Verification of JavaSpaces™ Parallel Programs*

Jaco van de Pol and Miguel Vaero Espada
Centrum voor Wiskunde en Informatica
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands
{Jaco.van.de.Pol, Miguel .Val ero.Espada} @cwi.nl

Abstract

In this paper, we illustrate a formal verification method
for distributed JavaSpaces applications by analyzing a non-
trivial fault tolerant algorithm that solves a typical coordi-
nation problem. The problem consists of the computation of
an extensive task, performed in parallel by splitting it into
smaller and more manageable parts. The proposed solu-
tion, based on JavaSpaces coordination primitives, trans-
actions and time-outs, is verified by translating it to the for-
mal language . CRL, together with the previously developed
1CRL-model of the JavaSpaces architecture, and by using
model checking techniques.

Keywords: software architecture (JavaSpaces), Formal
analysis and verification, Parallel computing, Distributed
termination problem.

1 Introduction

The construction of reliable distributed systems is a dif-
ficult problem. The functional correctness of such systems
is hard to establish, due to the combinatorial number of
possible states and interactions that a number of separate
processes can exhibit. Besides this, non-functional require-
ments, such as efficiency, real-time behaviour, robustness
and fault tolerance, require sophisticated algorithms. A pos-
sible solution to these problems is the use of coordination
architectures [22].

In this paper, we present a framework and a methodol-
ogy for validating applications built using the shared data-
space architecture, JavaSpaces. In previous works [18, 19],
we have introduced a formal model of the architecture and,
now, we use this model to verify a JavaSpaces application.
The problem consists of the parallel summation of a mul-
tiset of values, and the proposed solution is a fault tolerant
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algorithm on which an arbitrary number of workers perform
simple additions and one manager detects termination.

Therefore, the main contribution of this paper is the tech-
nical validation of the reusable framework, that covers all
the main characteristics of the JavaSpaces architecture, and
the verification method on a, far from trivial, example. Fur-
thermore, the proposed algorithm can be generalized in or-
der to cover an important class of typical JavaSpaces appli-
cations: computationally intensive problems, that are bro-
ken down into a number of smaller tasks that can be exe-
cuted in parallel.

JavaSpaces™ [23], being a coordination architecture,
provides strong high-level primitives for communication
and synchronization, guaranteeing global consistency. This
middleware is a Sun Microsystems, Inc. coordination archi-
tecture based on the Linda paradigm [7] and implemented as
a Jini™ [24] service. JavaSpaces facilitates the easy imple-
mentation of parallel Java programs. JavaSpaces applica-
tions are, basically, composed by agents that communicate
and synchronize by sharing objects through a shared repos-
itory. Objects can be written, looked up, and taken away.
A transaction mechanism is provided, which can be used
to achieve global consistency and fault tolerance. Time-out
and leasing mechanisms are used to avoid that processes
can claim resources forever. We shortly introduce the main
features of JavaSpaces in Section 2.

Although using such an architecture makes life easier
for the application programmer, it remains difficult to es-
tablish the correctness of non-trivial examples. Testing a
distributed system is hard, due to the non-determinism in-
troduced by different interleavings of the components’ exe-
cutions. Formal methods [20, 9] have been advocated as an
alternative to testing. These methods use algorithms from
mathematical logic (theorem proving [21] and model check-
ing [8]) in order to guarantee the correctness of a mathemat-
ical model.

In order to verify a JavaSpaces application, we devel-
oped a formal model of the JavaSpaces architecture, in the
process algebra pCRL [14]. A JavaSpaces system of n ap-
plication programs is modeled by n 4CRL processes plus a



separate CRL process which models the shared data space.
The ©CRL toolset [3] can be used to generate the full state
space for the system, and subsequently the CADP-model
checker [12, 17] can be used to verify correctness condi-
tions on this state space. Of course, this data space model
can be reused in new verifications. So we obtain a generic
method for verifying distributed JavaSpaces applications.

The example selected to illustrate our method is a typical
coordination problem, called parallel summation. Initially,
the space is filled with a multiset of numbers. These num-
bers shall be replaced by their total sum, and upon comple-
tion this sum shall be reported. We stipulate that the so-
lution shall be efficient and fault tolerant, and shall allow
transparent replication.

Our design consists of a number of workers, which re-
peatedly and independently replace two numbers by their
sum, and a manager, which is a special worker that can also
detect termination. In this setting, fault tolerance means
that the workers and the manager can crash and recover at
any time, without doing any harm. Transparent replication
means that more workers can be added at any time to as-
sist in the summation process. The actual implementation
is based on JavaSpaces, and uses a tricky combination of
transactions and time-outs.

