the partichiatenges of verifying
CGTs. This requires new kinds of analysis that reflect thelfiky in exploration
and information gathering that CGTs support.

To meet the challenges listed above, the author has devkl@p®us solutions:

e A methodology has been created for designing CGTs in a wdyctbarly sep-
arates tree structure and content. The methodology altudies rigorous tech-
niques for analysing the design of a CGT. This uses a formath{ematical)
method to establish tree integrity. Both static (definifiand dynamic (explo-
ration) aspects of a CGT are verified.

e An abstract and formal notation has been defined for CGEsTA (Abstract
Decision/Interactive Trees) supports automatic traimsleamong a number of
concrete formats for decision trees.

e Atoolset has been created to automate many aspects of oes@@Ts: defini-
tion, translation, verification and exploration.

1.3 Related Work
1.3.1 Decision Support in Healthcare

Decision trees (e.g. [13]) are used for decision making imyregpplications. An
online primer on decision trees can be foundh&p://www.projectsphinx.com/
decision_treesMore patrticularly, decision trees have been found vakiabmed-
ical and clinical practice (e.g. [5]). An online preseratiof decision making
in clinical research can be found http://symptomresearch.nih.gov/chapter. 14
Healthcare applications of decision trees include tharinglinical practice, nurs-
ing and patient care. The journ®ledical Decision Makindhas published many
articles on the use of decision trees in healthcare. Markadeats have been widely
adopted as the basis of medical decision trees [23].

Decision Support Systems (DSS) are common in healthcarengrine many tech-
niques developed are ASBRU [22]pH [17], PRODIGY [12], and PR@orma[12].
However, these systems are almost invariably designedstbuy clinicians.

Healthcare policies are increasingly stressing the ingoae of involving patients
in treatment decisions (e.g. [7]). Decision aids for dinest by patients are there-
fore becoming more common. A perspective on the spectruneasibn support
in healthcare appears in [20]. In terms of this classifiecate Clinical Guidance
Tree is a consumer (patient) oriented tool. The concept ofidagce tree was first

L An ‘adit’ is a horizontal entrance to a mine.



explored in [10,11], and subsequently developed ande¢dalh [1,2,21,25]. The
present paper focuses on the special characteristics osC&Rling with their
design, representation and analysis.

Decision trees are well supported by commercial and opancedools. As an ex-
tended form of decision tree, a CGT requires additionaltsach as an interactive
viewer and a behaviour verifier.

A common graphical convention for decision trees [14] uspsses for decision
nodes, circles for chance nodes, and rectangles (withiesilifor terminal nodes.
The diagrams in this paper use this notation, but with thetiadof a diamond
symbol for questions. However, these are just diagrammamyentions. Arden
syntax has been used to define condition-action rules foiceli procedures. GLIF
(Guideline Interchange Format [18]) is designed for intarggeable descriptions
of clinical guidelines. A comparison of such formats is give [19].

However, the author is unaware of any standard for maclaadable descriptions
of decision trees. This paper proposes a neutral notatroeftision trees, includ-
ing the characteristics required for CGTs. The notation readily be translated
into other notations (textual, structured, graphicalnfal).

Well-known techniques and tools exist for analysing cotieeral decision trees.
For example, sensitivity analysis is used to investigate $toategies change as key
variables change [9]. Automated techniques can be usedatgsandecision trees
for design flaws [28]. These same techniques can be applie@ s since they are
an extended form of decision tree. However, CGTs have distecharacteristics
(notably interactive exploration) that require new fornisuwalysis — a key goal of
the work reported in this paper.

1.3.2 Formal Methods In General

The term ‘formal method’ is used in medical science of anyesysitic approach.
For example, the use of a decision tree is considered to herefonethod. Monte
Carlo simulation is used for statistical analysis of demigrees [6]. Markov models
are also commonly used for analysing decision trees (e34).[2

However, a formal method (as used this paper) has a much meuiis mean-
ing in computer science. There it refers to a mathematidadlsed technique for
modelling, specification and analysis of computerisedesyst This is a very large
field with many techniques and tools; sktp://vl.fmnet.infofor a regularly up-
dated overview. Several formal methods have been stasg@akdnotably OTOS
(Language Of Temporal Ordering Specification [15]).

Perhaps surprisingly, formal methods in computer scies® seen very limited
use for modelling and analysis of decision trees. The ordyrgde known to the au-
thor is the PR@rmaapproach to decision support [24]. An operational semantic
for PRCIormais defined with respect to an abstract machine that execlimésat
decision procedures or guidelines.

The interactive nature of CGTs mean that they are prone wsetaof error that
do not arise in conventional decision trees. As a resultvaapproach is needed



to analysing decision trees for such errors. This calls flmraal method that can
effectively describe and analyse the exploration of a tfdmebaviours.

Formal methods support two broad categories of analysiglaten (testing) or
verification (proof). Validation is necessarily finite, aisdisually incomplete; how-
ever, it is practical for complex specifications or thosewiitfinite behaviour. Rig-
orous validation demonstrates that a specification behaoreactly for a finite set
of test cases. Verification is technically much more chajieg, and is usually in-
effective for complex or infinite behaviours (unless thesellthemselves to some
form of symbolic verification).

Model checking is a popular verification technique. It eksiles whether a spec-
ification respects certain desirable properties. Modetking investigates the dy-
namic behaviour of a system by considering its state spaeeel& properties of
a specification can be checked, such as freedom from deadiotiker behaviour
is blocked) and livelock (an internal loop without externammunication). How-
ever, it is often necessary to check specific propertied(asavhether a particular
tree node can be reached or whether a particular consti@ag)h These properties
are expressed in a temporal or modal logic that allows théviexpor potential
behaviour of a system to be described.

1.3.3 The DOTOSFormal Method

LoTosis a internationally standardised language for formal gjgation and rig-
orous analysis. Although conceived for use with commuivcatsystems, QT0s
has been used in many other areas. As an example from theahédid, it has
been used for modelling and testing of radiotherapy acateles [26]. LOTOS is
classed as an algebraic specification language: abstractyges are specified by
equations defining their operations, and behaviour is fipddby interacting pro-
cesses whose behaviour follows algebraic rules. Unlikerabau of formalisms,
LoTosfully supports the integrated specification of data and biela

LoToswas chosen to model CGTs partly because of its flexibilitytlypdecause
its capabilities are a good match to the characteristicS®T€; and partly because
of the good tool support for analysis. The main issue wititsfor CGTs is that
its data type library is rather rudimentary. However, itisemsible — the data types
needed for decision trees were added in the course of this wor

For space reasons, an introduction wrosis not provided here. Instead, theL
TOS specification extracts are extensively commented. An oeeref LOTOS s
given in [3]. Online tutorials can also be found fatp://www.inrialpes.fr/vasy/
pub/cadpand athttp://www.cs.stir.ac.uk/well

LoLA (LoTos Laboratory) is the tool that was used to validate CGT desonp.
LoLA includes various commands to generate the state spacecistjparious
constraints: limiting the exploration depth, recognisiagisited states, or combin-
ing the behaviour with a test process.

