pnCRL specification of event notification in
JavaSpacesT™*

Jaco van de Pol and Miguel Valero Espada

Centrum voor Wiskunde en Informatica,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{Jaco.van.de.Pol, Miguel.Valero.Espada}@cwi.nl

Abstract. In this paper, we extend the formal specification of the Java-
Spaces architecture presented in [18] with the event notification mech-
anism. Processes running on a JavaSpaces system can register their in-
terest in incoming entries. The space informs the arrival of matching
entries by sending events to the registered processes. We use uCRL,
a language that combines abstract data types with process algebra, to
model a formal abstraction of this mechanism. The purpose of this work,
in combination with the previous one, is to verify properties of the Java-
Spaces technology and to allow automatic model checking of distributed
applications built under it.

1 Introduction

The parallel composition of simple behavior agents can produce complicated
systems. Distributed applications have to manage with the communication and
synchronization between processes across heterogeneous networks, dealing with
latencies, partial failures and system incompatibilities. Hence coordination ar-
chitectures attempt to assist programmers at the difficult task of designing and
implementing reliable distributed systems.

JavaSpaces™ [16] technology is a Sun Microsystems, Inc. coordination archi-
tecture, implemented as a Jini™ [17] service. It gives support to two program-
ming styles of processes coordination: the shared dataspace (Linda [8] like style)
and a reactive style. External agents communicate by sharing objects through
the space, by means of some basic primitives. They can basically write and look
up objects but they can also express their interest in incoming entries, by regis-
tering using the notify primitive. Then the space is charged to inform the agents
the presence of suitable entries by sending events. The external processes “react”
to the arrival of new entries in the space.

In a previous paper [18], we studied the basic features of the shared dataspace
style, now we are going to present the formal specification of the notification
mechanism using 4CRL [13, 11], a language which merges the standard process

* Partially supported by PROGRESS, the embedded systems research program of the
Dutch organisation for Scientific Research NWO, the Dutch Ministry of Economic
Affairs and the Technology Foundation STW, grant CES.5009.

JavaSpaces

algebra ACP [1] and abstract data types. By extending the model with the new
operation, we allow to prototype and verify more JavaSpaces applications. The
verification of the system is done by using the combination of the yCRL tool
set [2] and the C&£SAR ALDEBARAN DEVELOPMENT PACKAGE (CADP) [10].

During the implementation of the yCRL model we had to face several diffi-
culties in interpretation of the JavaSpaces specification. There are some issues
that JavaSpaces specification leaves unclear or ambiguous and that are actually
solved in the implementation. In our work, we attempt to clarify and resolve this
lack of precision and detail.

This paper is structured as follows. After this introduction, we present the
JavaSpaces specification and the pCRL language. We continue with the study
of the formalism of the JavaSpaces architecture focusing on the notify primi-
tive. Then, we illustrate the specification by modeling and model checking a
simple application. The paper finishes with the conclusion and some references
to other related works. The specification and some examples can be found at:
“http://www.cwi.nl/“miguel/JavaSpaces/”.

2 JavaSpaces

JavaSpaces is both an application program interface (API) and a distributed
programming model. Agents can interact simultaneously with a shared dataspace
of objects, the space handles the details of concurrent access to the data. Agents
of applications are “loosely coupled”, they do not communicate with each other
directly but by sharing information via the common space. They use a small set
of primitives described in Figure 1:

Application
‘Application
process
process
read
write (\ take

@ Expifed Entry

notify . entries
‘Application -7
® ® 3
waiting for notify . 7 \
notification event |

read(waiting) Transaction
write \ taki

// €
o
Application Application
process process
Fig. 1. JavaSpaces architecture overview

A write operation places a copy of an entry into the space. Entries can be
located by “associative lookup” implemented by templates. Processes find the

X Jornadas de Concurrencia

entries they are interested in by expressing constraints about their contents with-
out having any information about the object identification, owner or location.
A read request returns a copy of an object from the space that matches the
provided template, or null if no object has been found. If no matching entries are
in the space, then read may wait a user-specified amount of time (timeout) until
a matching entry arrives in the space. ReadIfEzists performs exactly like read,
but it only blocks if there are matching objects in the space but they have con-
flicting locks from one or more other transactions. Take and takelfEzists are the
destructive versions of read and readIfExists: once an object has been returned,
it is removed from the space.