The correctness of our solution is not obvious at all. We
formally verify in Section 4 that, for several scenarios if
the manager is up sufficiently long, then the total sum will
eventually be reported. The source code can be found at:
http://www.cwi.nl/"miguel/JavaSpaces.

2 JavaSpaces

JavaSpaces is both an application program interface
(API) and a distributed programming model. Agents can
interact simultaneously with a shared dataspace of objects,
the space handles the details of concurrent access to the
data. Agents of applications are “loosely coupled”, they
do not communicate with each other directly but by shar-
ing information via the common space. The basic primi-
tives are writing and looking up objects in the repository.
JavaSpaces, as a Jini service, also provides support for dis-
tributed events, leasing and transactions. Figure 1 presents
an overview of the architecture.

A write operation places a copy of an entry into the
space. Entries are granted for a fixed period of time (called
lease). The space automatically removes the objects when
their lease expires. Entries can be located by “associative
lookup” implemented by matching templates. Processes
find the entries they are interested in by expressing con-
straints about their contents without having any informa-
tion about the object identification, owner or location. A
read request returns a copy of an object from the space that
matches the provided template. Read requests are block-

ing in principle, but processes can limit the amount of time
they are willing to wait for a matching entry. If this time
expires without finding a matching entry, a null entry is re-
turned. ReadIfExists is similar to read, but it only blocks if
there exist matching objects in the space that are involved
in some transaction (see below). Take and takelfExists are
the destructive versions of read: once an object has been
returned, it is removed from the space.

Transactions ensure that a set of grouped operations are
performed on the space atomically, in such a way that ei-
ther all of them complete or none are executed. After the
creation of a transaction, a process can either abort it, or
commit. Transactions are also subject to leasing. If the
lease expires the space automatically aborts the transactions
and raises an exception. Transactions affect the behavior
of the primitives. E.g., an object written within a transac-
tion is not externally accessible until the transaction com-
mits, if the transaction aborts the insertion will never be
visible. Transactions provide a means for enforcing con-
sistency. JavaSpaces’ transactions are claimed to preserve
the ACID properties: Atomicity, Consistency, Isolation and
Durability.

The space also handles some distributed events, in par-
ticular: a process can inform the space about its interest in
future incoming entries by using the notify primitive. The
space will notify by an event when a matching object arrives
into the space.

All the basic information about JavaSpaces needed to un-
derstand the rest of the paper has been included in this sec-
tion, nevertheless we refer to [13, 23, 15] for a complete
introduction to the architecture. In section 4.1 we briefly
introduce the formal specification of the main features of
the architecture in uCRL.

3 Parallel Summation

We now address the problem of parallel summation of
a multiset of numbers. The main difficulty of this appli-
cation is how to determine when the summation is com-
pleted. Among the different possibilities to solve the prob-
lem, we propose an algorithm consisting of a number of
identical processes (Workers) that independently perform
simple additions and a Master, that is a special worker, who
is charged to publish the result when the complete sum is
accomplished. First, we present a naive (and wrong) im-
plementation of this idea. And after, we will impose to the
system our extra functional requirements and give a correct
solution to the problem.

The following two fragments of Java code implement the
non terminating solution. Note that we do not show the
definition of auxiliary classes and the initialization of the
system. The entries in the space are instances of the class
Number which encapsulates a natural number:
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Figure 1. JavaSpaces architecture overview

Listing. Naive Workers’ loop
for (55){
el = (Number) space.take (anyNumber, NULL, 0);
if (el == null){return;}
e2 = (Number) space.take (anyNumber, NULL, 0);
if(e2 == null){
space.write(el, NULL, Lease.FOREVER);
return;

}
space.write(el.plus(e2), NULL, Lease.FOREVER);

println (”Worker wrote: ” + el.plus(e2));

}

A Worker first tries to take two entries, one after the other,
by performing non-blocking takes matching any number in
the space. If he succeeds then he writes the addition and
loops, otherwise he undoes the changes (if needed) and
halts. The calls to the method take get three parameters:
first, the template which is also an instance of the class
NUMBER. Second, the reference to the transaction which
is equals to NULL as the action is not performed within a
transaction. And finally, the time-out of the action, O means
that if there are not entries in the space the method will not
wait. The method write receives the entry to be stored,
the transaction reference and the lease. The constant FOR-
EVER is used to place objects that will never be removed by
the space. Let us, now, present the code of the Master:

Listing. Naive Master’s loop
for (;5)4
el = (Number) space.take (anyNumber, NULL, 0);

if (el == null){return;}
e2 = (Number) space.take (anyNumber, NULL, 0);
if(e2 == null){
System.out. println (”Master publish:”+el);
return;

}
space.write(el.plus(e2), NULL, Lease.FOREVER);

printin(”Master wrote: ” + el.plus(e2));

The Master is similar to the Workers, but if the second take
does not succeed the Master publishes the value of the first
entry as the final result. In case both takes return an entry
he performs the normal addition and continues. Note that
this solution will lead to incorrect publications, for exam-
ple: a Worker may take the last but one item, and while it is
busy, the Master might take the last one and think that the
algorithm has terminated. Before examining how the Mas-
ter can be sure that he took the last element, let us consider
another important issue.