CADP (Construction and Analysis of Distributed Processetn://www.inrialpes.
fr/vasy/cadp is the toolset that was used to verify CGT descriptions.iflabke



properties of trees can be written in XTL (Extended Tempbagjic [16]) and then
model checked by &bpP. Efficient verification with @QDpP normally requires key
data types to be implemented in C. A conversion tool was al#tenw to generate
the additional annotations thaGpr needs for CGT data types.

1.4 Overview of The Paper

Section 2 illustrates a Viewer program for interactive exation of CGTs. The
new methodology for developing CGTs is also described.i@e& explains the
limitations of the CGT notation for decision trees. This iatied the definition of
the new ADIT notation. Section 4 explains how decision trees mAnotation are
translated into the @Tosformal language. The complexity of certain tree features
emerges during this discussion. Section 5 discusses hwm & specifications of
CGTs can be analysed. Itis explains the kinds of errors fautite trees developed
by the CGT project. Section 6 summarises the results andgifiuture work.

2 Using Clinical Guidance Trees
2.1 The CGT Viewer

Support for Clinical Guidance Trees was developed by a ptoje ‘The Develop-
ment and Evaluation of A Computerised Clinical GuidanceeTie Benign Pro-
static Hyperplasia and Hypertension’ [1,2]. The capabgiof the CGT system are
described here as background to the new work in this paperpiimary tool de-
veloped by the CGT project was a decision tree viewer. Thenrfuaius of CGT
was a range of medical conditions: benign prostatic hypsral(swelling of the
prostate), hypertension (high blood pressure), influearzd, menorrhagia (exces-
sive bleeding during periods). However, the approach isptetaly general and
could be used for decision trees in any other field.

The CGT Viewer is a graphical application that takes the tiseyugh several
stages, illustrated here when exploring BPH (Benign Ptiodtyperplasia):

(1) The user is first given background information on what digalar decision
tree covers, e.g. the nature of some medical condition.

(2) The user is then allowed to explore the tree graphically, to investigate
treatment options and their consequences. In figure 1, #réhas navigated to
the point where a particular medication is described (Ferate). As shown at
the bottom right of this figure, the user can explore variauts@mes by click-
ing on treatment choices. General navigation is shown didttem left of this
figure, where the user can move to an alternative branch drackirack. Pro-
fessionals can opt to see research evidence that descaitieservention.

(3) The user is then asked to associate utilities with theaues of the decision
tree. If necessary, the user can later backtrack to thiesaad adjust these
utilities in the light of changed priorities.

(4) The user’s weighting of outcomes then determines thegah through the
tree, i.e. which treatment choice best suits the user. Asiisho figure 2,
phytotherapy (herbal medicine) has the best score. Theaaseask for an
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Fig. 1. The Option of Finasteride Treatment for Benign RristHyperplasia

explanation of each choice.

The CGT Viewer reads decision trees in a textual notatioth weywords and
layout used to structure the text. Besides explanationloexjon, analysis and
recommendation, the CGT Viewer has other useful functioch &s summarising
an exploratory session and recording the user’s choicestdtistical analysis.

2.2 Methodology for CGT Design

Figure 3 summarises the new methodology for defining CGTisgu8DIT (Ab-
stract Decision/Interactive Trees). An initial concepteéfined manually into the
basis of a decision tree. This stage focuses on structurdlamdn the tree. A
formal specification of the tree is automatically generated evaluated using the
techniques described in section 5.2. This may identify lerols in the design, lead-
ing to a revised tree and re-evaluation. Now the detailetlrdican be added to the
tree. Again, this can be automatically formalised and eatald. The abstract tree
design is then automatically converted into an executadgeesentation for use
with a tree viewer (currently the CGT Viewer). The implensidgn can be used
many times to generate advice and recommendations.

A two-stage design (structure then content) is not enfqroed is use of formal
analysis. However, both of these are useful and desiratdpecally when a com-
plex or critical decision tree is being designed.

Trees can be defined directly in theoA notation. However, a separate decision
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tree editor (developed by Ross MacKenzie, University ofli§g) allows trees to
be defined using a graphical interface. This editor readseeates the XML form
of ADIT. Work is also under way to link the AT toolset to open-source tree edit-
ing software (TreeFornhttp:// sourceforge.net/ projects/treefoyand commercial
decision tree software (TreeAdatp://www.treeage.com

3 Defining Clinical Guidance Trees

3.1 CGT Notation

The CGT Viewer is an effective and user-friendly tool. Hoeewefining deci-

sion trees using its notation is an intricate and error-priask. The CGT project
notation suffers from a number of problems:

e Atree is defined by an almost flat text file. Realistic treesim@gvery long files
(some thousands of lines of text) and are therefore hardapgr

¢ Node descriptions often have large amounts of explanasotty($everal pages).
As a result, it is very hard to see the tree structure becdes@dtation does
not clearly separate structure and content. The notaties dot readily allow
structure to be developed first, and then populated witherdnt

e The commonest and most serious errors in CGT design aréwgmy@.g. uncon-
nected nodes or linking the wrong nodes. As will be seen,ltterCGT notation
allows complex flows that bypass nodes, unusual transibehseen branches,
and conditional inclusion of portions of a tree. Unfortwetgtthis flexibility risks

10
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making errors in the tree flow.
¢ In general, there is no tool support for designing correcT@®es. The designer
must do this manually, and rely on extensive debugging togmothlems.

3.2 Defining Tree Structure withDAT

The design of 1T was heavily influenced by the CGT project. However, the new
approach deals with the difficulties noted above, is mordratts and supports
formal analysis. In AIT, the tree structure is completely separate: it need define
only the tree nodes and their relationships. Content is atlyndefined through
reference to separate node attributes. However, it ispatkible to include literal
attributes with a node, typically for simple values such asabability or a payoff.

