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UK) for his comments on the early version, and for the many students who have helped to debug them.
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Chapter 1

Introduction

1.1 Scope and Objectives

� this course is intended to introduce all features of LOTOS

� the course conforms to the definition of LOTOS given in the International Standard (published in 1989)

� the course is intended for users of LOTOS, mainly those who wish to read and understand LOTOS specifications;
the course therefore concentrates on developing an intuitive grasp of the language by presenting basic
concepts, backed up by suggestive examples

� to the uninitiated, formal languages (and LOTOS is no exception) appear abstruse and impenetrable; it is
hoped that readers who complete this course will have overcome their ‘culture shock’, and will feel able to
pick up specifications in LOTOS and get something out of them

� it should be recognised, however, that LOTOS is a formal language; an intuitive understanding of the language
is therefore not a substitute for understanding the implications of the formal semantics which underlie it

� this course is therefore only an introduction to LOTOS as defined in the ISO standard

� throughout the course, copious examples have been used; these have intentionally been kept light (and, at
times, whimsical) in an attempt to keep the interest of the reader; it would be wrong to conclude that LOTOS

was applicable to toy problems only

� the reader of the course is encouraged to try the examples; equally, the reader is encouraged to manufacture
other examples which are relevant to day-to-day work; the reader should avoid trying to specify anything
too complex at first

1.2 Background and Context

1.2.1 OSI

� ISO (International Standardisation Organisation) is producing Standards for OSI (Open Systems Intercon-
nection) in response to the demands of manufacturers and users for compatible interconnection of data
processing equipment

� OSI is a major 10-year effort, with thousands of man-years in design and specification to produce a rich
variety of telecommunications standards for interconnection of heterogeneous equipment

� for the goal of compatible interconnection to be achieved, precise and clear specifications are needed;
however, the vast majority of ISO specifications are currently in natural language

� there are major problems in achieving compatible interconnection:

1



2 CHAPTER 1. INTRODUCTION

– how can ISO ensure that thousands of implementers world-wide will interpret OSI standards in a
compatible way?

– who will provide the definitive interpretation when the original developers of the standards have
dispersed?

1.2.2 Formal Description Techniques

� the scale and complexity OSI led to the formation of a group to standardise formal specification languages
for OSI

� ISO developed FDTs (Formal Description Techniques) to provide the basis for unambiguous interpretation
of standards

� FDTs are required to help:

– specifiers — precision, conciseness, clarity, verifiability

– implementers — avoidance of over-specification, clear guidance as to what, not how

– testers — isolation of implementation options, basis of rigorous testing against specifications

� work in ISO committee SC21/WG1 (OSI Architecture) was established in order to develop FDTs for OSI

� initially, around 20 different techniques were proposed, in two broad categories:

– finite state-machine techniques, which led to ESTELLE (Extended Finite State-Machine Language)

– algebraic techniques, which led to LOTOS (Language Of Temporal Ordering Specification)

� three FDT Sub-Groups were set up:

– A - Architectural aspects of FDTs

– B - ESTELLE

– C - LOTOS

� a later collaboration on FDTs was set up with SGX/WP3 of CCITT (International Telephone and Telegraph
Consultative Committee)

� CCITT have also standardised SDL (Specification and Description Language)

� the net result is that there are three officially-recognised FDTs in ISO and CCITT

1.2.3 Development of LOTOS

� Sub-group C initially adopted CCS (Calculus of Communicating Systems)

� some notation was later introduced from CSP (Communicating Sequential Processes)

� the development of LOTOS was based on architectural principles

� a prototype of the language was used on sample OSI Standards, leading to improvements in the language

� the ACT ONE data typing language was added to allow formal and abstract specification of data types

� LOTOS is the first piece of mathematics to be standardised internationally

� an International Standard (8807) for LOTOS was completed in August 1988, after 8 years’ work!
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1.2.4 The Nature of LOTOS

� LOTOS is a specification language, with a formal basis

� ESTELLE and SDL are semi-formal implementation languages, useful for describing reference implementa-
tions of OSI standards

� LOTOS is widely supported by academic institutions world-wide, and has significant industrial support

� LOTOS was designed for the specification of OSI systems, but is equally suitable for the specification of
concurrent or distributed systems generally

� the formal basis of LOTOS ensures precision and analysability; however, this is bought at the price of needing
special training in the language, and more brain- work to understand LOTOS specifications

� using LOTOS demands time and attention:

– specification languages have a different philosophy from programming languages and natural languages

– expressing oneself precisely requires discipline

– thinking about what one really means is hard work

1.2.5 Application of LOTOS

� LOTOS has been used mainly on OSI, but this is not an intrinsic limitation

� LOTOS is applicable to sequential, concurrent, and distributed systems generally

� the following LOTOS specifications of OSI have been written (CL = Connection-Less, CO = Connection-
Oriented)

– Application Layer : FTAM (File Transfer and Manipulation)and ACSE (Association Control Service
Elements)

– Presentation Layer : some work (CO)

– Session Layer : complete (CO)

– Transport Layer : complete (CO)

– Network Layer : Service (CL, CO) and Protocol (CL)

– Data Link Layer : Service (CL, CO)

� LOTOS is being used on new OSI developments (e.g. ODP (Open Distributed Processing) and OSI Manage-
ment)

1.2.6 Related Formal Languages

� LOTOS is an algebraic specification language, which includes abstract data type languages such as ACT ONE,
and process algebras such as CSP and CCS

� notable features of LOTOS are:

– its integrated data typing and behavioural modelling

– its handling of non-determinism and concurrency

– its orientation towards OSI

� LOTOS data typing is similar to other languages such as CLEAR and OBJ

� LOTOS uses CSP-like notation for events, ‘!’ and ‘?’, but these are more than just ‘input’ and ‘output’

� this gives LOTOS powerful synchronisation features not in CCS or CSP (e.g. multi-way synchronisation or
value negotiation)
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� LOTOS gates correspond to CSP channels; LOTOS processes interact synchronously, just as in CSP and CCS

� in LOTOS, unlike in CCS and CSP, it is gates not whole events which are hidden, passed as parameters, etc.

� LOTOS has a ‘kind choice’ operation (CSP ‘[ ]’ or CCS ‘+’)

� LOTOS does not have the CSP non-deterministic choice operation ‘u’

� for non-determinism, LOTOS follows the CCS approach of an internal event (CCS ‘ø’)

� LOTOS has enabling and disabling operators in addition to basic CCS or CSP ones

� LOTOS has CSP parallel composition, which forces synchronisation: there is no need to restrict and hide
events for synchronisation, as in CCS

1.3 Basics of Process Algebra

1.3.1 Processes

� a process is a component of a specification; it is the abstraction of an activity in an implementation, and
communicates with other processes

� a process is considered to be a black-box at some level of abstraction; only the external behaviour of a
process is considered

� processes share a communication mechanism called an interaction point, as shown in Figure 1.1; this is the
abstraction of an interface in an implementation�

�

�

�

�

�

�

�
process process

interaction point

�

Figure 1.1: Interaction Point

� in LOTOS, the specification concept of interaction point corresponds to the language concept of event gate
(or just gate)

� processes are specified by giving a behaviour expression which defines their externally visible behaviour in
terms of the permissible sequences of events in which they may participate

� in these course notes, processes are given upper-case names such as:

ACTIVATE_ ALARM DATA_ TRANSFER

1.3.2 Events

� an event represents a synchronisation between processes

� an event offer represents the ability of one process to participate in an event; events external to a process are
resolved in conjunction with the environment of the process

� an event normally requires the participation of two or more processes; three kinds of event are possible:
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– pure synchronisation - no values are exchanged between the processes

– value establishment - one or more processes supply a specific value which lies in the set acceptable to
the other process(es)

– value negotiation - two or more processes agree on a set of values

� events are considered to be atomic, i.e. at the level of abstraction of the specification, the synchronisation
of the processes and the associated information are established at the same time; in an implementation, an
event may of course correspond to a sequence of elementary steps

� the set of events in which a process can potentially participate is called the alphabet of the process

� the set of events in which a process can immediately participate at any point in the unfolding of its behaviour
is called the initials of the process

� in the earlier parts of these notes, events with only an event gate are considered; more complex structures
for events are considered later

� a behaviour expression is evaluated in an environment which offers it events to synchronise on; the
environment may be another behaviour expression which it is combined with, or may be something external

� if synchronisation on event offers from the environment is not possible, deadlock has occurred (cf. a deadly
embrace or a terminated process)

� if no events are offered by a behaviour expression, livelock has occurred (cf. looping)

� in these course notes, events are given lower-case names such as:

timer_ expired ready

1.3.3 Temporal Ordering

� specifications in LOTOS give the temporal ordering of events, i.e. the relative ordering of events in time

� LOTOS abstracts away from absolute timing considerations, e.g. that an event must occur at a specific time
or after a specific period

� LOTOS specifications use operators which combine behaviour expressions to yield more complex behaviour
expressions; these operators obey well-defined laws which enable any specification to be interpreted unam-
biguously

� the data typing part of LOTOS is given semantics using the theory of algebras; LOTOS operators for combining
behaviour expressions can be shown to satisfy algebraic laws which characterise them

� a convenient diagrammatic notation for thinking about behaviour in languages like LOTOS is the synchroni-
sation tree, as shown in Figure 1.2

�
occurrence of an event e e

�
��
�
�R

choice between events e1 or e2 e1 e2

Figure 1.2: Synchronisation Tree



6 CHAPTER 1. INTRODUCTION

1.4 Background Needed

1.4.1 Differences from Programming

� surprisingly little technical knowledge is needed to achieve some familiarity with LOTOS a numerate back-
ground, with a small amount of basic mathematics and computing, is probably sufficient

� a knowledge of programming languages will also help, but beware that LOTOS being a specification language,
treats some concepts in a fundamentally different way

� variables in LOTOS are mathematical variables: they are simply names which happen to be bound to a
particular value in particular, one does not assign a value to a LOTOS variable as one might assign a value to
a store location; in LOTOS one cannot write, for example:

x := x + 1

one must in effect define a new variable (x�, say) which is bound to the value of the old x plus 1

� recursion in programming languages is usually thought of in terms of a stack which records return addresses;
a well-behaved program unwinds this stack before continuing

� in LOTOS, however, one may exit from within a recursive piece of behaviour to do something completely
different; this is because recursion in LOTOS is equivalent to replacing a recursive call with a copy of the
text defining the behaviour

� efficiency is an important consideration in programming, but is not appropriate in LOTOS; one should not
think of ‘implementing’ LOTOS literally, and must therefore not be concerned about matters of efficiency

� a good specification clearly defines what and not how; this contrasts sharply with programming, where one
frequently makes design decisions to optimise the use of store, processor, etc.

� over-specification must be carefully avoided in LOTOS; one must always concentrate on external requirements
and black-box behaviour, not structures or algorithms to implement these

� for example, one should specify a queue in terms of the operations on it (enqueue, dequeue, head, etc.)
rather than in terms of linked-lists, algorithms for skipping down the queue, etc.