We have imposed to the system a fault tolerance con-
straint, i.e. any process may suddenly stop and restart. But if
a worker crashes after taking a number, this number would
be lost. This forces us to consider the use of transactions. To
guarantee the non corruption of the data due to the failure
of a process, the critical operations have to be encapsulated
by a transaction. In case a Worker halts or fails in the mid-
dle of an operation, the space will automatically recover to
a stable state, undoing the modifications.

Recall that transactions are subject to leasing. Now the
lease on the Workers’ transactions provides an upper bound
to the duration of a simple summation operation. We choose
this time-out (from now denoted t,,,) to be sufficiently large
to perform one addition. It can be approximated by the es-
timated duration of a simple addition plus the latencies of
the coordination primitives. We can, now, propose a mech-
anism that guarantees the exclusive access of the Master to
the data:

1. When the Master is willing to check termination, he
starts a transaction and writes a special entry (lock) to
prevent Workers to start new operations. Thus, Work-
ers have to check the non existence of the lock entry in
the space before starting a new addition.



2. Then, the Master waits until the end of all possible
active operations, i.e. he has to block more than the
upper bound of the Workers’ operations (at least t,, +1
time units). We denote this time-out with t,p ;.

3. Now, he is sure he has exclusive access, i.e no Worker
has an entry, and no Worker can take any of them.
Then:

e If there is only a single entry in the space the
Master publishes it, commits the transaction and
halts.

o |f there are two entries he performs a simple ad-
dition, puts the result in the space, removes the
lock, commits the transaction and waits until he
decides to restart the termination test again.

The Master’s operations have to be executed also under a
transaction to prevent problems such, for example: the fail-
ure of the Master after having locked the space will forbid
any more progress by Workers. The time-out of the transac-
tion (t,,,) has to be sufficient to guarantee that the process
can perform the steps of the protocol. t,,, can be under
approximated by: t,,ar plus the estimated time to perform
a simple sum and plus the latencies of the involved coor-
dination primitives. Now, let us, first, see the body of the
Master process and then the explanation of some details of
the implementation:

Listing. Master’s loop — correct solution
for (53){
try{
Transaction txn = createTransaction(t-ma);
space.write(lock, txn, Lease.FOREVER);
space . take (noEntry, txn, t.opM);
el = (Number) space.take (anyNumber, txn, 0);
e2 = (Number) space.take (anyNumber, txn, 0);
if(e2 == null){
txn.commit ();
println (”Master publish: ”
return;
}
space.write(el.plus(e2), txn, Lease.FOREVER);
space . take (anyLock, txn, 0);
txn.commit ();
println (”Master wrote: ” + el.plus(e2));
} catch (Exception e){} //loop
Thread.sleep (t_wait);

}

The Master first creates a transaction and locks the space by
writing a lock entry. The lock is written inside the transac-
tion, therefore it will not be externally visible except that
it blocks IfExists actions. Then, the Master has to wait
until the end of the active operations (t,,as). Since we
make no assumptions on the relative speed of the clock
of different processes, we cannot use local primitives as
Thread.sleep(T_opM) to perform the wait. However,
we can use synchronization between the Master process and

+ el);

the space, by reading with a template that matches nothing
(noEntry). This operation will always block during t,,ar
time units. After the null return of this primitive, he has ex-
clusive access and can test the completion of the algorithm.
The behavior of the generic Workers is similar to the
naive version. But now the operations are executed under
a transaction, leased for t,, time units. In case a Worker
receives an exception due to the expiration of the transac-
tion’s time-out, he just restarts the algorithm again. Another
change is that before every addition, a worker has to check
whether the space is locked or not by the Master. This test
is done by means of a ReadlfExists primitive which only
blocks if there are matching entries with conflicting trans-
action locks. Note that the Master is never going to free the
lock before removing it, so, this operation can only result in
a null return, which allows Workers to continue their tasks,
or a transaction exception which will force them to restart.