ADIT has various syntaxes that can be interconverted. The sstnpie is applica-
tive (function-like). This is compact, easily read and Basarsed by machine. In
this syntax, a tree is defined by nested nodes in the farde(parameters,children)
The applicative syntax is used in this paper because it isnitet compact. How-
ever, for easy interchange with other programgifalso has an XML syntax
where nodes correspond to elements and parameters cardegpattributes. A

11



Directive Meaning

/I text an explanatory comment about the tree thalt is
removed in the translated output

chancdid,label,attributes,nodel).. | a probabilistic (‘system’) choice of child nodes

commen{texi an explanatory comment about the tree that is
transcribed to the translated output

decision(id,label,attributes,nodel)..| a deterministic (user) choice of child nodes

guestion(id,label,attributes,nodel)..| a request for user input prior to child nodes

terminal (id,label,attribute} a leaf node

tree(id,label,attributes,node the whole tree with a single root node

value(name,valug a textual, numeric or code definition
Table 1

Summary of AIT Directives

third syntax is that used by the CGT Viewer program. All thfeenats are auto-
matically translated into each other, so the choice is updalesigner. The various
syntaxes are also automatically converted into other fpsonsh as the Tosrep-
resentation used for formal specification and analysis.

The top-level directives for defining tree structure artetisn table 1. As in other
forms of decision trees, there arthance decisionandterminal nodes. To allow
for capture of user input during tree exploration, therels® a question node.
The whole structure is defined bytee whose structure is defined by the nested
node definitions. Each node has an identifier, a short laliehtiributes. All nodes
except terminals may have child nodes; a tree has a sindterabde as the root. A
value definition is used to associate content with a node.

Question nodes allow greater interactivity with the usedrsglected points, the
user can be prompted to provide input (e.g. about symptonigestyle). This
information can be used to influence the later behaviour efttbe. In essence,
the user is asked a question whose answer is stored in a tieblgaHowever,
guestion nodes add considerable complexity (and were feaubé rather loosely
specified by the CGT project).

Interactive navigation allows the user to backtrack to astjoe that was answered
previously. At this point the user can retain the previouswar or can change it.
The user is allowed to skip a question (or a series of questidrhis is permitted
because the user may be undecided, or may be unwilling to makenmitment
at this point in the exploration. The answers to such questiemain undefined or
are given default values, depending on the design of the Sldpping questions
can cause surprising transitions between nodes, going drmenbranch of a tree
directly to another. Question nodes may also be renderéule/isr invisible as the
tree is traversed, again resulting in potentially surpgsor incorrect behaviour.

12



Section 4.2.5 discusses the complexities of question niadesre detail.

The specification of a question includes a definition of thered answers. The
units for an answer (e.g. height in metres) are stated in stiqueand so are implicit
in an answer. An answer is validated by checking that it falthin the permitted

set of values (an enumerated set or numerical range).

3.3 Defining Tree Content withDAT

The content of a tree is normally defined by sepavailee attributes. Indeed the
ADIT design philosophy encourages the designer to focus igibal just the tree
structure and flow. At this stage, the attributes are largelynportant and can
mostly omitted. Only once the tree structure has been definddvalidated is it
necessary to elaborate the content.

Tree content is defined by means of the node attributes listedble 2. A number

of attributes are common, while some apply only to partickiads of nodes. At-

tributes can be defined literally or by reference. Since1Ais based on work by the
original CGT project, [2] can be consulted for more detailhanv these attributes
are used. The more specialised ones are discussed briedly. bel

ADIT encourages short definitions of nodes so that it is easienderstand the
tree structure (as defined at the end of section 1.1). A litezfnition is usually
given only if it is simple (such as a probability value or aighte name). A literal
attribute has a form such psobability="0.3". Usually only those aspects necessary
to define the tree structure are defined along with a nodeigthis information that

is normally associated with a conventional decision tree:rtode type, identifier,
and (if relevant) probability and utility value.

Extended attributes are preferably defined separately thain associated nodes.
Suppose that extensive explanation is needed of a particalment choice (e.g.
of the research evidence that underlies it). Rather thaargmlthe node definition
by several pages of text, the explanation should be definadsegparate attribute
and referenced in the node. The corresponding value definginamed after the
node and the attribute. For example, a node (e.g. identachfulWaitingg may
refer to a separate attribute (ergason). The attribute reference and definition are
linked through a name in the fornode_attribute

ADIT also includes features such as expressions, text markaptign nodes, con-
ditional visibility and node composition.

Nodes typically have substantial textual content defineseparate attributes. All
nodes have implicitlisplay attributes for explanations to the user. Several other
attributes such agueryandreasonare also defined as text. Although not illustrated
here, HTML markup can be used in text. In addition, text cart@o macros. These
are conventional macros (possibly with parameters) thpamea to pieces of text.
They are useful for things like common explanations or shaedculations.

Sub-trees are visible by default, but may be rendered nieisluring exploration
if certain conditions are met. For example, the BPH decistee computes an
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clc =
Attribute | Meaning 5|8 |32 |8
composed | expression for using composed node headings v
conjunction| text to join composed nodes v
dictionary | name of a glossary file v
display text for user display (assumed by default) VI VIV
error text for reporting a validation error v
format format for user input v
label long label for a node VI VIV
macros global macros v
neutral payoff between positive/negative outcomes v
payoff expression for a payoff (i.e. utility value) v
perform user instruction text VIV VI
print expression for summarising a node VI vV
probability | expression for probability of a choice VIV VI
query text for question to user v
reason text for explaining a choice VI VIV
scale expression for scaling composed node payof” | v | v/ | vV
valid expression to validate a question answer v
variable question variable v
variables tree variables v
version tree notation version v
visible expression to check node visibility VI VIV

Table 2

Summary of AIT Attributes
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Fig. 4. Decision Tree for Benign Prostatic Hyperplasia

AUA (American Urological Association) symptom score basedwhat the user
reports. Watchful waiting is appropriate only if the symptscore is less than 20;
a higher value requires active intervention. The visipibf the WatchfulWaiting
node (and its children) is therefore defined bysableattribute. During a particular
exploration, a sub-tree may be deemed irrelevant and slibeidfore be hidden.
Nonetheless, even an invisible node may have an effect @rthor example, it
may affect their relative probability or utility values.