1.4.2 Sets and Relations

� a set can be though of as an unordered collection of elements in which duplicates are ignored (this glosses
over certain mathematical niceties)

sets are usually written in curly brackets, for example:

fKenneth; John; Turnerg

� the empty set, fg, has no elements

� each element in a set is a member of that set; one set is included in another if its members are also members
of the other set; the first such set is a subset of the second

� two sets are equal if they have the same members (i.e. each is a subset of the other)

� the cartesian product of a number of sets is the set of all tuples (ordered lists) drawn from the sets; the
symbol� is used for this ‘multiplication’ operation, for example:

frun; fallg� fdown; off; outg

is:

f< run; down >; < run; off >; < run; out >; < fall; down >;

< fall; off >; < fall; out >g
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� the powerset, P, of a set is the set of all its subsets; for example:

Pfp; i; gg

is:

ffg; fpg; fig; fgg; fp; ig;fp; gg; fi; gg; fp; i; ggg

� a relation between two sets is a set of ordered pairs of elements from the two sets (it is a subset of their
cartesian product); for example, Figure 1.3 corresponds to:

f< lemon; yellow >; < lime; yellow >; < lime; green >; < apple; green >;

< apple; red >; < longan; stramineous >g

lemon

apple
lime

persimmon
longan

yellow

green
red

heliotrope
stramineous

Figure 1.3: Example of a Relation

1.4.3 Functions

� a function is a relation which maps an element in one set to exactly one element in another set (several
elements may get mapped onto the same element)

� the set to which the function is applied is its domain; the the set to which the function maps is its codomain;
the following mathematical notation is used for this:

F : D � C

where F is the function, D is its domain, and C is its codomain

� a function may also map from several sets to several sets; for example, in integer arithmetic:

divide : dividend� divisor � quotient� remainder

which has as ‘arguments’ the number to be divided and the divisor itself, and has as ‘results’ the quotient
and remainder

� however, functions in LOTOS are allowed to have only one named set as codomain; one solution to this is to
define separate functions for each codomain; for example:

divquot : dividend� divisor � quotient

divrem : dividend� divisor � remainder

such functions are called operations in LOTOS
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� a total function or operation gives a mapping for each element in its domain, otherwise it is partial

� an associative operation is one in which the bracketing is irrelevant; for example, in ordinary arithmetic:

(a� b)� c = a� (b� c)

and so may be written without ambiguity as:

a� b� c

� a commutative operation is one in which the order of the operands does not matter; for example, in ordinary
arithmetic:

a� b = b� a

1.4.4 Syntax and Semantics

� syntax is usually expressed using a grammar; this consists of a set of rules in which non-terminal symbols
(variables of the grammar) are defined in terms of non-terminal symbols and terminal symbols (constants of
the grammar)

� the definition of LOTOS syntax includes the following constructs:

– recursion is expressed by, for example:

echo = "hello" echo

which defines echo to be hello (a terminal symbol) followed by echo; in other words, echo is an
unbounded repetition of hello

– a choice is expressed by, for example:

mood = happy j sad

– an optional part of a rule is expressed by, for example:

sentence = subject verb [object]

which says that zero or one occurrences of object are allowed

� a set of derivation rules is a system of logic for dealing with inferences; such a system is used to express
the semantics of LOTOS operators

� a derivation system has a set of axioms (logical formulae from which others are derived), and a set of
assertions (logical formulae which may or may not be derivable)

� a logical formula is derived by applying inference rules of the form:

P1; ::: ; Pn

Q

meaning that, given P1 up to Pn, Q may be derived

� the shorthand notation:

� P

means that P can be derived from the axioms and the inference rules
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1.5 Summary

� LOTOS is a formal specification language being developed by ISO for the specification of OSI Standards

� LOTOS is generally applicable to the specification of concurrent and distributed systems generally

� LOTOS is an algebraic specification language which describes systems by giving their externally visible
behaviour in terms of the permissible sequences of events they may participate in

� LOTOS specifications consist of behaviour expressions (often generalised as processes) which synchronise
on events at gates

� events may be pure synchronisation, value establishment, or value negotiation

� the alphabet of a behaviour expression is the set of all its potential events, whereas its initials are those it
can immediately offer
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Chapter 2

Basic Process Expressions

2.1 Sequence

� the sequential composition operator ‘;’ is used to prefix a behaviour expression with an event called an
action prefix; for example:

button_pressed; RING_ BELL

� action prefixes associate to the right; for example:

connect_ request; connect_ confirm; data; DISCONNECT

means:

connect_ request; (connect_ confirm; (data; DISCONNECT) )

� the alphabet of this behaviour expression is:

fconnect_ request; connect_ confirm; datag

plus whatever events there are in DISCONNECT

2.2 Choice

� the choice operator ‘[]’ is used when alternative behaviours are allowed; for example:

(lift_arrived; ENTER) [] (lift_broken; USE_ STAIRS)

� choice is associative (as one would expect); for example:

EAT [] DRINK [] BE_ MERRY

11
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means the same as:

(EAT [] DRINK) [] BE_ MERRY

and:

EAT [] (DRINK [] BE_ MERRY)

but notice that one cannot eat, drink, and be merry!

� choice is also commutative (as one would again expect); for example:

PAY_ A_ FINE [] TAKE_ A_ CHANCE

means the same as:

TAKE_ A_ CHANCE [] PAY_ A_ FINE

� the initials of the behaviour expression:

(lunch_ bell; EAT) [] (boss_ here; WORK) [] (fire; PANIC)

are:

flunch_ bell; boss_here; fireg

� in the straightforward case, the choice between alternatives is resolved by the environment of the process;
in the example above, if the environment offers only fire then the process will PANIC

� more complicated cases involving non-determinism are considered later in these notes

2.3 Parallelism

2.3.1 Interleaving

� the interleaving parallel composition operator ‘jjj’ is used to allow behaviours to unfold completely inde-
pendently in parallel; the events from each behaviour expression are interleaved

for example:

(data_ in; data_ out; BUFFER) jjj (read; mark; digest; BOOK)

includes the following behaviours:

data_ in; read; mark; data_out; digest:::

read; mark; digest; data_ in:::

� ‘jjj’ is associative and commutative (as one would expect, in order to capture the intuitive concept of running
in parallel)
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2.3.2 Synchronisation

� the synchronising parallel composition operator ‘jj’ is used where there are events that need to be synchro-
nised; in this case the events (strictly, gates) which occur in either of the behaviour expressions are obliged
to synchronise

for example:

(bang; start; finish; ATHLETE)
jj

(bang; start; finish; STARTER)

may engage in the following sequence of events:

bang; start; finish; :::

� if only certain events are to be synchronised, the ‘j[:::]j’ form of the operator is used, with the events (strictly,
gates) named between ‘[’ and ‘]’; for example:

(off_ hook; dial; answer; speak; on_ hook; TELEPHONE)
j[dial]j

(find_ number; dial; engage_ brain; speak; CALL)

will synchronise only on the dial event, and will allow speak in the second behaviour expression before
answer and after on_ hook in the first behaviour expression (a possibly realistic situation)

� ‘j[:::]j’ with an explicit empty list, or with no gates which occur in the two behaviour expressions, is
equivalent to ‘jjj’

� ‘j[:::]j’ with an explicit list which is in fact the union of the two sets of gates is equivalent to ‘jj’

� like ‘jjj’, ‘jj’ or ‘j[:::]j’ is associative and commutative

� parallel composition can be used to express independent constraints; for example, the constraints ‘breakfast
must precede lunch’ and ‘lunch must precede dinner’ can be expressed by:

(breakfast; lunch; AM) j[lunch]j (lunch; dinner; PM)

this allows a separation of concerns, not to mention eating habits!

2.4 Termination

2.4.1 Inaction and Success

� the simplest behaviour expression is ‘stop’, which offers no events and therefore does nothing; it is used to
represent inaction or deadlock

� successful termination of a behaviour expression is represented by ‘exit’, which offers a special event ¡ and
then behaves as stop

� ¡ is part of the underlying mathematical model of LOTOS and is not an event which can be explicitly offered;
¡ may also be an implied initial of a behaviour expression
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� successful termination of a sequence (using the ‘;’ operator) depends on whether the right-most behaviour
expression is stop or exit

for example:

clock_ in; clock_ out; exit

may terminate successfully, but:

born; died; stop

can not

� successful termination of a choice (using the ‘[]’ operator) depends on the successful termination of one of
the behaviour expressions; for example:

(fail; stop) [] (catastrophe; stop)

can not terminate successfully, but:

(lift_off; exit) [] (armageddon; stop)

may succeed

� successful termination of a parallel composition (using the ‘jjj’, ‘jj’, or ‘j[:::]j’ operators) depends on the
successful termination of all of the behaviour expressions; for all these operators, the special termination
event ¡ is always synchronised — even in the case of ‘jjj’

for example:

(finished; exit) jjj (done; exit)

may terminate successfully

2.4.2 Enabling

� as a generalisation of the ‘;’ operator, which is used for the sequential composition of an event and a
behaviour expression, the ‘>>’ operator (pronounced enables) combines two behaviour expressions in
sequence

for example, if process SHOP is:

visit_ shop; buy_ food; come_ home; exit

and process EAT is:
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cook_ food; eat_ food; stop

then the process DINE, defined by:

SHOP >> EAT

denotes the possible sequence of events:

visit_ shop; buy_ food; come_ home; cook_ food; eat_ food

� exit (i.e. the ¡ event) is absorbed by a following ‘>>’

� if the left-hand behaviour expression does not terminate successfully, the right-hand behaviour expression
will not apply; for example:

(prime_ 5; prime_ 7; (prime_ 9; stop [] exit)) >> (prime_ 11; exit)

can successfully terminate after the sequence of events:

prime_ 5; prime_ 7; prime_ 11

but will deadlock after the sequence of events:

prime_ 5; prime_ 7; prime_ 9

� ‘>>’ is associative, but is not of course commutative

2.4.3 Disabling

� a frequent occurrence in specifications is the need to specify behaviour which may be interrupted by
something else (e.g. disconnection may terminate data transfer)

� the ‘[>’ operator (pronounced disabled by) allows the right-hand behaviour expression to interrupt the
left-hand behaviour expression; if this happens, the future behaviour is that of the right-hand behaviour
expression only

� if the left-hand behaviour expression terminates successfully, then the combination also terminates success-
fully (i.e. disabling is no longer possible); this is to allow for contingencies

for example:

(send_ data; reset_ timer; receive_ acknowledgement; exit)
[>

(timer_ expired; sound_ alarm; stop)

may terminate successfully if an acknowledgement is received to a message, but may sound an alarm if no
acknowledgement is received within some time period
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� beware that behaviour may be disabled between its ‘last’ event and stop or exit

thus, in the example above, timer_ expired may occur before reset_ timer and after receive_ acknowledgement;
this could be realistic in an actual implementation

� the left-hand behaviour expression is often non-terminating (iterative or recursive), and the right-hand one
is often a closing-down behaviour expression; for example:

DATA_ TRANSFER [> DISCONNECTION

� ‘[>’ is associative, but is not of course commutative

2.5 Non-Determinism

2.5.1 Non-Determinism due to Choice

� the events in a process specification are event offers; the actual events which happen may be influenced by
the environment of the process

for example:

(wake_ up; MAKE_ COFFEE) [] (open_ wine; GET_ DRUNK)

will result in MAKE_ COFFEE or GET_ DRUNK depending on the sobriety of the environment

� however, identical events may be offered as alternatives: in this case, the environment cannot influence
which branch is taken; the choice is made non-deterministically

for example:

(eat_ out; CHINESE_ MEAL) [] (eat_ out; INDIAN_ MEAL)

will result in CHINESE_ MEAL or INDIAN_ MEAL after the environment has offered eat_ out, and cannot be
influenced

� non-determinism is best understood by considering the synchronisation tree for the behaviour; for example:

(a; b; stop) [] (a; c; stop)

has the synchronisation tree shown in Figure 2.1

�
��
a �

�R
a

�
b

�
c

Figure 2.1: Synchronisation Tree with Initial Choice

but:
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a; ( (b; stop) [] (c; stop) )

has the synchronisation tree shown in Figure 2.2

�
a

�
��
b �

�R
c

Figure 2.2: Synchronisation Tree with Deferred Choice

� in the first case, the environment offers a but has no choice as to what follows: it may be offered b or c; in
the second case, the environment can still decide on b or c after offering a

2.5.2 Hiding

� LOTOS supports top-down decomposition of behaviour: processes (specification components) can be pro-
gressively decomposed into simpler processes

� however, it is important that the details of this decomposition (in particular, any internal events) are not
visible at a higher level

� the hiding operator ‘hide ... in’ is therefore used to hide events (strictly, gates) which are internal to the
behaviour of a system; for example:

(begin; middle; exit) j[middle]j (middle; end; exit)

may engage in the sequence of events:

begin; middle; end; ¡

but:

hide middle in ( (begin; middle; exit) j[middle]j (middle; end; exit) )

may engage in only:

begin; end; ¡

2.5.3 Internal Events

� a hidden event is represented by i, the internal event; i may be an initial of a behaviour expression

for example:

hide second in (first; second; third; stop)
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may engage in:

first; i; third

� the internal event represents non-determinism since the environment may not influence it; because the
internal event may affect subsequent behaviour due to an internal choice it is useful to represent it because
it ‘explains’ why a particular behaviour happened

for example:

WORK [] (i; GO_ TO_ BED)

indicates that GO_ TO_ BED may happen without WORK being an option; the i represents a decision which
cannot be influenced by the environment

this might arise from:

hide dawn_ chorus in ( WORK [] (dawn_ chorus; GO_ TO_ BED) )

� once the internal event has occurred, only the behaviour following it is allowed

� it is quite legitimate for all branches to be ‘protected’ with an i; for example:

(i; WORK) [] (i; STRIKE) [] (i; GO_ ON_ HOLIDAY)

� the internal event is one way of expressing implementation freedom (where there are different ways to do
something), or some internal decision (which it is not appropriate to spell out at a given level of abstraction)

� internal events are indistinguishable from each other

� when exit combines with ‘>>’, the result is that the ¡ event turns into an internal event

2.5.4 Behaviour Equivalence

� the introduction of the internal event raises questions of when two behaviour expressions mean the same
thing

� two behaviour expressions are isomorphic if they can be transformed into each other by systematic renaming;
for example:

(slithy; slithy; mimsy; BOROGOVE)
[]

(mimsy; slithy; BOROGOVE)

is isomorphic to:

(lubricilleux; lubricilleux; enmime; GOUGEBOSQUET)
[]

(enmime; lubricilleux; GOUGEBOSQUET)
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� two behaviour expressions are observationally equivalent if they exhibit the same behaviour ignoring the
internal events; under this equivalence, any finite sequence of internal events can be ignored except in the
context of a choice

for example:

aye; i; i; EYE

is observationally equivalent to:

aye; EYE

for example:

(a; i; b; exit) >> ( (c; stop) [] (d; i; exit) )

is observationally equivalent to:

a; b; ( (c; stop) [] (d; exit) )

� an infinite sequence of internal events is called infinite chatter and corresponds to livelock; for example, a
process LIVELOCK may be defined as:

hide beep in ( beep; LIVELOCK )

� observational congruence holds when one behaviour expression can be substituted for another in all contexts;
for example:

i; PROC1

is not observationally congruent to:

PROC1

because it changes the overall meaning when substituted for it in a context such as:

PROC1 [] PROC2
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2.6 Behaviour Definitions

2.6.1 Definition and Instantiation

� a process is given a name and parameters by a behaviour definition; for example:

process GIVE_ LECTURE
[write_ notes, give_ lecture, understand_ subject] : exit :=

write_ notes; give_ lecture; understand_ subject; exit

endproc

� a process may optionally be followed by a list of events (strictly, gates) inside ‘[...]’

� the keyword exit is used in the heading line if the process may terminate successfully; noexit is used if it
can never terminate

� the behaviour definition gives formal parameters to the process; the process is referred to in a process
instantiation by giving actual parameters such as:

GIVE_ LECTURE
[plagiarise_ notes_ by_ Ed , lecture_ at_ Stirling, understand_ LOTOS]

� a process may also be optionally defined to have parameters and results; for example:

process PROC [gates] (parameters) : exit (results) :=

...

endproc

this is covered in detail later in these course notes

2.6.2 Recursion

� a process may refer to itself in its definition; for example:

process PRESS_ UP [up, down] : noexit :=

up; down; PRESS_ UP [up, down]

endproc

� it is important not to think of this kind of recursion in a programming language sense: there is no ‘subroutine
stack’, which has to be unwound neatly; recursion is equivalent to repeated textual substitution of the
definition of a process
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� (tail) recursion is the way of expressing iteration in LOTOS

� mutually recursive processes are also allowed; for example:

process FLIP [in_ 0, in_ 1, out_ 0, out_ 1] : noexit :=

in_ 1; FLOP [in_ 0, in_ 1, out_ 0, out_ 1]
[]

out_ 0; FLIP [in_ 0, in_ 1, out_0, out_ 1]

endproc

process FLOP [in_ 0, in_1, out_ 0, out_ 1] : noexit :=

in_ 0; FLIP [in_ 0, in_ 1, out_ 0, out_ 1]
[]

out_ 1; FLOP [in_ 0, in_ 1, out_ 0, out_ 1]

endproc

2.7 Summary

� basic LOTOS operators are:

sequence event; NEXT_ PROCESS

enabling FIRST_ PROCESS >> SECOND_ PROCESS

choice POSSIBILITY [] POTENTIALITY

parallelism INTER jjj LEAVED

EITHER jjALPHABET

EXPLICIT j[subset]jALPHABET

disabling HEALTH [> ACCIDENT

hiding hide top_ secret in MI5

termination stop

exit

� the possibility of successful termination depends on the success of one process for the choice operator, and
all processes for the parallel operators

� non-determinism is expressed when the environment is offered a choice of the same events, or with i (which
may arise explicitly or due to hiding)

� observation equivalence holds when two processes have the same behaviour, ignoring (finite sequences of)
internal events

� behaviour definitions give processes names and parameters

process VOID [null] : noexit :=

null; stop

endproc
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2.8 Exercises

2.8.1 Synchronisation Tree

� consider letters to correspond to events, and words to correspond to sequences of events

� construct a synchronisation tree which spells the words ‘spa’, ‘stop’, ‘strap’, and ‘strop’

� translate this into LOTOS

2.8.2 One-Shot Dictionary

� specify the following application, which has been developed to translate English words into both French
and German

� unfortunately, owing to shortage of development funds, the only words which are currently translated are
‘cat’ (‘chat’, ‘Katze’) and ‘dog’ (‘chien’, ‘Hund’)

� even more unfortunately, due to severe overloading of the CPU the system manager has decreed that a user
may have only one word translated each time the application is used; after this, the application terminates
successfully

� however, when the application was built it was designed with parallel processing in mind; the French and
German translation functions therefore run concurrently

� finally, the user has option of killing the entire application at any time, resulting in the application aborting

2.8.3 Events

� what is the alphabet of the behaviour expression:

BUCKET_ BRIGADE [from, to]
[>

BUCKET_ KICKED [done]

given the definitions:

process BUCKET_ BRIGADE [input, output] : noexit :=

input;
output;
BUCKET_ BRIGADE [input, output]

endproc

process BUCKET_ KICKED [dead] : noexit :=

dead;
stop

endproc

� after the first event of the behaviour expression:
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UNGAINLY_ QUICKSTEP [lento, rapido, errore]

what are its initials? UNGAINLY_ QUICKSTEP is defined by:

process UNGAINLY_ QUICKSTEP [slow, quick, stumble] : noexit :=

slow;
(

slow; quick; quick; exit
[]

i; stumble; exit
)

>>
UNGAINLY_ QUICKSTEP [slow, quick, stumble]

endproc

� give a behaviour expression without internal events which is observationally equivalent to:

I_ dont_see; i; to; i; with_ him; stop

� give a behaviour expression without internal events which is observationally equivalent to:

hide a in ( (i; a; B [a]) jj (a; C [a]) )

� give a behaviour expression without internal events which is observationally equivalent to:

(Paris; DANS) jjj (le; printemps; exit)
[]

hide le in ( (le; stop) j[le]j (le; printemps; exit) )

2.8.4 LOTOS-Speak

� it is reported that ISO has instructed all national standards organisations to install LOTOS-Speak machines in
their headquarters

� these machines accept a 10 ECU coin and then utter a random sentence allowed by the following grammar
(see section 1.4.4 for the notation):

sentence = noun_ phrase verb_ phrase adjective_ phrase .
noun_phrase = "LOTOS" ["syntax"] .
verb_ phrase = "seems" j "proves" .
adjective_ phrase = adverb adjective .
adverb = "really" j "unbelievably" .
adjective = "awful" j "wonderful" .
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� after speaking, the machine is willing to accept a new coin and repeat the above

� unfortunately, the machine was not designed from a formal specification and is liable to fail permanently,
issuing aargh once

� specify processes whose permissible sequences of events correspond to the sentences these machines can
utter

2.9 Possible Solutions

2.9.1 Synchronisation Tree

� the tree shown in Figure 2.3 may be specified as:

s;
(

(p; a; stop)
[]

(t;
(

(o; p; stop)
[]

(r;
(

(a; p; stop)
[]

(o; p; stop)
)

)
)

)
)

�
s

�
��
p �

�R
t

�
a �

��
o �

�R
r

�
p �

��
a �

�R
o

�
p

�
p

Figure 2.3: Possible Synchronisation Tree

2.9.2 One-Shot Dictionary

� a possible solution is:

(
(
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(cat; chat; exit)
[]

(dog; chien; exit)
)

j[cat, dog]j
(

(cat; Katze; exit)
[]

(dog; Hund; exit)
)

)
[>

(kill; stop)

� this is divided up by language (French translation and German translation), but could also be divided up by
word (‘cat’ translation and ‘dog’ translation)

2.9.3 Events

� from, to, done

� lento, i

� I_ dont_ see; to; with_him; stop

� hide a in ( B [a] jj C [a] )

� ( (Paris; DANS) jjj (le; printemps; exit) ) [] (printemps; stop)

2.9.4 LOTOS-Speak

process MACHINE
[ten_ ECU, LOTOS, syntax, seems, proves, really, unbelievably, awful,

wonderful, aargh] : noexit :=

SENTENCE
[ten_ ECU, LOTOS, syntax, seems, proves, really, unbelievably, awful,

wonderful]
[>

FAIL [aargh]

endproc

process SENTENCE
[ten_ ECU, LOTOS, syntax, seems, proves, really, unbelievably, awful,

wonderful] : noexit :=

ten_ ECU;
NOUN_ PHRASE [LOTOS, syntax]

>>
VERB_ PHRASE [seems, proves]

>>
ADJECTIVE_ PHRASE [really, unbelievably, awful, wonderful]

>>
SENTENCE
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[ten_ ECU, LOTOS, syntax, seems, proves, really, unbelievably, awful,
wonderful]

endproc

process NOUN_ PHRASE [LOTOS, syntax] : exit :=

LOTOS; ( (i; syntax; exit) [] exit)

endproc

process VERB_ PHRASE [seems, proves] : exit :=

(i; seems; exit) [] (i; proves; exit)

endproc

process ADJECTIVE_ PHRASE
[really, unbelievably, awful, wonderful] : exit :=

ADVERB [really, unbelievably]
>>

ADJECTIVE [awful, wonderful]

endproc

process ADVERB [really, unbelievably] : exit :=

(i; really; exit) [] (i; unbelievably; exit)

endproc

process ADJECTIVE [awful, wonderful] : exit :=

(i; awful; exit) [] (i; wonderful; exit)

endproc

process FAIL [aargh] : noexit :=

i; aargh; stop

endproc
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Basic Value Expressions

3.1 Values

� so far, events and event gates have been treated as synonymous; process parameters and results have also
not been covered

� LOTOS contains a data-typing sub-language called ACT ONE which allows variables and value expressions
such as:

Number_ of_ Hackers

succ (succ (succ (0)))

Concurrency & Synchronisation

� in these course notes, variables names are given initial capitals such as:

Repeat_ Count Data_ Request

� LOTOS variables are mathematicalvariables: they are not assigned values like a store location; they represent
the binding of a name to a value

� an expression consists of constants, variables, and operations

� a variable is given a value in a binding occurrence; its scope is generally the behaviour expression which
follows its binding occurrence

� a sort is a set of values; the following are common sorts:

Bool_Sort the Booleans (true, false)

Int_ Sort the integers (..., -1, 0, +1, ...)