The notify primitive is used to express interest in future incoming objects.
The agent provides a template and the space will notify the agent when a match-
ing object has arrived, by means of an event. Three entities are involved in the
notification mechanism: The space is the source of events, it fires an event when
an entry matches a registration. The destinations, called listeners, wait for the
arrival of events and “react” to them. And the application process which register
the listeners to be notified. The registration is done by the synchronous action
notify based on the JavaSpaces specification [12].

public interface JavaSpace {
.3
EventRegistration notify(Entry tmpl, Transaction txn,
RemoteEventListener listener, long lease,
MarshalledObject handback)
throws RemoteException, TransactionException;

The primitive gets as arguments the template to match entries, the refer-
ence to a transaction, the reference to the remote event listener, the lease and a
handback used to pass information from the application process to the listeners.
The space returns an eventRegistration object, which includes the registration
identification number (the space assigns a identification number to any new reg-
istration), the granted lease and the initial sequence number for events generated
from the notify registration. Every matching entry will increase by one the se-
quence number of the registrations. And newly generated event will contain a
sequence number greater than the previous one.

JavaSpaces also provide support to leasing and transactions, from the Jini
architecture [17]:

JavaSpaces supports a transactional model ensuring that a set of grouped
operations are performed on the space atomically, in such a way that either
all of them complete or none are executed. Transactions affect the behavior
of the primitives, e.g. an object written within a transaction is not externally
accessible until the transaction commits, the insertion will never be visible if
the transactions aborts. Transactions provide a means for enforcing consistency.
Transactions in JavaSpaces preserve the ACID properties: Atomicity, Consis-
tency, Isolation and Durability.

pCRL

JavaSpaces allocates resources for a fixed period of time, by associating a
lease to the resource. The lease model is beneficial in distributed systems where
partial failures can produce waste of resources. The space determines the time
during which an object can be stored in the repository before being automatically
removed. Also transactions are subject to leasing, an exception is sent when the
lease of a transaction has been expired. Leases can always be renewed or canceled.

In the paper [18] we have presented the uCRL specification of the primitives:
write, read, take, takelfEzists and readlfExists, leases and transactions. Now we
are going to focus on the notify operation.

To know more about JavaSpaces, please consult the references [12, 16].

3 Introduction to pCRL

A uCRL specification is composed by two parts. First, the definition of the data
types, called sorts. A sort consists of a signature in which a set of function
symbols, and a list of axioms are declared. For example, the specification of the
booleans (Bool) with the conjunction operator (and) is defined as follows:

sort Bool

func T,F:—Bool

map and: BoolxBool—Bool

var b: Bool

rew and(T,b)=0Db
and(F,b) = F

The keyword func denotes the constructor function symbols and map is used
to declare additional functions for a sort. We can add equations using variables
(declared after rew and var) to specify the function symbols. The declaration
of the sort Bool must be included in every uCRL specification because booleans
are used for modeling the guards in the “if-then-else” construction.

The second part of the specification consists of the process definition. The
basic expressions are actions and process variables. Actions represent events in
the system, are declared using the keyword act followed by an action name
and the sorts of data with which they are parameterized. Actions in yCRL
are considered atomic. There are two predefined constants: § which represents
deadlock, and 7 which is a hidden action. Process variables abbreviate processes,
and are used for recursive specifications. Process operators define how the process
terms are combined. We can use:

— The sequential, alternative and parallel composition (.,+,||) process opera-
tors.

— sum () to express the possibility of infinite choice of one element of a sort.

— The conditional expression “if-then-else” denoted p <t b > ¢, where b is
a boolean expression, p and ¢ process terms. If b is true then the system
behaves as p otherwise it behaves like g.