Many decision trees lead to terminal nodes that are notidisjbhis can lead to

considerable duplication in the tree — particularly of tlxplanatory information

that would be identical in all cases. It would be tedious amdregorone if the tree

designer had to define all such cases explicitly, since tivendd be substantial
overlap in their descriptions. Instead, a virtual node magdamposed from others
by combining their short labels with ‘&', e.g. ‘Urinary Syrtgms Better & Finas-

teride Side Effects’.

Some of the attributes in table 2 deal with composed nodescdimposeattribute
indicates that the labels of the composing nodes shoulddstasa heading in the
composed node. Thenjunctionattribute defines text to join that of the composing
nodes. Thecaleattribute is used for scaling payoffs where a composing modet
visible in the tree. Thaeutralattribute defines the boundary between advantageous
and disadvantageous payoff values, for use in calculatiagpaiyoff of composed
nodes. As explained in [2], the neutral point is used to das®mposed nodes
automatically as desirable or undesirable from the useiistf view.

3.4 A Decision Tree Example

3.4.1 Tree Structure

To illustrate the AIT notation, an extract has been taken from the full tree for Be-
nign Prostatic Hyperplasia (BPH). The extract serves amigxplain the notation,
and is not particularly meaningful in isolation. Figure 4wgls the tree structure,
while figure 5 shows this in &IT form.

The tree explores the consequences of choosing certain Rtinents. Nodes in
a tree have an identifier such B®H and a short label such as ‘Benign Prostatic
Hyperplasia'. The top-level tree element hagaaiablesattribute that defines tree

15



tree(BPH, Benign Prostatic Hyperplasia, variables,
decision(Introduction, BPH Introduction, ,
decisionTURP, Transurethral Resection, reason,
gquestion(Sexual, Sexually Active?,
query format£Edit(1)’ variableZ sexual valid),
chancgOutcome, Surgery Outcome, ,
terminal (Problems, Sexual Problems,
probability="0.08" payoff=’ payoffSexProblenfsvisible),
terminal (Recovery, Full Recovery,
probability="#"' payoff="100" reason))),
terminal (Phytotherapy, Phytotherapy Treatment,
payoff=’ payoffPhytotheragi reason)))

Fig. 5. Decision Tree Structure for Benign Prostatic Hyjzesia

variables. This is followed byntroductionas the root node. Two main branches
can then be followed the user:

TURP: This decision node allows the user to investigate TranstakResection
of the Prostate (TURP) as a surgical optionreasonattribute gives research
evidence for this option. The user can now decide betweenexirg) a question

about sexual activity and the outcome of TURP:
Sexual: This question node asks whether the user is sexually adthequery

attribute refers to a separately defined question. fohmat attribute defines

the answer as aRdit (i.e. free-form) response of one character. Vadgable

attribute defines which variablesdxua) will receive the answer. Thealid
attribute refers to a separately defined a check on the answer

Outcome: This chance node leads to different terminal nodes, eat¢hasgoci-
ated probability and payoff:

Problems: This terminal node corresponds to sexual problems afteesur
The visible attribute of Problemsrefers to a separately defined check on
the visibility of this node. If the user is sexually activegtnode is visible
during tree exploration. If not, the node is invisible (iomly theRecovery
node is visible).

Recovery:This terminal node corresponds to full recovery after siyrgehe
probability attribute uses ‘# to mean the residual probability. Thid e
0.92 if Problemss visible, or 1.00 if not.

Phytotherapy:This terminal node allows the user to consider phytothe(apgnt-
ment with herb or plant extracts).

This example is a little artificial for illustrative purpaseSince thé&exualjuestion
is in the context of a decision, the user can choose to ignoF®r this reason, a
default answer must be defined (by initialisisgxualto 1). TheSexualquestion
requires a free-form answer and therefore must be validétegractice the tree
designer would use the formBadio(no,yes)which is more obvious to the user
and requires no validation. If the user is not sexually &tdutcomedoes not
involve a chance alternative. The full BPH tree has many rhboaiaches at this and
other points.
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value(BPH_ Display, Benign Prostatic Hyperplasia is ...)
value(BPH_Variables, payoffPhytotherapy = 80; payoffSexPeaid = 20; sexual = 1)
value(Introduction_ Display, In most cases the best treatmeni)is
valueg(Outcome__ Display, Surgery may lead to a variety of outcomgs
value(Phytotherapy_ Display, The use of plants and herbs (phegtapy) ...)
value(Phytotherapy Reason, This treatment is suitable only. for
value(Problems_ Display, This surgery can lead to sexual problem
value(Problems_Visible, sexual)

value(Recovery_ Display, Full recovery is possible after thigsuy ...)
valueg(Recovery Reason, 29 RCTs and the UK prostatectomy aydit ..
value(Sexual_ Display, If you are sexually active then ...)
value(Sexual_ Query, Are you sexually active? (0 = no, 1 = yes))
value(Sexual_Valid, sexual == 0 or sexual == 1)

valug(TURP_ Display, Transurethral Resection of the Prostate)is
value(TURP_ Reason, 30 reports informed this advice ...)

Fig. 6. Decision Tree Content for Benign Prostatic Hypesiala

3.4.2 Tree Content

The detailed tree content is shown separately in figure 6 e0éssity, the informa-
tion here is highly abbreviated as it occupies four pagesveyer, this highlights
the point that is helpful to separate content from strucfline tree content is linked
to the tree structure by combining node and attribute naf@sexample, value
TURP_ Reasonorresponds to nodBURPand attributereason The definition of

TURP_ Reasomn figure 6 is automatically used in ti@&JRPnode of figure 5.

The implicitdisplayattributes correspond Wisplayvalues. The top-level tree def-
inition has special attributes suchBBH_Variableshere to declare and optionally
initialise tree variables.

The attributesvalid andvisible define boolean expressions. The approach of the
CGT project to expressions has been respected: these aeenpdt after the C
programming language and its derivatives. In fact, it wdugdbetter to call these
statements rather than expressions: they are statemeetrsxss that yield a value.
For example, an assignment to a variable is an expressibyidhds the new value.

If there is a sequence of statements or a conditional statienie last calculated
expression defines the overall result.

Problems_Visiblsimply returns the value of theexualvariable.Sexual Valide-
turns true ifsexualis 0 or 1. However, in general such expressions can be complex
and have side-effects.