Nat0_ Sort the non-negative integers (0, 1, ...)

Nat_ Sort the positive integers (1, 2, ...)

� a variable is given a sort when it is bound, for example:

27
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Bank_ balance : Nat_ Sort

Liquorice : All_Sort

3.2 Local Definitions

3.2.1 Local Variables

� local variables may be defined using the local definition operator ‘let ... in’; for example:

let E : Energy_ Sort = M * SQR (C) in SPECIAL_ RELATIVITY

let Salary : Nat_ Sort = 50000, Blood_pressure : Nat_ Sort = 140 in JOB

� as usual, the sort of a local variable is given in these local definitions following ‘:’

� the scope of such local variables is the behaviour expression which follows in

� the closest binding determines which value is denoted; for example, assuming decimal notation and arith-
metic in the following:

let X : Int_ Sort = 21 in
let Answer : Int_ Sort = X+X in

let X : Int_ Sort = 666 in
WITMOLTUAE (Answer)

the parameter value for process WITMOLTUAE is 42

3.2.2 Local Processes

� processes may refer to other processes which are purely local to them, defined using ‘where’; for example:

process LIFE
[birth, puberty, death, marriage, children] : exit :=

BIOLOGY [birth, puberty, death]
j[puberty, death]j

FAMILY [puberty, marriage, children, death]

where

process BIOLOGY [birth, puberty, death] : exit :=

birth;
(

(puberty; stop)
[>

(death; exit)
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)

endproc

process FAMILY
[puberty, marriage, children, death] : exit :=

(
(

puberty;
(

(marriage; exit)
[]

exit
)

)
j[puberty]j

(
puberty;
(

(children; exit)
[]

exit
)

)
)

j[marriage]j
(

(marriage; stop)
[>

(death; exit)
)

endproc

endproc

note that this allows children before marriage and after death; it also excludes infant death in behaviours
which do not deadlock!

� the local processes may reference each other and the enclosing process; the enclosing process may reference
the local processes

3.2.3 Domains

� events (strictly, gates) and variables may be allowed to range over a set of values; for example:

Day in [Mon, Tues, Wed, Thurs, Fri, Sat, Sun]

Prince : Con_ Sort
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� such domains may be used to distribute the following operators over a set:

[] jjj jj j[...]j

� LOTOS restricts the use of these operators with domains; for example:

choice push, pull : Nat_ Sort []
AMPLIFIER (push, pull)

choice chan in [send, receive], gate in [garden, lych] []
BUFFER [chan, gate]

par input in [line1, line2, line3, line4] j[control]j
MULTIPLEXER [input, control]

� only one kind of domain (gates or values) may be used at a time

� note that the specified operator indicates what is being distributed, so that the first example above should
not be parsed as:

(choice push, pull : Nat_ Sort )
[]

( AMPLIFIER (push, pull) )

� the use of a domain is equivalent to writing out the behaviour expression which follows for each of the event
gates or values in the set; for example:

choice event in [write, read] []
choice B : Bit_Sort []

event; MEMORY (B)

is equivalent to:

write; MEMORY (0)
[]

write; MEMORY (1)
[]

read; MEMORY (0)
[]

read; MEMORY (1)
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3.3 Guards

� behaviour may be made conditional by using the guard operator ‘[...] ->’; for example:

[Bonus > 5000] -> ACCEPT_ JOB

� if the conditional expression in the guard evaluates to true then the following behaviour is permitted; if the
conditional expression evaluates to false then the whole behaviour expression is equivalent to stop

� this operator may be used to achieve the effect of ‘if...then...else’ or ‘case’, such as might be found in a
programming language; for example:

( [Temperature > 0] -> THAW )
[]

( [Temperature <= 0] -> FREEZE )

( [Weather willbe Sunny] -> WEAR_ T_ SHIRT )
[]

( [Weather willbe Rainy] -> TAKE_ UMBRELLA )
[]

( [Weather willbe Snowy] -> WEAR_ ANORAK )
[]

( [( (Weather wontbe Sunny) and (Weather wontbe Rainy) ) and
(Weather wontbe Snowy)] -> WEAR_ JACKET )

� a guard may also be an equation between values; for example:

[core_ meltdown = imminent] -> SCRAM

� note that arithmetic operations (e.g. ‘<=’) and boolean operations (e.g. ‘and’) are not built into LOTOS;
normally, they would be defined in a library, but it is explained later in these course notes how operations
can be defined

3.4 Events with Values

3.4.1 Action Denotation

� an action denotation is the event part of an action prefix; so far in these notes, only events which name an
event gate have been considered

� in LOTOS, an explicit event properly specifies an event gate and a finite sequence of values; for example:

tick

dial ! emergency

statistics ! 36 ! 24 ! 36
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� it is also convenient to specify sets of values; this is called an extended action denotation; for example:

coord ? X : Int_ Sort ? Y : Int_ Sort

colour ? Prim : Primary_ Sort

but this is only a short-hand for writing out a choice of event offers with ‘!’ for each value; the last example
above is thus equivalent to a choice of:

colour ! Red

colour ! Yellow

colour ! Blue

� both ‘!’ and ‘?’ forms may be mixed; for example:

calendar ? Month : Month_ Sort ! 1986

note that a multi-part event like this is still atomic: its values are not established in a sequence of events; it
is therefore not equivalent to:

calendar ? Month : Month_ Sort; calendar ! 1986

� an event may also be followed by a selection predicate – a constraint which restricts the values offered; for
example:

p ? x, y, z : Nat_ Sort [SQR (x) + SQR (y) = SQR (z)]

will accept only those triples of values which satisfy the Pythagorean equation; the shorthand notation used
here for ‘?’ is equivalent to:

p ? x : Nat_ Sort ? y : Nat_ Sort ? z : Nat_ Sort

� only the gate name in events is given in constructions such as:

j[gate1, gate2]j

hide g2 in PROC [g1, g2]

choice gate in [puerta, Tor]

par gate in [way, crash]
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3.4.2 Synchronisation Rules

� only event offers which are identical may synchronise; for example:

take ! 5

may synchronise with:

take ! (2 + 3)

assuming normal rules for numbers, but not with:

give ! 5

take ! 8

take ! 2 ! 3

take ! 5 ! 0

take ! five

� because the ‘?’ form of event is equivalent to a choice between a set of values, ‘?’ may synchronise with
‘!’ if the set of values includes the specifically offered value; for example:

meeting ? Day : Working_Day_ Sort

may synchronise with:

meeting ! Tuesday

but not with:

meeting ! Sunday

� a further possibility is that both event offers are of the ‘?’ form; in this case, the effect is of an agreement on
a value from the intersection of the sets of values (if this is non-empty), provided the values have the same
sort

for example:

holiday ? Month : Month_ Sort [Is_ Summer (Month)]
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may synchronise with:

holiday ? Mon : Month_Sort [Has_ 31_ Days (Mon)]

to offer a choice of:

holiday ! July

holiday ! August

whereas:

weight ? W : Int_Sort [W > 0]

will not synchronise with:

weight ? W : Int_Sort [W < 0]

3.5 Processes with Values

3.5.1 Parameters and Results

� a process may be given formal parameters as a list of variables and their sorts; their scope is the behaviour
definition of the process

for example:

process ADDER [input, output] (Base : Nat0_ Sort) : noexit :=

input ? Offset : Nat0_ Sort;
output ! Base + Offset;
ADDER [input, output] (Base)

endproc

� a process may also yield a list of results; these are written as a list of sort names only following exit in the
header of the process definition

� the results of a process are given using exit in the body of the process definition; for example:

process EMPTY (list : List_ Sort) : exit (Bool_Sort) :=

[eq (list, nil)] -> exit (true)
[]

[neq (list, nil)] -> exit (false)

endproc
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� the results of a process are made available with the ‘>>’ operator using ‘accept ... in’ to match the results
list of the process; for example:

process SUM [ip] (Num : Nat0_ Sort) : exit (Int_ Sort) :=

(
[Num = 0] -> exit (0)

)
[]

(
[Num > 0] ->

ip ? Val : Int_ Sort;
(

SUM [ip] (Num - 1)
>>

accept Total : Int_ Sort in
exit (Val + Total)

)
)

endproc

3.5.2 Functionality

� the functionality of a process is the set of tuples of results it can produce; for example:

process DIVIDE [source] (Divisor : Nat_ Sort) : exit (Int_Sort, Nat0_ Sort) :=

has functionality:

Int_ Sort� Nat�_ Sort

� generally speaking, if the behaviour expressions combined by some operator can terminate, their functionality
must be the same; for example, P1 and P2 must have the same functionality in the following cases:

P1 [] P2

P1 [> P2

P1 jjj P2

P1 jj P2

P1 j[...]j P2

similarly, the functionality of a process must be the same as for each:

exit (...)
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used in its definition, or for a corresponding:

>> accept ... in

� if a process may terminate with no results, just exit is written in its definition header

� if a process cannot terminate, noexit is written in its definition header

� in some circumstances it is convenient to specify that any value of a sort may be a result; for example:

exit (blonde, any Height_Sort, nubile)

� this could be used to specify the independent production of parts of a result; for example:

(...; exit (age, any Sex_ Sort) )
jjj

(...; exit (any Nat0_ Sort, sex) )

where age and sex are determined independently by some behaviour expressions in parallel; any is needed
because parallel processes which terminate must exit with the same result

3.6 Summary

� values are defined and used in LOTOS as follows:

variable Brighton : Re_ Sort

expression (Tom + Jerry) - Tweetie_ Pie

local variable let Tel : No_ Sort = 73171 in

value domain choice Treaty : Nat0_ Sort []
PEACE (Treaty)

guard [Sentry] ->
BOX (Buck_ Palace)

� the following related concepts are used:

local process where process TICK [tock]

gate domain choice channel in [English, Bristol] []
SWIM [channel]

par interface in [V24, V35] jjj
CONNECT [interface]

� events are specified as an event gate followed by specific values (‘!’) or sets of values (‘?’):

gate ! 13 ? Open : Bool_Sort
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event offers may synchronise if they are identical; ‘?’ is equivalent to a choice between ‘!’ with specific
values

� processes may have parameters and results:

process COMPARE [input] (Ref : Int_Sort) : exit (Bool_Sort, Bool_ Sort) :=

input ? Val : Int_ Sort;
exit (Val >= Ref, Val <= Ref)

endproc

process results are made available with:

COMPARE [data_ in] (-40)
>>

accept Not_ Less, Not_ More : Bool_Sort in
BRANCH [data_ out] (Not_Less, Not_ More)

� the functionality of a process is determined by the sorts of its results; the functionality of terminating
behaviour expressions must match in the following cases:

[]

[>

jjj

jj

j[...]j

exit (...)