X Jornadas de Concurrencia

They keyword comm specifies that two actions may synchronize. If two
actions are able to synchronize we can force that they occur always in com-
munication using the operator Jy. The operator 77 hides enclosed actions by
renaming into 7 actions. The initial behavior of the system can be specified with
the keyword init followed by a process term:

System = 710w (po || p1 | ---)
init System

4 wpCRL Specification

The space is modeled as a single process called javaspace. External agents are
implemented as separate processes executed in parallel with the space. A Java-
Spaces system is specified in yCRL as follows:

System = 770m (javaspace(...) || external Py(idy : Nat,...)
|| external Py (id; : Nat,...) | ...)

The arguments of the javaspace process represent the current state of the
space. They are composed by: stored objects, active transactions, the current
time, active operations, notify registrations, et cetera...External processes in-
teract with the space by means of a set of synchronous actions, derived from
the JavaSpaces API. Every process has a unique identification number used by
the space to control the access to the common repository. Processes use the sort
Entry to encapsulate the shared data. In the JavaSpaces specification, an entry
corresponds to a serializable Java™ object which implements the public inter-
face Entry (with some other restrictions). In our model, entries are represented
by a sort. Users can define their own data structure according to the application
requirements. The insertion of a new entry into the space is done with the action
write which has four arguments: the process identification number of the sort
Nat (naturals), the entry of the sort Entry, the lease of naturals and the refer-
ence to a transaction (null if it is not submitted to any one). When the space
receives a write request, it automatically encapsulates the entry, with its lease
and the reference to the transaction, in an new data sort (Object) and stores it
in the database which has the structure of a Set.

Look up primitives could be classified as: destructive and non-destructive,
depending on whether the item is removed or not after the execution of the
action, and in blocking and non-blocking depending on whether the process waits
until it receives the requested item. We can invoke destructive look ups (take)
or non-destructive (read), setting up the time during which the action blocks.

The JavaSpaces specification says that a look up request searches in the
space for an Entry that matches the template provided in the action. If the
match is found, a reference to a copy of the matching entry is returned. If no
match is found, null is returned. We do not use templates to model the matching
operation but by adding to every invocation one predicate, as argument, which
determines if an Entry matches or not the action. This predicate belongs to the

pCRL Specification

sort Query, defined by the user according to the specification of the Entry. The
sort must include the operator test used to perform the matching. An entry of
the space will match a look up action if it satisfies the associated test predicate.
The look up operations are not atomic. They are done by two synchronous
actions; first the process makes the request and blocks waiting for an entry or
for the timeout expiration. First, the space stores this request in a set with other
pending requests and afterward the space returns a matching entry or the null
value.

The behavior of all the primitives would be slightly different depending on
whether they are executed under a transaction or not. Before focusing on the
notify primitive let’s see a small example of code illustrating the presented op-
erations. The example is a recursive process which renames entries of type A to
type B. It performs the operation under a transaction leased for one time unit.
If the timeout of the transaction expires the space raises an exception and sent
it to the process by means of a synchronous action (ezception), then the process
deadlocks:

proc ren(id:Nat) =
D ire:Nat (Create(id, trc, S(0))
.(take(id, trc, FOREVER, isTypeA) + Exception(id, trc).d)
-2e:Entry ((Return(id,e) + Exception(id, trc).d)
.(write(id, renameToB(e), trc, FOREVER)+ Exception(id, trc).d))
.(commit(id, trc) + Exception(id, trc).f))
.ren(id).é

Now, we are going to focus on the specification of the notify mechanism
introduced in Section 2.

For simplicity, we have abstracted away the lease, the transaction and the
handback but we will comment the inclusion of the first two fields later in this
section. The template is replaced by a query. We assume the registration is done
atomically, thus no events can be fired between the begin of the registration
and its return. Therefore the initial sequence number of events will be zero.
Due to these abstractions, the space only returns a single value representing
the registration identification number. This operation is performed reliably so it
cannot throw any exception. The action signature is:

sort Nat, Query
act notify: Nat xNat xQueryxNat

The arguments are: the process identification number, the listener identification
number, the query and the event registration identification number (provided by
the space).