In the trees developed by the CGT project, expressions wdtheffects (variable
assignments) are frequently used. Although this is comverfrom the tree de-
signer’s point of view, it makes the semantics of the treemmore complex. In the
author’s opinion, purely functional expressions woulddnaeen preferable. Side-
effects could have been achieved through separate assigmniowever, AIT
respects the original CGT work for backwards compatibility
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Application ADIT CGT LOTOS
Lines | Attrs. | Lines | Nodes| Lines | Processes
Benign Prostatic Hyperplasip 3592 | 492 | 3258 96 | 2001 116
Influenza 583 49| 577 16| 369 17
Hypertension 6510 331| 6205 75| 3285 124
Menorrhagia 1034 | 191 926 53| 1010 55
Table 3

Representations of Healthcare Applications

3.5 Applications of AIT

Although ADIT addresses the problems of the CGT notation discussed in sec-
tion 3.1, its value lies in being able to convert tree desimniys into other notations.
A suite of tools has been created to automate the followisksta

e For use with the CGT Viewer (section 2.1)pAr descriptions can be converted
to/from the notation used by this tool. This allows userseoddit from existing
work on developing trees for a variety of conditions.

e For easier interchange with other toolsbi&x can be converted to/from XML
(based on work by Richard Bland, University of Stirling).i¥lalso allows use
of the decision tree editor mentioned in figure 3.

e To support formal analysis of decision treegIA can be converted intodTos
as discussed in the next section.

ADIT also lends itself to translation into graphical languagehsas GraphML [4],
which is supported by a range of graphical editors.

The ADIT conversion tools consists of around 3600 lines of codetewrin the Perl
scripting language and the M4 macro language. These arg@aidtaps, obvious
choices for implementing a translator. However, the syofakDIT is very simple
and does not merit the use of normal compiler tools. The astlso has had good
experience of developing several translators with PeriNMad

To give some idea of the decision trees that have been dedltgible 3 presents
statistics on various healthcare applications. This shbesiumber of text lines in
each representation, plus the number of separately defihdslites (ADIT), tree
nodes (CGT) or processesdlLos). The table gives some idea of the scale of these
examples: the larger trees are non-trivial. The table ailsssggome idea of how the
different tree representations compare in size and nunflmemstructs.
These healthcare applications were created by the ori§i@dl project. The CGT
team members were mostly medical professionals, with ceanseientists being
responsible for defining the CGT notation and CGT Viewer. phacedure for
development of these applications was as follows:

(1) The medical professionals identified various condgiarmere an interactive

decision aid would be valuable. The concept for each apgmicavas then
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elaborated. This included a preliminary structure for tiee tcoupled with an
outline of the explanations and research evidence required

(2) The computer scientists then coded the trees. As notedation 1.2, there
were several methodological weaknesses in this procedsolaa rigorous
design methodology, tree structure and content were natiglseparated, and
lack of formal semantics for tree definitions. Many iterasovere needed,
with the computer scientists discovering gaps in the trdmitien and the
medical professionals filling this.

(3) The CGT team now manually debugged the trees. This iteshtiechnical
errors (such as missing nodes or incorrect tree trans)tiang explanation
errors (such as incomplete advice). Again, many iteratwee® needed.

(4) Following ethical approval, the trees were now tried lmjunteer patients.
This stage was mainly focused on evaluating the capabsiliti¢he approach.

(5) Finally, selected trees were used in real trials withgmas: the hypertension
guidance tree [25], and the menorrhagia guidance tree T2 .author is not
aware of any RCTs so far using the BPH tree.

Prior to deployment, roughly two man-years of effort had @arto thorough de-
velopment of the trees by medical and computing profestsomae trees had also
been informally evaluated by patients. All significant flas¥euld therefore have
been eliminated prior to the work reported here. Sectiongerilees the kinds of
formal analysis that the trees were later subjected to, drat emerged from this
investigation.

4 Formalising Decision Trees
4.1 Specification Approach

4.1.1 Level of Abstraction

ADIT descriptions of decision trees are automatically traadlanto LOTOS for
analysis. The translation of a decision tree is an abstractf what the user sees
when exploring it. Certain aspects are intentionally edelilibecause the focus is
on analysing the structure and flow of the tree. Explanatxyit not included in
the specification. This is considered to be content and isdee®loped manually.

An important aspect covered by the formalisation is usetogagion of the tree.
In particular, the user is allowed to backtrack in the tregvals as move forwards
when making choices. As will be seen when node checks andigunesdes are
discussed, it is easy to make mistakes in these aspectstoééhibow. Tree naviga-
tion is therefore supported in the formal specifications.

Numerical aspects such as probabilities and payoffs areuroéntly handled in
the specification. These will be incorporated in future gsrprobabilistic variant
of LoTOos The current emphasis oftAT is thus on the functional behaviour of the
tree, i.e. on defining the tree flow and on detecting possiibtesin this.
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4.1.2 Tree Variables

A number of specialised data types were definedomasfor the ADIT library. All
tree variables are floating point numbers — a type that thedata LoTos library
does not support. A rather complex specification was deeeldpr real numbers
in the form<sign,whole,fractior.

Typical trees have many variables (hundreds in some cadd®)ugh each variable
could be a separate process parameteonds, this would be extremely unwieldy.
Instead, variable values are stored imap as a single value. This is the usual
concept of a map from variable names to values.

Since LoTos does not have global variables, the variaflapis passed into and
out of every process to reflect changing variable values.eSspacial variables are
used for internal purposesacking(whether the user chose to backtradgtisfied
(whether a question was answered correc8i)pping(whether the user chose to
skip all questions of a seriesjalid (whether a question answer is valid), ansible
(whether a node is visible).

4.1.3 Tree Expressions

A number of attributes (e.g. for validity or visibility chkg) define expressions.
As discussed in section 3.4.2, expressions can have delgsefFurthermore, ex-
pressions often use conditional or sequential forms. Asaltiea tree expression
cannot simply be translated as @1os value expression (which is always purely
functional). Instead, a tree expression is translatedartoTos process that takes
a variable map and produces a variable map. Such procedsagebalmost like
functions, but can have side-effects, conditions and sempse

Since probabilities and payoffs are currently abstractealyaany variables deal-
ing with these are eliminated during translation intoTlos For the same reason,
expressions involving these variables are also removesl tréles produced by the
CGT project often used checks with a valudalfe i.e. some questions may never
be answered correctly or some sub-trees may never be teavédrsvas found that
the CGT project needed these only during early stages aaddatl them to be-
come dormant. The &tos formalisation handles this by eliminating unreachable
portions of a tree during translation.