>> accept ... in

3.7 Exercises

� give a simpler behaviour expression equivalent to:

(
average ? Val : Nat0_ Sort [Val < 3]; stop

)
jj

(
choice medium in [ether, average, spiritualist] []

choice Num : Nat0_ Sort []
medium ! Num [Num > 1]; stop

)
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� what is the permissible behaviour of:

(gait ! 3; exit (Int)) jj CONFUSING [gait] (1)

and also of:

(gait ! 1; exit (Int)) jj CONFUSING [gait] (2)

where Int is some variable defined to be of type Int_ Sort, and process CONFUSING is defined by:

process CONFUSING [gate] (Var : Int_ Sort ) : exit (Int_Sort) :=

let Var : Int_ Sort = Var - 2 in
[Var > 0] ->

gate ? Var : Int_ Sort;
exit (Var + 2)

[]
[Var < 0] ->

gate ? Var : Int_ Sort;
exit (2 - Var)

endproc

� in the following example, Next and Break are constants in some sort representing signal values; after
considering a specific example such as:

FIB [t, r] (1, 1)
jj

(
t ! Next; r ? n : Nat_ Sort;
t ! Next; r ? n : Nat_ Sort; stop

)

explain in general what the following process may do:

process FIB [trigger, result] (Seed1, Seed2 : Nat_ Sort) : noexit:=

(
(

trigger ! Next;
result ! Seed1;
exit (Seed2, Seed1 + Seed2)

)
[]

(
trigger ? Seed1, Seed2 : Nat_ Sort;
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result ! Break;
exit (Seed1, Seed2)

)
)

>>
accept Seed1, Seed2 : Nat_ Sort in

FIB [trigger, result] (Seed1, Seed2)

endproc

3.8 Possible Solutions

� the permitted behaviour is equivalent to:

average ! 2; stop

� for the first case, the permissible behaviour is:

gait ! 3; exit (-1)

provided Int is -1; otherwise it is:

gait ! 3; stop

for the second case, the permissible behaviour is only:

stop

� process FIB may accept a Next request at gate trigger, and output the next number in a Fibonacci series at
the gate result

FIB is initialised with two seed values, but may input new values at the gate trigger; in this case it outputs
Break to divide the sequences

FIB may thus output partial Fibonacci series at the result gate such as:

1, 1, 2, 3, 5, Break

and:

3, 7, Break,
Break,
217894, 65932, 283826, 349758, Break



40 CHAPTER 3. BASIC VALUE EXPRESSIONS



Chapter 4

Data Typing

4.1 Abstract Data Types

� a concrete data type is a representation of structured data within a computer, e.g. a linked list or the layout
of a file control block

� an ADT (Abstract Data Type) is an implementation-independent representation of structured data; only the
essential characteristics of the data type are specified

� for example, the concrete notion of a book may be described in terms of the quality and colour of its binding
and paper, the type of printing ink, the font and size of lettering, etc.

� in abstract terms, a book may be thought of in terms of its components, how these are related, and what may
be done to it; its components may be:

Cover, Title_Page, Text, Index

and these components may be further decomposed; for example:

Title, Author, Date, Publisher

� for Title_ Page, the relationships between the components may include:

a Title_ Page has one Title and one Publisher

a Title_ Page may bear several Authors and Dates

a book is also characterised by what is done to it; for example:

Print, Read, Plagiarise, Burn

41
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4.2 Type Definitions

� as explained earlier, a sort is a set of data values; a type definition packages up a set of sorts, and specifies
the operations on them

for example:

type Writer is ... endtype

� do not confuse the name of the type with the names of the sort(s) it defines

� typically, simpler types are built into more complex ones using is to import the definitions in another type;
this is called enrichment

for example:

type Natural_ Number is

...

endtype

type Boolean is

...

endtype

type Arithmetic is Natural_ Number, Boolean

...

endtype

type Fraction is Arithmetic

...

endtype

� a type definition contains a number of sections in the following order, each section being optional:

sorts which gives the names of the sorts defined in the type

opns which gives the names and functionality of the operations on the sorts

eqns which gives the equations that the operations satisfy

4.3 Operations

� the operations on a sort are functions, defined by their signature; for example:



4.3. OPERATIONS 43

increment : Nat_ Sort -> Nat_ Sort

member : Element_ Sort, Set_ Sort -> Bool_Sort

an operation may have several sorts as its domain, but has exactly one sort as its codomain

� an operation must be defined as total, i.e must be defined for all values in its domain

� several operations may have the same signature; for example:

tomorrow, yesterday : Day_ Sort -> Day_ Sort

� operations which have a null domain are constants; for example:

0 : -> Nat0_ Sort

scarlet, vermilion, crimson : -> Red_ Sort

� operations may be defined as prefix or binary infix; for example:

is_ instructive : Lecture_ Sort -> Bool_Sort

_ * _ : Int_ Sort, Int_ Sort -> Int_ Sort

where the ‘_’ stands for a positional parameter; for example:

pred (0) * succ (0)

� one operation may be chosen as the basic constructor for a sort; there is often a ‘null’ constant which is the
simplest value

for example:

add_ to_ dir : Entry_ Sort, Dir_ Sort -> Dir_ Sort

empty_ dir : -> Dir_ Sort

� operations which extract components of a sort are called selectors; for example:

name : Entry_ Sort -> Alpha_ Sort

address : Entry_ Sort -> Alphanumeric_ Sort

telephone : Entry_ Sort -> Numeric_ Sort
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4.4 Equations

4.4.1 Basic Equations

� an operation is specified by giving a list of the equations which give the constraints governing it; equations
are separated or terminated by ‘;’

� equations may use free variables; for example:

forall e : Entry_ Sort, d : Dir_ Sort

� for the previous example of a telephone directory, the operation:

length_ of_ dir : Dir_ Sort -> Nat0_ Sort

might have equations:

length_ of_ dir (empty_ dir) = 0;

length_ of_ dir (add_ to_ dir (e, d)) = length_of_ dir (d) + 1

� equations may, if they have the right properties, be regarded as left-to-right rewrite rules: if an expression
matches the pattern on the left side of an equation it may be replaced by the right side, preserving the same
pattern matches

� for example, consider the following operations:

nil_ ac : -> Account_ Sort
credit : Nat_ Sort, Account_ Sort -> Account_ Sort
debit : Nat_ Sort, Account_ Sort -> Account_ Sort
balance : Account_ Sort -> Int_Sort
_ + _ , _ - _ : Int_ Sort, Nat_ Sort -> Int_Sort

and equations:

balance (nil_ ac) = 0;

balance (credit (n, a)) = (balance (a)) + n;

balance (debit (n, a)) = (balance (a)) - n

which would require the usual definition of numbers

� for this example, an expression such as:
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balance (debit (10, credit (5, nil_ac)))

would be re-written by the third equation above as:

(balance (credit (5, nil_ ac))) - 10

then by the second equation as:

((balance (nil_ac)) + 5) - 10

and finally by the first equation as:

((0) + 5) - 10

� with definitions for the decimal representation of numbers and arithmetic, this would be further rewritten to
the equivalent of -5

4.4.2 Conditional Equations

� an equation may be made conditional by prefixing it with a boolean condition, like a guard for a behaviour
expression; for example:

m >= n => max (m, n) = m;

m < n => max (m, n) = n

� an equation may also be used instead of a boolean condition; for example:

e1 = e2 => sub_ from_ dir (e1, add_ to_ dir (e2, d)) = d

� as with guards, conditional equations can be used like if...then...else or case statements

� there is a subtle and important distinction between boolean conditions and equational equality; a boolean
condition as a guard is equivalent to writing an equation as a guard

for example:

condition => LHS = RHS

is equivalent to:
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condition = true => LHS = RHS

the equational equality for such a guard holds if the equation can be derived from the equations given in the
type definition

� only equality may be derived from the original equations, not inequality; thus, although a boolean condition
such as:

not ((3 * 2) < 7) => wrong = right

may be negated, an equational equality such as:

(b1 �= b2) => b1 exor b2 = true

may not be

� it is therefore usually necessary to define a boolean equality relation (say, ‘==’) between values of a sort;
for example, for the natural numbers:

opns

0 : -> Nat0_ Sort

succ : Nat0_ Sort -> Nat0_ Sort

_ == _ : Nat0_ Sort, Nat0_ Sort -> Bool_Sort

with the following equations:

forall n, n1, n2 : Nat0_ Sort

0 == 0 = true;

succ (n) == 0 = false;

0 == succ (n) = false;

succ (n1) == succ (n2) = n1 == n2

4.5 Overloading

� it is permissible for an operation to be overloaded, i.e. given more than one definition; this is generally used
when the operations are essentially the same but operate on different sorts

for example:
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_ + _ : Nat0_ Sort, Nat0_ Sort -> Nat0_ Sort

_ + _ : Matrix_ Sort, Matrix_ Sort -> Matrix_ Sort

� sometimes, an overloaded operation may have different domain sorts in more than one definition but the
same codomain sort; for example:

size : List_ Sort -> Nat0_ Sort

size : Dir_ Sort -> Nat0_ Sort

� similarly, the domains may be the same but the codomains may differ; in such cases, the context may indicate
which version of the operation is intended

for example:

forall e : Entry_ Sort, d : Dir_ Sort

size (add_ to_ dir (e, d)) = size (d) + 1

� however, the context may not always be sufficient to distinguish which version is meant; in this case, the
sort of a value or the result of an operation must be explicitly stated using ‘of’

for example:

5 * ( ( (temperature - 32) n 9 ) of Int_ Sort)

� similarly, for equations it may be logically necessary to use ‘ofsort’ to indicate the sort of the outermost
operation in an equation; for example:

ofsort Bit_ Sort

forall b1, b2 : Bit_Sort

b1 implies b2 = not (b1) or b2

however, LOTOS requires that the sort of an equation be given explicitly

� ofsort governs the equations which follow up to the next ofsort

� forall likewise governs the equations which follow; except for the initial, global definitions it must follow
ofsort if it is needed
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4.6 Making New Types

4.6.1 Renaming

� a new type may be created simply by renaming an existing one; this may give new names to sorts and
operations using ‘sortnames...for...’ and ‘opnnames...for...’

for example:

type Flag is Bool renamedby

sortnames

Flag_ Sort for Bool_Sort

opnnames

set for true
clear for false
toggle for not
equiv for ==

endtype

� note the spelling of opnnames

4.6.2 Parameterisation

� it is frequently necessary to define data types which have the same basic structure and operations but a
variety of data elements; LOTOS permits parameterisation of data types to cater for this