When the space synchronizes with a notify action, it stores the registration
in a set. For each newly written entry it will check every registration to know
whether it has to be notified or not. In other words, the space marks the regis-
trations whose query matches the new entry. It also increments by one the event
sequence number. The specification says that the space makes a “best effort”

X Jornadas de Concurrencia

to deliver the notifications, a notification event will be eventually sent to the
registered listeners. The space does not guarantee the generation of an event for
every matching entry, so several matching entries can be stored before the space
decides to fire a message. The sequence numbers are useful to keep track of the
events, as we will see on a small example in Section 5.

An event listener is an object that reacts to the reception of an event and that
may be running remotely. The listener has a method (notify') invoked whenever
it receives a notification event. According to the JavaSpaces specification the
notify call is synchronous so the space waits on a listener until the call finishes,
but the JavaSpaces implementations are multi-threaded hence many different
notify calls can be done concurrently. We modeled the notify operation with our
single javaspace process, assuming that we have an implementation with enough
threads to manage all the notifications of the system. The uCRL space delivers
the event and doesn’t wait until the end of the method call of the listener. This
policy will not be admissible if there are too many listener registrations or if the
notify methods are very slow (block the space for long periods) or never return.
Our model would help programmers to take care about preserving the desirable
behavior of the system, for example we will show one application in Section 5
the detection of a problem in a listener which arrives to a non desired blocked
state.

The event sent by the space contains some data values. It includes the reg-
istration identification number, to allow a listener to distinguish the event as
belonging to a particular registration and the sequence number of events, which
can be used by listeners to know the number of events occurred from last noti-
fication.

In our model, listeners are going to be modeled as separate processes. uCRL
does not allow the instantiation of processes on running time so listeners have to
be defined at the beginning, according to the needs of the application. A listener
has the following structure:

proc listener(id:Nat, dg:Dy,...,d,:D,,) =
Zregist'rationID:Nat(Zseq:Nat (‘NOtlfy(ld' registrationID, seq)
.do_work
listener(id)))

Where dy:Dg,...,d,:D,, are the user defined arguments, and _Notify the action
for receiving the event. The .do_work operation may be composed of any com-
putation or any communication with other processes or with the space.
Messages travel over the network from the event source (the space) to the
event destination (the listener); they are not delivered instantaneously nor re-
liably. Hence events may be lost and never reach their destinations. They may
also arrive unordered because events can follow different paths. The event source
can always duplicate messages because it cannot be sure whether the delivered
events have arrived or not. To model this non-deterministic behavior, we specify

! Do not confuse with the registration notify method.

pCRL Specification

a separate process which represents the network situated between the source and
the destination. This process stores the events in a fifo list, and can always:

— Receive: The network process receives and event from the space by means
of the synchronous action __Notify.

— Loose: It removes the first object of the list.

Swap: It changes the order of the first two events that have the same desti-

nation.

— Duplicate: It replicates the first element of the list.

Deliver: The networks dispenses an event to a listener using the action

__notify.

We parameterized the network process with a field counting the number of
errors (looses, duplications and swaps). To keep finite the system we only allow a
maximum number of errors. A reliable network would have a maximum number
of errors equal to zero.

The complete system is composed of the parallel composition of the appli-
cation processes, listeners, the space and the network. Figure 2 illustrates the
model.

‘Application
process
wri f

ctions

registration
Application
process
Space Registrations
notifications
Loose
[/‘] Duplicate
/
/ NETWORK | Swap order
,/ takewrite,...

Fig. 2. Notification architecture

We can also add leasing to the registration mechanism. We proceed in the
same way as for the look up primitives. The application process passes the re-
quested lease to the space, it includes this value in a data field of the registration
object. The space manages a centralized clock implemented as a discrete counter.
The javaspace process increments this clock arbitrarily. Using this counter we
can manage the expiration of the leases. When the registration lease expires the
space automatically removes the object from the data base. Listeners can receive

X Jornadas de Concurrencia

events even if the registration has been removed, because the messages may be
delayed on the network.