The translation of a typical validity checlSéxual_Validn figure 6) is shown in
figure 7. The effect of this process is to set the validity & #mswer to th&exual
guestion. Variable values are retrieved from a magetand stored witlset In this
case, the value of variabéexuals retrieved and checked to be 0 or 1. The resulting
boolean value is stored in the map as the last result cagzuldihe outcome of a
check is a new map; this is accepted and stored in a variabteahafter the node
(Sexua). A similar translation strategy is followed for visibyithecks. If there are
side-effects or complicated expressions, validity andbilis/y checks have fairly
complex translations toaTos

LoTos processes resemble procedures or methods in a programamggage.
Process parameters may be given in parenthesesriagfor tree variables). Pro-
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ProcessSexualValid (map:Map) Exit(map) = (* validate sexual*)
Exit (set(get(sexual,map) == 0 or get(sexual,map) == 1, map)) exif*with validity *)

> Acceptmap:Mapin (* get new map *)
Exit (setValid(Sexual,map)) (* set validity f@exual*)
EndProc (* end SexualValid)

Fig. 7. Validation Process f@exual

ProcessRecovery [user] (map:Map)Exit(Map) = (* terminal Recovery)
user 'Recovery; (* enterRecovery)
(
Exit({}) (* exit leaf node *)
[ (* or ¥
user !'Back; (* go back *)
Outcome [user] (map) (* to parent *)
)
EndProc (* end Recovery)

Fig. 8. Terminal Node Process fRecovery

cesses may exit with optional values (e.g. the resultitag). A LOTOS process
communicates via ‘gates’ (like ports) that are given in keds. Process outputs
have the formgate !valug while process inputs from have the forgate ?vari-
able:type Comments in bTosappear in ‘(* ... *)'.

4.2 Node Specifications
4.2.1 Nodes in General

Each tree node is translated to atosprocess. The automatically generated spec-
ification is neatly laid out and fully commented — the examsplethis paper are
literal extracts from the translator output. This ensubhes the specification can be
readily related to the original &\T description. The tree example in figures 5 and
6 is translated to 430 lines ofdTosand 10 processes.

4.2.2 Terminal Nodes

The translation of a typical terminal nodedcoveryirom figure 5) is shown in fig-
ure 8. All nodes start by advising the user they have beemazhtgsing an event
of the form ‘user hodé. As it is a leaf node, a terminal can exit the entire speci-
fication with an empty map (‘{}’) as the map is no longer sigoént at this point.
However, the user may backtrack to the node’s pa@nt¢ome by issuing aBack
command. Backtracking may cause behaviour to become mfimaking formal
analysis more difficult. For this reason, backtracking caimitted from the spec-
ification through a translator option.

4.2.3 Decision Nodes

After entry, a decision node simply allows a deterministie.(user) choice of its
child nodes using theaTos' [}’ (‘or’) operator.
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Fig. 9. A Decision Tree with Questions

4.2.4 Chance Nodes

After entry, a chance node allows non-deterministic exgilon of its child nodes
(i.e. the user cannot influence the selection). orbs non-deterministic alterna-
tives are selected by an internal evénthis is anonymous, i.e. the exact nature
of this event is not stated. As a translator option, this maynade explicit (using

a hidden event gate for each of the choices). Internal evernt®TOS represent
actions within a system that are not explicitly identifiedcontrolled. Typically
they are used in @Tosto affect choices. TheaTtosuse of ‘internal event’ should
not be confused with, say, internal event triggers in gungemodels like GLEE
(Guideline Execution Engine [18]). Equally, th@tosuse of ‘choice’ for alterna-
tives does not mean a ‘decision’ in a decision tree sense.

Every node may have an associated visibility conditiontiSeel.1.3 explains that
such checks are translated as separate processes. Béwmesmay contain inter-
nal events (caused Iixit), they may not be used in the context of @atoschoice
since an internal event determines which branch is takeiedal, visibility checks
for children of a chance node must be performed at the statabfance node so
that all alternatives are possible. The results of theseksh&re used in calls of the
visibleoperation.

4.2.5 Question Nodes

While exploring a tree, the user can move forwards (makingogs) and back-
wards (reversing choices). The user can choose to skip digugsr a series
of them). If a question is revisited, the user can presereeptievious answer or
change it. The formalisation faithfully respects theseeatpbecause they are a
likely source of errors in the tree design.

A correctly designed tree will allow the user to explore teiractively, to backtrack,
and to change answers to questions. An incorrectly desigaednay fail to take
account of this, leading to incorrect outcomes. This isipaldrly a problem if
guestions are interdependent. CGTs therefore requiretlgbranalysis to check
that these kinds of problems do not arise.

Exit from a question node essentially progresses to the anaitable node. Con-
sider the sample tree in figure 9 with decision nodes (D), tipresiodes (Q) and
terminal nodes (T). Skipping Q3 moves to Q4, while skipping iQoves to T5.
When at any question node, choosing to skip all questiomsmats/es to T5.

If the user chooses to navigate back from Q4, what now hapgepsnds on the
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ProcessSexual [user] (map:Map)Exit(map) = (* questionSexual)

SexualAux [user] (map) (* ask question *)
> Acceptmap:Mapin (* get new map *)
(
[backing(map)]> (* going back? *)
TURP [user] (unback(map)) (* tdURP, not going back *)
I (* or ¥)
[not(backing(map))]> (* not going back? *)
Let map:Map = unskip(maph (* stop skipping questions *)
Outcome [user] (map) (* to Outcome*)
)

Where (* local definitions *)
ProcessSexualAux [user] (map:Map)Exit(Map) = (* auxiliary process *)
EndProc (* end SexualAux)

EndProc (* end Sexual)

Fig. 10. Question Node Process fdexual

prior answers. If Q2 was previously skipped, it will be aslegin. Choosing to
skip Q2 again will cause Q3 to be considered (and ignoreckifipusly answered).
If Q2 was previously answered correctly, the user will beegisiwhether the prior
answer should be preserved or changed.

In fact the situation is even more complex. For example, Qf beaconditionally
visible. Suppose Q2 is initially visible so the user is proetpto answer it. How-
ever, the answer to Q2 or Q3 may change this visibility. Ifelser chooses to go
back, it may be found that Q2 has effectively disappearesintxt node will be
T5. As a concrete example, suppose Q2 initially asks whetigeuser is willing to
answer questions about sexual behaviour. If the user @sclihen Q2 can be made
invisible to future exploration. This would be an unusudlfpermissible design for
a tree; the semantics must therefore give it a precise irgeoon.