� a parameterised data type has formal parameters; for example:

type Double_ blank is

formalsorts Thing_ Sort

formalopns

Z : -> Thing_ Sort
next : Thing_ Sort -> Thing_ Sort
_ p _ : Thing_ Sort, Thing_ Sort -> Thing_Sort

formaleqns

forall T, T1, T2 : Thing_ Sort

ofsort Thing_ Sort

T p Z = T;
T1 p (next (T2)) = next (T1 p T2)

opns
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double : Thing_ Sort -> Thing_ Sort

eqns

forall T : Thing_ Sort

ofsort Thing_ Sort

double (T) = T p T

endtype

4.6.3 Actualisation

� a parameterised type is actualised by a specific type to yield a new type

� the formal sorts and operations must be replaced by actual sorts and operations which are compatible with
the signatures and equations of the formal ones; for the example given above, a suitable type for actualisation
would be:

type Addition is Nat0

opns
_ + _ : Nat0_ Sort, Nat0_ Sort -> Nat0_ Sort

eqns

forall N, N1, N2 : Nat0_ Sort

ofsort Nat0_ Sort

N + 0 = N;
N1 + succ (N2) = succ (N1 + N2)

endtype

� for this example, the actualisation may be carried out by:

type Duplication is Double_ blank actualizedby Addition using

sortnames

Nat0_ Sort for Thing_Sort

opnnames

0 for Z
succ for next
+ for p

endtype
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� note the spelling of actualizedby

4.7 Summary

� abstract data types are implementation-independent representations of structured data:

type Font is Letters ... endtype

� an abstract data type is characterised by:

sorts sorts It_ takes_ all_ Sorts

operations opns

Fork : -> Cutlery_Sort

shiny : Cutlery_Sort -> Bool_Sort

_ picks_ up _ : Philosopher_Sort, Cutlery_ Sort -> Bool_ Sort

equations eqns
forall N, N1, N2 : Nat0_ Sort

ofsort Nat0_ Sort
N * 0 = 0;
N1 * succ (N2) = (N1 * N2) + N1

� equations may be made conditional by prefixing them with a boolean condition or an equation:

in_ Estelle (spec) => conciseness (spec) = low

lang (spec) = LOTOS => writer (spec) = Professor

� operations may be overloaded, which may mean that the sort of a result has to be explicitly stated:

Coord of X_ Coord_Sort

ofsort French_ Sort
translation (sweetie_ pie) = toto

� data types may be renamed:

Livre renamedby

sortnames

Book_ Sort for Livre_ Sorte

opnnames

read for lire
write for ecrire
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� parameterised data types are defined using formal parameters:

formalsorts

formalopns

formaleqns

� parameterised data types may be instantiated:

Glue actualizedby Paste using

sortnames

Flour_ Sort for Binder_ Sort

opnnames

smell for sniff

4.8 Exercises

4.8.1 Improper Fractions

� assume the type Arithmetic defines:

– sort Nat_ Sort

– operations ‘+’ (additionof natural numbers), ‘*’ (multiplicationof natural numbers), and ‘==’ (boolean
equality of natural numbers)

� define the type Fractions to have:

– constructor pair (make a fraction from its numerator and denominator)

– selectors numer and denom (select the numerator and denominator of a fraction respectively)

– operations ‘+’ (addition of fractions) and ‘==’ (boolean equality of fractions)

4.8.2 Washing Machine

� a manually-operated machine has operations:

– load (load the clothes)

– wash (make the clothes clean)

– spin (get rid of most of the water from the clothes)

– tumble (get rid of all the water from the clothes)

� specify this machine, and also the predicates:

– clean (clothes washed at least once)

– soaking (clothes washed but not spun or tumble-dried since then)

– dry (clothes tumble-dried but not washed since then)

� it is presumed that only dirty and dry clothes are initially loaded into the machine
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4.8.3 Set of Incrementable Bits

� specify the data type Bit:

– sort Bit_Sort with values 0 and 1

– operations flip (binary complement) and ‘==’ (boolean equality)

� specify the data type Set_ with_ Incr, a parameterised set with a special ‘increment’ operation:

– formal sort Obj_ Sort (for the elements to be instantiated)

– formal operations incr (increment) and same (boolean equality of objects)

– sort Set_ Sort

– operations empty_ set (the null set), add_ to_ set (add an element to a set), and in_ set (check for set
membership)

� using these definitions, specify the data type Bit_ Set_ with_ Incr by actualising the type Set_ with_ Incr
with Bit

4.9 Possible Solutions

4.9.1 Improper Fractions

type Fractions is Arithmetic

sorts Frac_ Sort

opns

pair : Nat_ Sort, Nat_ Sort -> Frac_ Sort
numer, denom : Frac_ Sort -> Nat_ Sort
_ + _ : Frac_ Sort, Frac_ Sort -> Frac_ Sort
_ == _ : Frac_ Sort, Frac_ Sort -> Bool_ Sort

eqns

forall n, d : Nat_ Sort, f1, f2 : Frac_ Sort

ofsort Nat_ Sort

numer (pair (n, d)) = n;
denom (pair (n, d)) = d

ofsort Frac_ Sort

f1 + f2 =
pair ((numer (f1) * denom (f2)) + (numer (f2) * denom (f1)),

denom (f1) * denom (f2))

ofsort Bool_Sort

f1 == f2 =
(numer (f1) * denom (f2)) == (numer (f2) * denom (f1))

endtype
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4.9.2 Washing Machine

type Washing_ Machine is Bool

sorts

WM_ Sort

opns

load : -> WM_ Sort
wash, spin, tumble : WM_ Sort -> WM_ Sort
clean, soaking, dry : WM_ Sort -> Bool_ Sort

eqns

forall wm : WM_ Sort

ofsort Bool_ Sort

clean (load) = false;
clean (wash (wm)) = true;
clean (spin (wm)) = clean (wm);
clean (tumble (wm)) = clean (wm);

soaking (load) = false;
soaking (wash (wm)) = true;
soaking (spin (wm)) = false;
soaking (tumble (wm)) = false;

dry (load) = true;
dry (wash (wm) = false;
dry (spin (wm)) = dry (wm);
dry (tumble (wm)) = true

endtype

4.9.3 Set of Incrementable Bits

type Bit is Bool

sorts
Bit_Sort

opns
0, 1 : -> Bit_Sort
flip : Bit_Sort -> Bit_Sort
_ == _ : Bit_Sort, Bit_Sort -> Bool_ Sort

eqns

ofsort Bit_Sort
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flip (0) = 1;
flip (1) = 0

ofsort Bool_Sort

0 == 0 = true;
0 == 1 = false;
1 == 0 = false;
1 == 1 = true

endtype

type Set_ with_ Incr is Bool

formalsorts Obj_ Sort

formalopns
incr : Obj_ Sort -> Obj_ Sort
_ same _ : Obj_ Sort, Obj_ Sort -> Bool_ Sort

formaleqns
forall o, o1, o2, o3 : Obj_ Sort

ofsort Bool_ Sort
o same o = true;
o1 same o2 = o2 same o1;
o1 same o2, o2 same o3 =>

o1 same o3 = true

sorts Set_ Sort

opns
empty_ set : -> Set_ Sort
add_ to_ set : Obj_ Sort, Set_ Sort -> Set_ Sort
in_ set : Obj_Sort, Set_ Sort -> Bool_Sort

eqns
forall o, o1, o2 : Obj_ Sort, s : Set_ Sort

ofsort Bool_ Sort
in_ set (o, empty_ set) = false;
o1 same o2 =>

in_ set (o1, add_ to_ set (o2, s)) = true ;
not (o1 same o2) =>

in_ set (o1, add_ to_ set (o2, s)) = in_ set (o1, s)

ofsort Set_ Sort
in_ set (o, s) =>

add_ to_ set (o, s) = s

(* other axioms are needed to ensure that the order of
addition of elements to the set is irrelevant *)

endtype
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type Bit_Set_ with_ Incr is Set_ with_ Incr actualizedby Bit using

sortnames

Bit_Sort for Obj_ Sort

opnnames

flip for incr

== for same

endtype
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Chapter 5

Putting It Together

5.1 Complete Specifications

� a complete LOTOS specification has a form such as:

specification IN_ SPEC [data] (Limit : Time_ Sort) : exit

behaviour CONTROL [data] (Limit) where

type Character is
...

endtype (* Character *)

type Word is Character
...

endtype (* Word *)

process CONTROL [chan] (Real : Time_ Sort) : exit :=

...

where

process STATION [Crewe, Euston] (T : Train_ Set) : exit :=

...

where

process PLATFORM [P1, P2, P3] : exit :=
...

endproc (* PLATFORM *)

endproc (* STATION *)

process CONTROLLER [fat, thin] : exit (Engine_ Sort) :=

...

endproc (* CONTROLLER *)

57
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endproc (* CONTROL *)

endspec (* IN_ SPEC *)

� a specification has formal gates parameters and results just like a process; the keyword behaviour (also
spelled behavior) gives the behaviour expression which characterises the whole specification

� global type definitions are introduced before behaviour definitions; other type and process definitions come
in any order

� type definitions may also be introduced as local, following where

� type definitions in the standard LOTOS library may be included implicitly; for example:

library

Set, HexDigit

endlib

� informal comments may be introduced; for example:

(* This piece of text may be safely ignored *)

� the specification must, of course, be meaningful with all comments deleted; it is a good idea to separate the
comments clearly from the formal text

5.2 Semantic Basis

5.2.1 Process Semantics

� the semantics of behaviour expressions is given by action predicates; for example:

B � gv1:::vn� > B�

which postulates that behaviour expression B may participate in event g!v1:::!vn and then behave like B�

� for successful termination there is a similar predicate:

B � ¡v1:::vn� > B�

and for internal action:

B� i� > B�

� the semantics of LOTOS operators are given using derivation rules, which have a set of premisses and a
conclusion; for example:

G; B� e� > B�

([G]� > B)� e� > B�

this says that if boolean guard G is true, and behaviour expression B may engage in event e and then behave
like B�, then so may ([G]� > B)
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� several derivation rules may be required to give the semantics of an operator; for example:

– if e is not ¡ (i.e. the exit event):

B� � e� > B� �

B� [> B� � e� > B� �[> B�

– if e is ¡ (so that B� must be stop):

B� � ¡� > B� �

B� [> B� � ¡� > B� �

– in all cases:

B� � e� > B� �

B� [> B� � e� > B� �

� given the definitions of the operators and the definition of equivalence or congruence, various algebraic
laws may be deduced which govern the effect of the operators; for example:

B jjj exit = B

B� jjB� = B� jjB�

B [] stop = B

(B� [] B� ) [] B� = B� [] (B� [] B� )

(e; B� ) [> B� = (e; (B� [> B� )) [] B�

5.2.2 Data Type Semantics

� the sorts and the operations on them generate an algebra of terms; for example:

Empty_ Pot mix (Red, mix (Yellow, Empty_ Pot))

� the semantics of an ACT ONE data type is given by the initial algebra, which makes only those terms equal
which are required by the equations to be equal

� for example, a data type may require that:

(c1 IsIn p) =>
mix (c1, mix (c2, p)) = mix (c2, p);

mix (c1, mix (c2, p)) = mix (c2, mix (c1, p))

the following terms would therefore be made equal in the initial algebra:
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mix (Red, mix (Yellow, mix (Red, Empty_ Pot)))

mix (Red, mix (Yellow, Empty_ Pot))

� initial algebras have a simple operational interpretation using the equations as left-to-right rewrite rules; a
‘good’ set of equations always re-writes expressions to the yield a canonical (‘standard’) form in a finite
sequence of steps