Notify can also be joined to a transaction. The space will send events when
a matching entry is written under the same transaction of the registration or
under the null transaction. If a transaction expires the joined registrations will
be removed. We have not implemented these two issues (transactions and leasing)
for the notify primitive, but according to its specification for the other primitives
we foresee no major difficulties to do it. This concludes the presentation of the
#CRL model, now let’s analyze a simple application.

5 Example

In this section we are going to illustrate the use of the proposed specification to
model check JavaSpaces applications by analyzing a simple example. The system
consists of a process which registers a listener, expressing interest in any new
data of the type message. When the listener receives the event, it just takes the
message and prints “Hello World” (see the example in Chapter 8 of “JavaSpaces
Principles, Patterns, and Practice” [12]). First we specify the sort Entry, which
only has two possible values the compulsory null entry, and the message (we
don’t care about its content). The uCRL code is as follows:

sort Entry

func entryNul:—Entry
message: —Entry

map eq: EntryxEntry—Bool

var e: Entry

rew eq(entryNullentryNull) =T
eq(message, message) = T
eq(entryNull, message) = F
eq(message, entryNull) = F

We define two queries: any which matches any entry and isMessage which matches
the entries of type message. Let’s see the code:

sort Query

func any: —»Query
isMessage: —Query

map test: QueryXxXEntry—Bool
eq: QueryxQuery—Bool

var e Entry

rew test(any,e)=T
test(isMessage, message) = T
eq(any,any) =T
eq(isMessage,isMessage) = T
eq(any,isMessage) = F
eq(isMessage,any) = F

Example

The user application is composed by two processes. Apps executes the action
notify registering the listener and the listener, that first gets the event and then
tries to take the entry from the space. If the take is successful it does the ac-
tion HelloWorld. Note that we have simplified the primitives take and write by
removing the lease and the transaction. The code is:

proc apps(id: Nat, listenerID: Nat) =
> registrationID:Nat (NOtify(id, listenerlD, isMessage, registrationID))
.write(id, token).d

proc listener(id:Nat) =
ZregistrationID:Nat(Zseq:Nat (—NOtify(id' registrationID, Seq)))
-take(id, isMessage)
.waiting
'Ze:E’ntry (Return(id'e))
.HelloWorld
.endNotify(id, registrationlD, seq)
listener(id)

Finally, the complete system is composed by the parallel composition of the
space, the apps process, the listener and the network, which is allowed to commit
one error.

SyStem = a{un‘it)e,WWite,'not'ify,Not'ify,_not'ify,_Notify,...}
(javaspace(0,emN, emA, 0)|| Network(emE, 0, .5(0)) ||
apps(0, S(0)) || listener(S(0)))

To each pCRL specification belongs a labeled transition system (LTS) being a
directed graph, in which the nodes represent states and the edges are labeled with
actions. If this transition system has a finite number of states the uCRL tool set
can automatically generate this graph. Subsequently, the CASAR ALDEBARAN
DEVELOPMENT PACKAGE (CADP) can be used to visualise and to analyse this
transition system. Figure 3 shows the generated LTS of the simple HelloWorld
application where the action N corresponds to the communication between the
notify action of the application process and the Notify action of the space, W
to the write actions, _N corresponds to send an event from the space to the
network, __N to deliver it from the network to the listener, T corresponds to
a take request and Rt is the return of the take. Duplicate, loose, HelloWorld,
waiting and endNotify are external actions informing about the execution of the
system. Remark that the action endNotify is just a “printed” message, listeners
do not synchronize with the space at the end of the notify invocation.