It is therefore not surprising that the translation intoTlos of question nodes is
complex. In fact, the documents describing the CGT work][iv@&re found to be
rather loose (and even incorrect) in their description asion nodes.

The translation of a typical question nodgekualfrom figure 5) is shown in fig-
ure 10. The real work of a question is performed by an auyilgiocess that yields
the question answer. Sin&exualAuxequires a page of specification, it is omit-
ted here. If the user decides to backtrack, the question sntovés parent node.
Otherwise, the question moves to the next node. The userlearse to skip the
current question and others that follow it in a series. Wheserges of questions
ends, skipping is cancelled.

5 Analysing Decision Trees
5.1 Analysing DTOSSpecifications

Developing the strategy for translatingA into LoToSwas a valuable exercise in
its own right. The resulting semantics give a precise natiomhat CGTs mean. In
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a number of cases discussed with the CGT team, the meanirgiotis constructs
was unclear or undefined — and sometimes surprising ever t6@T team. One
example is what should happen if a node is hidden. The proisl#mat checking its
visibility may have side-effects. These may change howekeaf the tree behaves,
even if the node is invisible. Similarly, validity checksdaather calculations may
have unexpected and unintended consequences.

As noted in section 1.3.1, CGTs have distinctive charagties (e.g. interactive
exploration) that require new forms of analysis. The ainmhefformal analysis de-
scribed here is to find flaws that are particular to CGTs. Morerentional analyses
are used to discover other kinds of flaws in CGTs and are notsiéed here.

Having generated a &To0Ss specification for a tree, any kind of formal analysis
can be used. In the present context, the goal is to discoeandtv kinds of flaws
that may arise in CGT design.DAT automates this analysis as far as possible.
In fact, the ideal is that the designer just works with thecdgson of a tree —
formal analysis would ideally be fully automated. The authas developed several
techniques to ease validation and verification, thoughetls¢ifl require effort to
define appropriate validation tests and verification priger

MUSTARD (Multiple-Use Scenario Testing and Refusal Description])2s de-
signed for automatically validating specifications. Tests expressed in a neutral
language that is independent of the application domairsleeification language,
and the validation tool. For example,IMTARD has been used to validate specifi-
cations of voice services, web/grid services and radiafhedevices. MV STARD
support includes bTosand its various toolsets.

PCL (Parameter Constraint Language [26]) deals with thelpro that specifica-
tions often use variables with infinite sets of values (e.ginaple number, as in
decision trees). This may make formal analysis impractecabimpossible. How-
ever, as in conventional software testing, it is usuallyassary to check only criti-
cal values. Suppose an input must lie in a numerical rangae¥gust outside the
range, justinside it, and in the middle should be tested. 8@ws a LOoTOS spec-
ification to be annotated to indicate the key values to chB€{. annotations are
automatically translated intodTos and used to constrain the analysis.

5.2 Analysing Clinical Guidance Trees

The kinds of errors that can be made in a CGT fall into the Wilhg categories:

Syntactic errors mean the tree is badly formed. For example, a terminal noge ma
have children or a question node may not define the answeatorm

Static semantic errors mean the tree description is well formed but can be found
to be incorrect without traversing it. For example, an egpi@n may use an
uninitialised variable or a variable may be undeclared.

Path errors mean that exploring the tree leads to problems. For exaraglages-
tion may be asked indefinitely or a node may be unreachable.

Numeric errors mean that calculations are incorrect. For example, prdibabi
do not sum to 1 or payoffs are wrongly determined.
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Explanation errors mean that explanations given to the user are wrong, incom-
plete or misleading. For example, a medical condition mightncorrectly ex-
plained or the consequences of a treatment might be incoatptiescribed.

Because of the level of abstraction chosen for formalisiegjgion trees, numeric
errors and explanation errors are currently not coveretieranalysis (though de-
tection of numeric errors will be undertaken in future). $@aspects fall within

the definition of tree content, which is not the current foouanalysing CGTSs.

The other kinds of error are concerned with the tree strecind flow, and so are
checked. Since CGTs allow interactive exploration, thegpal focus is on path

errors. This requires the dynamic behaviour of the tree tartadysed, i.e. the state
space of its specification to be checked. The analysis ispeed automatically to

uncover the kinds of flaws that a user might meet during aexaloration.

The ADIT approach was used on the healthcare studies developed l§yGhe
project. These have been briefly described in earlier sextim particular, sec-
tion 3.5 describes how these applications were developatddoC GT team, and
what quality assurance procedures were used. Note that #pgdications hadl-
readybeen thoroughly evaluated by medical and computing priafieats, had been
informally evaluated by patients, and (in two cases) had lsed in trials.

The analysis reported in this paper was therefore perfoaftedthe fact. This was
therefore a severe test of the new work. If formal analysidaatill find errors
in thoroughly evaluated trees, this would give confidenes ittwould prove even
more useful when developing new trees from scratch.

ADIT tree descriptions were automatically generated from f@althcare CGTs:
benign prostatic hyperplasia, influenza, hypertensionraedorrhagia. The ana-
lytic techniques described in section 5.1 were appliedese¢hThe AIT translators
detect syntactic and static semantic errors automaticEflgy checks for dynamic
flaws were focused on path errors, such as those arising froomrect validity or
visibility checks. The following techniques were used ttedépath errors.

State space exploration was used to assess general classes.deadlocks can
occur if a node should be visible but is not; the effect is ttextain leaf nodes
become unreachable. Although livelock is not strictly ploigsin CGTs, infinite

loops can arise if a validation condition is incorrect andses a question to be
asked repeatedly. If the user is allowed to backtrack inribe, its behaviour be-
comes infinite. Although backtracking can be omitted thioagranslation option,
it is normally enabled as it allows detection of certaindation or visibility errors.

Property checking was used to assess particular typesaf Eor example, if the
guestion about sexual activity is correctly answered tihehquestion should not
be repeated. Conversely, an incorrect answer must lead riediate repetition
of the question. If the user is sexually active, then the ibdig of sexual prob-
lems following surgery must be a permitted option (and vieesa). Properties like
these were formulated using either specificriostest processes or XTL (Extended
Temporal Logic [16]).
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Like other temporal logics, XTL is used to define propertieattmust hold for
all dynamic behaviours of a system (i.e. during interacti¥ploration of a CGT).
Temporal properties fall into certain broad classes. $gietperties state what a
system must never do (e.qg. if the user is not sexually adiinvs sexual problems
must not be presented as a possible problem). Livenessriegpstate what a
system must eventually do (e.qg. if the user chooses to uadédgRP surgery, then
the outcomes of this must eventually be presented). Faipreperties ensure that
all permitted behaviours of a system do occur (e.g. expidhe TURP branch does
not lead to exclusion of the phytotherapy branch). In additdo generic properties
like these, application-specific properties were formadge.g. that the best payoff
for BPH results from choosing TURP).