� executability of a data type definition requires that the right-hand sides of equations are ‘simpler’ than the
left-hand sides; for example:

N1 + succ (N2) = succ (N1 + N2)

is a suitable equation because the right-hand side can be further simplified to yield an ultimate expression
of the form:

succ (... (succ (0)))

where there are N� + N� + 1 such succ operations

5.3 Summary

� process semantics are given by:

action predicates

B � gv1:::vn� > B�

B� ¡v1:::vn� > B�

B� i� > B�

derivation rules

B� � e� > B� �

B� []B� � e� > B� �

� data type semantics are given by the initial algebra which makes only those terms equal which are required
to be equal by the equations

� LOTOS is a formal specification languagewith features for describing static (data type) and dynamic (process)
aspects of behaviour

� LOTOS is a general-purpose language for specifying concurrent systems, but was designed to be suitable for
specifying OSI services and protocols

� all the examples so far have been of familiar, whimsical or mathematical systems; the following example
illustrates how LOTOS can be applied to the specification of communications systems
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5.4 A Large Example

5.4.1 Network Service

� the following specification covers data transfer in the OSI Connection-Mode Network Service; although
large by comparison with other examples in these notes, only a part of the full specification is included

� the architecture of the OSI Network Service is shown in Figure 5.1

Network Service
User A

Network Service
User B

�� �� �� ��
Network Service
Access Point A

Network Service
Access Point B

Figure 5.1: Network Service Access Points

� the Network Service Provider offers the Network Service to a set of Network Service Users through a set of
NSAPs (Network Service Access Points) which can be thought of as abstract interfaces; NSAPs are identified
by a Network Address which is unique within the whole Network Service

� in the Connection-Mode Network Service, each Network Service User is attached to one NSAP, as shown
in Figure 5.2; multiple connections are allowed through an NSAP

Network Service
User A

Network Service
User B

�� �� �� ��
Network Connection

End-Point a
Network Connection

End-Point b

t t

Figure 5.2: Network Connection End-Points

� each connection terminates in an NCEP (Network Connection End-Point); NCEPs are distinguished by a
Network Connection End-Point Identifier which is unique within an NSAP

� a Network Service User interacts with a Network Service Provider by means of Network Service Primitives
(which can be thought of as abstract interface interactions); two kinds of primitives are identified in this
example, as shown in Figure 5.3

5.4.2 Data Transfer

� for this example, data transfer should be specified for just one connection between NSAP A/NCEP a and
NSAP B/NCEP b
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request indication

� �
�

Figure 5.3: Network Service Primitive Types

� once a connection has been established, data is transferred by means of the following service primitives:

N-DATA request (NS_ User_ Data)

N-DATA indication (NS_ User_ Data)

NS_ User_ Data is transferred transparently from one User to the other; one or more octets (bytes) of data
may be sent

� such normal data is subject to flow-control, whereby the Service Provider may not accept further data if the
connection pipe-line is currently full (the connection capacity may vary and cannot be determined)

� special service primitives are used to send expedited data, which will bypass a flow control blockage for
normal data:

N-EXPEDITED-DATA request (NS_ User_ Data)

N-EXPEDITED-DATA indication (NS_ User_ Data)

which allow 1 to 32 octets of data to be sent transparently

� normal data is delivered in the same order as it is transmitted; expedited data is similarly delivered in the
same order

� however, expedited data may overtake normal data which is in transit, but it is not guaranteed to do so; the
only guarantee given is that normal data which is submitted after expedited data will not be delivered before
it

5.4.3 Suggested Data Type Model

� the following library sorts may be assumed:

Boolean Booleans (sort Bool; constants true and false; operations and, or, and not)

NaturalNumber natural numbers (sort Nat; operations ge (greater than or equal to), and le (less than
or equal to))

OctetString strings of octets (sort OctetString; operations + (concatenation of an octet and an
octet string) and Length (number of octets))

DecNatRepr decimal representation of natural numbers (sort DecimalDigit; constants 0, ... 9;
operations Dec (decimal digit to string element) and NatNum (decimal digit string
to natural number)

� the following additional types should be defined:

Addr Network Addresses, with values SAP_ A, and SAP_ B

Ident Network Connection End-Point Identifiers, with values CEP_ a, and CEP_ b
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Data based on OctetString and DecNatRepr, defining Network Service Data Units as octet strings,
and defining 1 and 32 as constants with the usual decimal interpretations

� NSP_ Sort should be defined for Network Service Primitives, with the following operations as constructors:

NDT_ req, NDT_ ind

NEX_ req, NEX_ ind

� Network Service Primitives correspond to Network Service Objects, which are the pieces of information
which are transferred by the underlying medium; a request creates an object, which is later turned into an
indication on delivery

� NSO_ Sort should be defined using NSP_ Sort as a basis for Network Service Objects, with operations:

req to turn an NSP request into the corresponding NSO

ind to turn an NSO into the corresponding NSP indication

� recognisers should also be defined which check the kind of a primitive or object; for example:

Is_ NDT_ req (for an NSP)

Is_ NDT (for an NSO)

� Network Connection data transfer behaviour should first be defined using an ordinary queue (‘medium’); a
more complex queue which allows expedited data to overtake normal data should then be defined using the
operations:

delete to delete the first instance of a given object in a queue

Is_ First to check if an object is the first of its type in a queue

Is_ Reordered to check if a queue is a valid re-ordering of another

5.4.4 Suggested Process Model

� the LOTOS specification should model the Network Connection using processes:

NCEP which models the behaviour of one connection end-point

NCH which models the behaviour of one half-connection (i.e. direction of transfer)

� the first of these processes should be parameterised by the NSAP address and the NCEP identifier; the
second process should be parameterised by the NSAP address and NCEP identifier of both ends

� all communication across the Network Service boundary should be defined to take place at one LOTOS gate
called n; invoking a service primitive should correspond to an event of the form:

n ! na ! ni ! nsp

where na is an NSAP address, ni is an NCEP identifier, and nsp is a value constructed for a particular
service primitive

� the network connection should be specified by giving the constraints on the behaviour of each end-point and
each direction of transfer, as shown in Figure 5.4
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H1

H2

E1 E2
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Key:

H1, H2 half-connection constraints

E1, E2 end-point constraints

Figure 5.4: Network Service Constraints

5.4.5 Possible Solution

specification Subset_ Network_ Service [n] : noexit

library

Boolean, NaturalNumber, OctetString, DecNatRepr

endlib

type Addr is

sorts
Addr_ Sort

opns
SAP_ A, SAP_ B : -> Addr_ Sort

endtype (* Addr *)

type Ident is

sorts
Ident_ Sort

opns
CEP_ a, CEP_ b : -> Ident_ Sort

endtype (* Ident *)

type Data is OctetString, DecNatRepr

opns
1, 32 : -> Nat

eqns
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ofsort Nat
1 = NatNum (Dec (1));
32 = NatNum (3 + Dec (2))

endtype (* Data *)

type NSP is Boolean, Data

sorts
NSP_ Sort

opns
NDT_ req, NDT_ ind,
NEX_ req, NEX_ ind : OctetString -> NSP_ Sort

Is_ NDT_ req, Is_ NDT_ ind,
Is_ NEX_ req, Is_ NEX_ ind : NSP_ Sort -> Bool

_ eq_ : NSP_ Sort, NSP_ Sort -> Bool

eqns
forall dt, dt1, dt2 : OctetString, nsp : NSP_ Sort

ofsort Bool
Is_ NDT_ req (NDT_ req (dt)) = true;
Is_ NDT_ req (NDT_ ind (dt)) = false;
Is_ NDT_ req (NEX_ req (dt)) = false;
Is_ NDT_ req (NEX_ ind (dt)) = false;

Is_ NDT_ req (nsp) =>
Is_ NDT_ ind (nsp) = false;

Is_ NDT_ ind (NDT_ ind (dt)) = true;
Is_ NDT_ ind (NEX_ req (dt)) = false;
Is_ NDT_ ind (NEX_ ind (dt)) = false;

Is_ NDT_ req (nsp) or Is_ NDT_ ind (nsp) =>
Is_ NEX_ req (nsp) = false;

Is_ NEX_ req (NEX_ req (dt)) = true;
Is_ NEX_ req (NEX_ ind (dt)) = false;

Is_ NDT_ req (nsp) or Is_ NDT_ ind (nsp) or Is_ NEX_ req (nsp) =>
Is_ NEX_ ind (nsp) = false;

Is_ NEX_ ind (NEX_ ind (dt)) = true;

not (Is_ NDT_ req (nsp)) =>
NDT_ req (dt) eq nsp = false;

NDT_ req (dt1) eq NDT_ req (dt2) = dt1 eq dt2;

not (Is_ NDT_ ind (nsp)) =>
NDT_ ind (dt) eq nsp = false;

NDT_ ind (dt1) eq NDT_ ind (dt2) = dt1 eq dt2;
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not (Is_ NEX_ req (nsp)) =>
NEX_ req (dt) eq nsp = false;

NEX_ req (dt1) eq NEX_ req (dt2) = dt1 eq dt2;

not (Is_ NEX_ ind (nsp)) =>
NEX_ ind (dt) eq nsp = false;

NEX_ ind (dt1) eq NEX_ ind (dt2) = dt1 eq dt2

endtype (* NSP *)

type NSO is NSP

sorts
NSO_ Sort

opns
req : NSP_ Sort -> NSO_ Sort
ind : NSO_ Sort -> NSP_ Sort

Is_ NDT, Is_ NEX : NSO_ Sort -> Bool

_ eq_ : NSO_ Sort, NSO_ Sort -> Bool

eqns
forall dt : OctetString, nsp : NSP_ Sort, nso1, nso2 : NSO_ Sort

ofsort NSP_ Sort
ind (req (NDT_ req (dt))) = NDT_ ind (dt);
ind (req (NDT_ ind (dt))) = NDT_ ind (dt);
ind (req (NEX_ req (dt))) = NEX_ ind (dt);
ind (req (NEX_ ind (dt))) = NEX_ ind (dt)

ofsort Bool
Is_ NDT (req (nsp)) =

Is_ NDT_ req (nsp) or Is_ NDT_ ind (nsp);
Is_ NEX (req (nsp)) =

Is_ NEX_ req (nsp) or Is_ NEX_ ind (nsp);

nso1 eq nso2 = ind (nso1) eq ind (nso2)

endtype (* NSO *)

type Basic_ Medium is NSO

sorts
Medium_ Sort

opns
empty : -> Medium_ Sort
_ app _ : NSO_ Sort, Medium_ Sort -> Medium_ Sort
_ pre _ : Medium_ Sort, NSO_ Sort -> Medium_ Sort
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_ eq _ : Medium_ Sort, Medium_ Sort -> Bool

eqns
forall nso, nso1, nso2 : NSO_ Sort, ncm, ncm1, ncm2 : Medium_ Sort

ofsort Medium_ Sort
nso app empty = empty pre nso;
(nso1 app (ncm pre nso2)) =

((nso1 app ncm) pre nso2)

ofsort Bool
empty eq empty = true;
(ncm pre nso) eq empty = false;
empty eq (ncm pre nso) = false;
(ncm1 pre nso1) eq (ncm2 pre nso2) =