We can see in the figure 3 a desirable execution following the path: 0-1-2-
3-4-7-9-11-13-15) and two undesired behaviors. The first is when the network
looses the data (path: 0-1-2-3-5), thus the listener doesn’t receive the message.
The other is when the network duplicates the event(0-1-2-3-6-8-10-12-14-15-16-
17-18-19-20), then listener tries to take two times the message. In this case the
listener gets blocked waiting for a return that will never happen unless another

X Jornadas de Concurrencia

Fig. 3. LTS of HelloWorld in a non reliable network

process writes a new message. We can avoid the second undesired behavior by
checking the event sequence number before trying to perform the take primitive.
This is modeled with the following code:

proc listener(id:Nat, last:Nat) =
> registrationI D:Nat(Dseq:Nar (-Notify(id, registrationlD, seq)
.(take(id, isMessage)
.waiting
Ze:Entry (Return(id'e))
.HelloWorld <1 gt(seq, last) > do_nothing)
.endNotify(id, registrationID, seq)
listener(id)))

The listener only tries to take the message if the sequence number (seq) is
greater than the sequence number of the last notification (last), otherwise it
assumes that the event has been duplicated and finishes.

We can automatically verify some properties of the system using the Evalu-
ator tool from the CADP package. These properties are expressed in temporal
logic. We used the regular alternation-free u-calculus formulas [15]. For example,
the following formula means that every notify invocation of a listener finishes, in
other words: after a __N there is always an endNotify with the same arguments:

[true*.’__N(.*)’Jmu X.(<true>true and [not ’endNotify(\(.*\))’]1X)

Related Work

This formula does not hold for the first example of listener. The evaluator
analyzes it and gives the counter example corresponding to already pointed path.
However the second listener, which checks the sequence number of events satisfies
the property.

6 Related Work

As we said, this work is an extension of the [18]. Our information of JavaSpaces
is based upon the book [12], and the documentation from Sun on JavaSpaces [16]
and Jini [17]. The latter document describes a.o. the concepts of leasing, trans-
actions and distributed events. The basic ideas of JavaSpaces go back to the
coordination language Linda [8].

Some work on the formalization of JavaSpaces (or other Linda-like languages)
exist, notably [4, 5, 6, 7]. In these papers, an operational semantics of Java-
Spaces programs is given by means of derivation rules. In fact, in this approach
JavaSpaces programs become expressions in a special purpose process algebra.
Those authors aim at general results, i.e. comparison with other coordination
languages, expressiveness, and results on serializability of transactions. Verifica-
tion of individual JavaSpaces programs wasn’t aimed at.

Although we also take an operational approach, our technique is quite dif-
ferent. We model the Javaspace system, and the JavaSpaces programs as ex-
pressions in the well-known, general-purpose process algebra, yCRL [13]. This
allows us to use the existing uCRL tool set [2] and the CADP tool set [10] for
the verification of individual JavaSpaces programs. In our model, the JavaSpaces
programs communicate with the JavaSpaces system synchronously.

Our technical approach is similar to the research in [9, 14]. In these papers,
programs written under the Splice architecture [3] are verified. Both papers
give an operational model of Splice in pyCRL, and use the yCRL and CADP
tool sets to analyse Splice programs. One of the main purposes of the Splice
architecture is to have a fast data distribution of volatile data. To this end,
the data storage is distributed, as opposed to the central storage in JavaSpaces.
In Splice, data items are distributed by a publish/subscribe mechanism. Newer
data items simply overwrite outdated items.

7 Conclusion

In this paper we studied the specification of the notify mechanism of the Java-
Spaces architecture. We have found several difficulties in interpretation that we
tried to solve. Some of these problems are solved in the implementation of Java-
Spaces but not in its specification.

First, the specification says that an event can be duplicated by the event
source. This issue is source of several questions: How and when does the space
decide to send twice the same message? Has the notify call a timeout? Can
listeners be notified during a notification? Other problem comes from the in-
terpretation of “best effort”; the space will “eventually” send a event after a

X Jornadas de Concurrencia

write. But when does the space send a event? and when does it compress several
matches in one notification?.

The notify call is “synchronous”, so the space blocks until the end of the
remote method. Which actions are listeners allowed to do in the notify method?
What will happen if a listener never returns? What will be the difference between
a single-threaded and a multi-threaded space?