The following categories of errors were found through foraraalysis of the four
healthcare studies. TheDAT tree descriptions were obtained from the original
CGT trees through automatic translation, so these errors @aleo present in the
originals.

Structural errors A number of cases were found where a sub-tree could not be
explored because a question could never be answered tpwethe sub-tree
was always invisible. In terms of formal analysis, thereaw@nreachable states.
These errors were corrected by eliminating sub-trees garamslation (because
they were intentionally dormant) or by correcting their ditions. Structural
errors are detected either during translation (e.g. a muregtat is not followed
by anything) or when checking the static semantics of thesteded specification
(e.g. nodes processes are technically inconsistent). figmal CGT trees had
already been thoroughly checked, so complex semanticsanrere not found in
the work reported here. But it is anticipated that in new tgwaents it will be
valuable to have significant semantic errors detected aattoatly.

Initialisation errors Variables may be initialised in the wrong order. For example
probUnwellwas initialised tol - probWel|] but initialisation ofprobWellcame
later. Such errors result in failure during exploration tuendefined variables.

Macro errors Macros may be used only in text values, yet in several cagss th
were used in numeric calculations (e.g. of visibility). S@erors result in failure
during exploration due to invalid calculations.

Condition errors Validity and visibility conditions should yieldrue or false In
several cases, however, conditions were found to end widlssignment such as
probNoSideEffects = revisedRisk * (1 - probSideEffedhE problem here is a
subtle one. In most casgxobNoSideEffectwill be assigned a non-zero value
which counts asrue. However if it is assigned a zero value then the condition
will yield false leading to an invalid or invisible result. This results @emingly
random behaviour during exploration, depending on thetesauaes for certain
variables that are set dynamically.

Missing range checksAll free-form inputs should be checked for validity as they
are just numbers. In a number of cases, no range check was giles allowed
meaningless values such as a negative value or 200 for asage errors result
in the user being able to enter meaningless values and legeiironeous advice
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based on these.

Incorrect range checks Some range checks were incorrect. For example, blood
pressure inputs should be checked for validity. In one dasentention was to
check that systolic blood pressure was in the range 100 tar280Hg inclu-
sive. However, the range check was for over 99 and less thanRiith errors
mean the user can enter fractional values outside the ieterashge, conceivably
leading to incorrect advice being offered.

Besides these technical errors, explanation errors wecefalind as a by-product
of the formalisation. There were small editorial problemestsas formatting errors
and small technical errors.

The trees had already been thoroughly evaluated by the C&3i, tey patients in-
formally, and through RCTs. Nonetheless, the formal amalgported here found
a number of problems. Some flaws would cause run-time exueptn the CGT

Viewer. Unless the user is technically minded and checksvibeer log, these
errors would go unnoticed. Some flaws could cause erratiavietr or result in

incorrect advice from the CGT Viewer. Particularly for tseef a critical nature,
flaws like these are important. Supplementing manual debhgggith automated
analysis is thus beneficial.

It is believed that the work reported in this paper will be afue in future devel-
opment of CGTs. There is now a rigorous methodology for dedimind verifying
CGTs. The separation of concerns into design of tree streic@nd tree content
supports manageable development of each aspect. Thechhsteanotation allows
a single description to be used for multiple purposes: desaymal analysis, in-
terchange with other tools, and implementation. The neWwtiegies are also com-
plementary to existing approaches for design of medicaka@ttrees.

6 Conclusions
6.1 Evaluation

The work described in this paper has achieved a number ofriaimtagoals:

Abstraction The aim was to define an abstract notation for CGTs that akbrus-
ture to be separated from contentb &k allows content to be defined by means
of separate attributes that are referenced from the treetste. This also allows
the tree structure to be defined and investigated in advdmefining the main
content. Once the key aspects of tree flow and exploratioa begn verified, the
designer can add content to fill out the tree.

Formalisation Another important objective was to formally specify and lgsa
CGTs. The AIT notation is automatically translated intamiLos opening up
many possibilities for validating and verifying tree beilwaw. This allowed the
author to find a number of problems in the trees developedd T project.

Implementation It was also important to use the same tree description tdecrea
implementations as well as formalisations. ThelA notation is automatically
translated into the format used by the CGT Viewer, allowirtgea description
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to be evaluated by theoretical means and also explored lojigabmeans.

Application Finally, the approach has been demonstrated to be usefubroe s
realistic trees. These trees provide advice to lay usersmme smportant medical
conditions. Through automated conversion from healtheaagnples developed
by the CGT project, a range of sizable studies has been ctadluc

In the development of an abstract and formal model of CGTsjmaber of subtle
issues have been clarified. IndeedyIA now gives a denotational semantics for
these kinds of decision tree. A number of errors were alsodani realistic medical
trees through formal analysis.

Although ADIT has largely been used with healthcare applications sa farcer-
tainly not restricted to these. For example, applicationgata mining, finance and
risk assessment can readily be imagined. The notation tsaabsand therefore
independent of the application domain and the decisionttrale

For the benefit of the community, thedAr tools, examples and CGT Viewer have
been made available http://www.cs.stir.ac.uk/~kjt/ research/adit.html

6.2 Future Work

So far, ADIT has been used retrospectively on trees that were alreadioged and
thoroughly tested. However, the existence of a rigoroushotlogy can now be
exploited in new developments. For example, the developwfe@GTs for heart
disease is planned. Work is also under way to develop CGTsathase athletes
on diet, exercise and training. Although it is believed tAatiT is generic, it is
possible that new application domains will suggest furdrdrancements.

Further work on aspects of verification (proof) would be ddde. So far, formal
analysis has mainly focused on testing and on model checkimgnteresting av-
enue to explore would be symbolic verification, where progsrare proven in
general rather than for specific values of variables. Itss altended to use a prob-
abilistic variant of LoTOSto support the analysis of probabilities and payoffs.

At present, AIT supports translation only to the implementation formaipsuted
by the CGT Viewer. Translation will be investigated to/frtime proprietary formats
of commercial decision support tools (e.Rd®DIGY or PRGormain healthcare).
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