(ncm1 eq ncm2) and (nso1 eq nso2)

endtype (* Basic_ Medium *)

type Reordering_ Medium is Basic_ Medium

opns
delete : NSO_ Sort, Medium_ Sort -> Medium_ Sort
Is_ First : NSO_ Sort, Medium_ Sort -> Bool
Is_ Reordered : Medium_ Sort, Medium_ Sort -> Bool

eqns
forall

nso, nso1, nso2, : NSO_ Sort, ncm, ncm1, ncm2 : Medium_ Sort

ofsort Medium_ Sort
delete (nso, empty) = empty;
nso1 eq nso2 =>

delete (nso1, ncm2 pre nso2) = ncm2;
not (nso1 eq nso2) =>

delete (nso1, ncm2 pre nso2) =
delete (nso1, ncm2) pre nso2

ofsort Bool
Is_ First (nso, empty) = false;
Is_ First (nso1, ncm2 pre nso2) =

(nso1 eq nso2)
or

(
(
(Is_ NEX (nso1) and Is_ NDT (nso2))
or
(Is_ NDT (nso1) and Is_ NEX (nso2))
)

and
Is_ First (nso1, ncm2)

);
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Is_ Reordered (empty, empty) = true;
Is_ Reordered (empty, ncm pre nso) = false;
Is_ Reordered (ncm pre nso, empty) = false;
Is_ Reordered (ncm1 pre nso1, ncm2 pre nso2) =

(
(nso1 eq nso2)

and
Is_ Reordered (ncm1, ncm2)

)
or

(
(
Is_ NEX (nso1) and Is_ NDT (nso2)
)

and
(
Is_ First (nso1, ncm2)
and
Is_ Reordered (ncm1, delete (nso1, ncm2) pre nso2)
)

)

endtype (* Reordering_Medium *)

behaviour
(

NCEP [n] (SAP_ A, CEP_ a)
jjj

NCEP [n] (SAP_ B, CEP_ b)
)

j[n]j
(

NCH [n] (SAP_ A, SAP_ B, CEP_ a, CEP_ b, empty)
jjj

NCH [n] (SAP_ B, SAP_ A, CEP_ b, CEP_ a, empty)
)

where

process NCEP
[n] (na : Addr_ Sort, ni : Ident_ Sort) : noexit :=

(
choice dt : OctetString []

(
n ! na ! ni ! NDT_ req (dt) [Length (dt) ge 1];
exit

[]
n ! na ! ni ! NDT_ ind (dt);
exit

)
[]
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(
n ! na ! ni ! NEX_ req (dt)

[(Length (dt) ge 1) and (Length (dt) le 32)];
exit

[]
n ! na ! ni ! NEX_ ind (dt);
exit

)
)

>>
NCEP [n] (na, ni)

endproc (* NCEP *)

process NCH
[n] (naX, naY : Addr_Sort, niX, niY : Ident_ Sort, ncm1 : Medium_ Sort) :
noexit :=

(
(

choice dt : OctetString, ncm2 : Medium_ Sort []
(

n ! naX ! niX ! NDT_ req (dt);
exit (req (NDT_ req (dt)) app ncm1)

[]
[ncm1 eq (ncm2 pre req (NDT_ req (dt)))] ->

n ! naY ! niY ! NDT_ ind (dt);
exit (ncm2)

)
)

[]
i;
(

choice dt : OctetString, ncm2 : Medium_ Sort []
(

n ! naX ! niX ! NEX_ req (dt);
exit (req (NEX_ req (dt)) app ncm1)

[]
[ncm1 eq (ncm2 pre req (NEX_ req (dt)))] ->

n ! naY ! niY ! NEX_ ind (dt);
exit (ncm2)

[]
exit (ncm1)

)
)

)
>>

accept ncm2 : Medium_ Sort in
(

choice ncm3 : Medium_ Sort []
[Is_ Reordered (ncm3, ncm2)] ->
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i;
NCH [n] (naX, naY, niX, niY, ncm3)

)

endproc (* NCH *)

endspec (* Subset_ Network_ Service *)
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Compound nouns in the index are generally entered under the main noun. Entries for acronyms are indexed under
the acronym, but are cross-referenced from the expansion of the acronym. Non-alphabetic entries in the index are
sorted according to their ASCII code. The page number of a main entry or definition is given in bold, while the
page number of an example is given in italics. Most main entries also give an example.

! (event value), 31
matching with !, 33
matching with ?, 33

(*...*) (comment), 58
, (list separator), 13, 20, 29, 42, 57
-> (function), 42
-> (guard), 31
: (type), 20, 42, 57
:= (defined as), 20
; (action prefix), 11
; (equation separator), 44
= (equation), 44
=> (equation condition), 45
>> (enabling), 14

and exit, 18, 35
? (set of event values), 32

matching with !, 33
matching with ?, 33

[...] (gate list), 13, 20, 29
[...] (guard), 31, 32
[> (disabling), 15
[] (choice), 11
_ (positional parameter), 43
j[:::]j (partial synchronisation), 13
jj (full synchronisation), 13
jjj (interleaving), 12

Abstract Data Type, see ADT
accept, 35
ACT ONE, 2, 27, 59
action

denotation, 31
extended denotation, 32
predicate, 58
prefix, 11

actualisation, of type, 49
actualizedby, 49

ADT, 41
see also type

algebra
initial, 59
of data types, 59
operator laws, 59

alphabet, of process, 5
any, 36
assertion, 8
associativity, 8
axiom, 8

behavior, 58
behaviour, 58
behaviour definition, 20
behaviour expression, 4

see also semantics
Bool_ Sort (booleans), 27

Calculus of Communicating Systems, see CCS

cartesian product, 6
case, see guard
CCITT, 2
CCS, 2
choice, see []
choice, 30

use of gate name, 32
codomain, 7
comment, see (*...*)
Communicating Sequential Processes, see CSP

commutativity, 8
concurrency, see parallel
congruence, 18, 59

observational, 19
constant, 27, 43
constraint

using parallelism, 13
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constructor, of sort, 43
course

background, 6
objectives, 1
scope, 1

CSP, 2

¡, 13
deadlock, 5, 13
derivation rule, 8, 58
disabling, see [>
domain, 7, 29

efficiency, 6
enabling, see >>
endlib, 58
endproc, 20
endspec, 57
endtype, 42
enrichment, of type, 42
environment, 4
eqns, 42
equality

boolean vs. equational, 45
vs. inequality, 46

equation, 44, 59
see also eqns
see also formaleqns
as condition, 45
as guard, 45
conditional, 45
free variable, 44
see also rewrite rule

equivalence, 18, 59
observational, 19

ESTELLE, 2, 3
event, 4, 31

kinds, 4
naming convention, 5
offer, 4, 16
set of values, 32
synchronisation, 33
value, 31

examples
adder, 34
addition, 49
comparator, 37
confusing scopes, 38
double blank, 48
duplication, 49
empty list checker, 34
Fibonacci series, 38
flag, 48
life, 28
list summation, 35
LOTOS-Speak, 25

network service, 61–70
quickstep, 23

exercises
events, 22, 25
expressions, 37, 39
improper fractions, 51, 52
LOTOS-Speak, 23, 25
one-shot dictionary, 22, 24
set of incrementable bits, 52, 53–55
synchronisation tree, 22, 24
washing machine, 51, 53

exit, 57
exit, 13, 20, 34

and >>, 18, 35
expression, 27
Extended Finite State-machine Language, see ES-

TELLE

FDT, 2
ESTELLE, 2
history, 2
LOTOS, 2
purpose, 2
SDL, 2
standardisation, 2
sub-groups, 2

for, 48
forall, 47
Formal Description Technique, see FDT
formaleqns, 48
formalopns, 48
formalsorts, 48
function, 7

codomain, 7
domain, 7
in LOTOS, 7
partial, 8
total, 8

functionality
of >>, 36
of accept, 36
of choice, 35
of disabling, 35
of exit, 35
of parallel, 35
of process, 35

gate, 4, 31, 32
gate list, see [...]
grammar, 8
guard

see also ->
see also =>
see also [...]
using equation, 45
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hide, 17
use of gate name, 32

i, 17
from exit and >>, 18

if...then...else, see guard
in, 17, 28, 29, 35
inaction, 13
inequality

vs. equality, 46
inference rule, 8
infinite chatter, 19
initials, of behaviour, 5

¡, 13
i, 17

interaction point, 4
interleaving, see jjj
internal event, see i
International Standardisation Organisation, see ISO
International Telephone and Telegraph Consultative

Committee, see CCITT
Int_ Sort (integers), 27
is, 42
ISO, 1
iteration, see recursion

Language Of Temporal Ordering Specification, see
LOTOS

let, 28
library, 58
library, of data types, 31
livelock, 5, 19
loop, see recursion
LOTOS, 2

application, 3
data typing, 5
development, 2
see also event
features, 3
see also library
nature, 3
operation, 7
see also operation
operators, 5
recursion, 6
related languages, 3
semantics, 58
standardisation, 2
syntax, 8
timing, 5
variable, 6
vs. CCS, 4
vs. CLEAR, 3
vs. CSP, 3
vs. OBJ, 3
vs. programming, 6

member, of set, 6

Nat0_ Sort (non-negative integers), 27
Nat_ Sort (positive integers), 27
noexit, 20, 36, 57
non-determinism

through choice, 16
through internal event, 18

occurrence, binding of variable, 27
of, 47
ofsort, 47
Open Systems Interconnection, see OSI
operation, 27, 42

see also formalopns
see also opnnames
see also opns
binary infix, 43
built-in, 31
see also constant
see also constructor
see also expression
see also overloading
prefix, 43
see also recogniser
see also selector
see also signature
total in LOTOS, 43

opnnames, 48
opns, 42
OSI, 1

problems, 1
over-specification, 6
overloading, of operation, 46

par, 30
use of gate name, 32

parallel
for constraints, 13
full synchronisation, see jj
interleaving , see jjj
partial synchronisation, see j[:::]j
use of gate name, 32

parameter, 34
actual, 20, 49
formal, 20, 48

parameterisation, 48
see also parameter

powerset, 7
process, 4

alphabet, 5
see also functionality
initials, 5
instantiation, 20
local, 28
naming convention, 4
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order of definition, 58
see also parameter
see also result
scope, 29

process, 20

recogniser, of sort, 63
recursion, 6, 20

mutual, 21
tail, 21

relation, 7
renamedby, 48
renaming, 48
result, 20, 34
rewrite rule, 60

left-to-right, 44

scope, of variable, 27, 28
SDL, 2, 3
selection predicate, 32
selector, of sort, 43
semantics

see also action predicate
see also derivation rule
of behaviour, 58
of data types, 59

sequence
see also >>
see also ;

set, 6
see also cartesian product
equality, 6
see also member
see also powerset

signature, 42
sort, 27, 42

see also formalsorts
see also sortnames
see also sorts

sortnames, 48
sorts, 42
specification, 57

see also parameter
see also result

specification, 57
Specification and Description Language, see SDL

stop, 13
symbol

non-terminal, 8
terminal, 8

synchronisation
see also event
see also parallel
tree, 5

syntax, 8

temporal ordering, 5
termination

of choice, 14
of disabling, 15
of enabling, 15
of parallel, 14
of sequence, 14
successful, 13
unsuccessful, 13

type
abstract data, see ADT
see also actualisation
concrete data, 41
definition, 42
see also enrichment
see also operation
order of definition, 58
see also parameterisation
see also renaming, of type
see also semantics
see also sort
see also variable

type, 42

using, 49

variable, 6, 27
see also constant
see also expression
free in equation, 44
local, 28
naming convention, 27
see also occurrence
see also scope
see also sort

where, 28, 58