We attempted to solve the unclear details by making assumptions about the
behavior of the system. Our informations are not only based on the JavaSpaces
specification, sometimes ambiguous, but also in the archives of the discussion
group where some of these have been treated. See, for example:

http://archives. java.sun.com/cgi-bin/wa?A2=ind9904&L~=javaspaces-users&P=R3468&D=0&H=0&0=T&T=1

http://archives. java.sun.com/cgi-bin/wa?A2=ind0106&L=javaspaces-users&P=R2562&D=0&H=0&0=T&T=1

The last part of the paper is dedicated to the study of a very simple JavaSpace
applications. Although we cannot verify the correctness of the proposed model,
we can see, in small examples, that the behavior corresponds to JavaSpaces
specification. Together with the uCRL simulator this provides some validation of
the model. We also present some ideas of how to verify properties of applications.
In the same way we can study more complex problems.

The pCRL model of the notification mechanism may be used not only to
model check JavaSpaces applications but also to study the architecture itself
and resolve all kinds of unclear or ambiguous points.

References

[1] Jan A. Bergstra and Jan Willem Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37:77-121, 1985.

[2] S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. Langevelde, B. Lisser, and J.C.
van de Pol. uCRL: a toolset for analysing algebraic specifications. In Proc. of
CAV, LNCS 2102, pages 250-254. Springer, 2001.

[3] M. Boasson. Control systems software. IEEE Trans. on Automatic Control,
38(7):1094-1106, July 1993.

[4] M.M. Bonsangue, J.N. Kok, and G. Zavattaro. Comparing coordination models
based on shared distributed replicated data. In Proc. of SAC, pages 146-155.
ACM, 1999.

[6] N. Busi, R. Gorrieri, and G. Zavattaro. Process calculi for coordination: From
Linda to JavaSpaces. In Proc. of AMAST, LNCS 1816, pages 198-212. Springer,
2000.

[6] N. Busi and G. Zavattaro. On the serializability of transactions in JavaSpaces. In
U. Montanari and V. Sassone, editors, Electronic Notes in Theoretical Computer
Science, volume 54. Elsevier Science Publishers, 2001.

[7] Nadia Busi and Gianluigi Zavattaro. Publish/subscribe v.s. shared dataspace co-
ordination infrastructures. In Workshop on Web-based Infrastructures and Coordi-
nation Architectures for Collaborative Enterprises (WETICE-2001). IEEE Com-
puter Society Press, 2001.

[8] N. Carriero and D. Gelernter. How to Write Parallel Programs: A First Course.
MIT Press, 1990.

[9]

[10]

[11]
[12]
[13]

[14]

[15]

Conclusion

P.F.G. Dechering and I.A. van Langevelde. The verification of coordination. In
Proc. of COORDINATION, LNCS 1906, pages 335-340. Springer, 2000.

J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP - a protocol validation and verification toolbox. In Proc.
of CAV, LNCS 1102, pages 437-440. Springer, 1996.

W. Fokkink. Introduction to Process Algebra. Texts in Theoretical Computer
Science. Springer, 2000.

E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces principles, patterns, and prac-
tice. Addison-Wesley, Reading, MA, USA, 1999.

J.F. Groote and M.A. Reniers. Algebraic process verification. In J.A. Bergstra et
al., editor, Handbook of Process Algebra, chapter 17. Elsevier, 2001.

J.M.M. Hooman and J.C. van de Pol. Formal verification of replication on a dis-
tributed data space architecture. In Proceedings ACM SAC, Coordination Models,
Languages and Applications, page (to appear), Madrid, 2002. ACM press.

R. Mateescu. Verification des proprietes temporelles des programmes paralleles.
PhD thesis, Institut National Polytechnique de Grenoble, 1998.

SUN Microsystems. JavaSpaces™ Service Specification, 1.1 edition, October 2000.
See http://java.sun.com/products/javaspaces/.

SUN Microsystems. Jini™ Technology Core Platform Specification, 1.1 edition,
October 2000. See http://www.sun.com/jini/specs/.

J.C. van de Pol and M. Valero Espada. Formal specification of JavaSpaces
architecture using pcrl. In Proc. of COORDINATION, page (to appear). Springer,
2002.

TM