Listing. Workers’ loop — correct solution
for (;5){
try{
Transaction txn = createTransaction(t_op);
space.readlfExists (lock, txn,Long.MAXVALUE);
el = (Number) space.take (anyNumber, txn, 0);
if (el == null){
txn.abort ();
return;

e2 = (Number) space.take (anyNumber, txn, 0);
if(e2 == null){

txn.abort ();

return;

}
space.write(el.plus(e2), txn, Lease.FOREVER);

space . take (anyLock, txn, 0);
txn.commit();
println (”Worker wrote: ” + el.plus(e2));
} catch (Exception e){} //loop
}

Since all the critical actions are encapsulated in transac-
tions, all agents can arbitrary fail and restart without cor-
rupting the information of the system. However, to detect
the completion of the sum one Master should be alive suffi-
ciently long.

The application allows to have any number of running
Workers. However, replication of the Master would lead
to incorrectness. Nevertheless, it’s possible to imagine a
complete replicable application in which all the processes
are equal and the role of Master or Worker is assigned by
a special entry or token. In this case, if the actual Master
dies the Workers will compete for the token. Note that this
solution will require to manage two different transactions,
one as in the previous processes and another to deal with
the new token.

The proposed algorithm tries to maximize the efficiency
of the computation by allowing as many operations in paral-
lel as possible. Note that Workers do not compete between



each other for any resource, so they run completely in paral-
lel. But, performance of the system depends on the selection
of accurate upper bounds of the simple additions, the rate of
test for termination, which is given by the time the Master
waits between consecutive loops (t,,.:¢) and, of course, on
the number of active Workers and the reliability of the pro-
cesses. t,qir can be tuned according to the estimated total
duration.

If we knew a priori the amount of numbers in the space,
we might use a counter, storing this number and decreas-
ing it after every successful operation, this solution will
strongly reduce the performance of the system due to the
concurrent access to this shared entry. Other similar solu-
tions based on a shared data structure will suffer from the
same handicap.

Another possible approach to solve the problem could be
based on the dispatch of notification events after successful
additions which would allow processes to control the num-
ber of entries left in the space and determine the termina-
tion. This solution presents difficulties due to the, by speci-
fication, unreliable distribution of events, i.e. events may be
lost, duplicated or unordered, which would let unfeasible
the verification of the algorithm.

Even if the basic idea of the algorithm is rather simple,
the proposed solution deals with quite complicated features:
mutual exclusion, transactions and relations between time-
outs. Therefore we cannot immediately claim that the algo-
rithm is correct. In the following section we are going to
use a formal procedure to prove the correctness.

4 Vferification by Model Checking

In this section we describe how the case study is mod-
eled in CRL and how it can be verified. uCRL [14] is a
combination of abstract data types and process algebra. Ab-
stract data types are used to describe data structures (like en-
tries, templates, transaction sets) and their operations (like
comparing, matching, member test). Process algebra is then
used to describe the behaviour of a system, in terms of its
data structures, and the atomic actions that it can perform.
From process algebra, we will use the following notation:
p-q (perform p and then perform ¢); p + q (perform ar-
bitrarily either p or ¢); sum(x:D,p(x)) (perform p(d)
with an arbitrarily chosen d of sort D); p <« b > ¢ (if
b is true, perform p, otherwise perform ¢); p |l g (run
processes p and ¢ in parallel).

4.1 Formal model of a JavaSpaces system

The complete description of the formal specification of
JavaSpaces can be found in two previous works: “Formal
specification of JavaSpaces™ architecture using pCRL”
[18] and “wuCRL specification of event notification in

JavaSpaces™” [19]. The formal model includes the main
features of the architecture: coordination primitives, trans-
actions, leasing and events, only small details, like nested
transactions or the lease renewal mechanism, have been
omitted. During the process of building the formalism we
had to face several difficulties due to existence of unclear
or ambiguous issues and to the lack of detail and precision
of the JavaSpaces specification, these problems have been
solved by making some assumptions about the behavior and
by capturing as close as possible the functionalities of the
architecture.

We only explain here the essentials of the formal mo-
del. A JavaSpaces system is modeled as the parallel sys-
tem JavaSpace || Application || - - - || Application,,. Here
JavaSpace is a CRL process, which arguments represent
the internal state of the space, and communicates with the
applications by synchronous atomic actions, derived from
the JavaSpaces API. The state of the JavaSpace process
contains a.o. the following:

e the entries stored in the space, with their lease.

e pending read and take requests, and notification regis-
trations.

e active transactions.

e asystem clock, used to remove entries and abort trans-
actions whose lease expired, and to unblock lookup re-
quests whose time-out expired.

The notion of “time” is modeled as a centralized clock, de-
scribed by a counter, actions occur ordered in between two
clock ticks. To guarantee progress in the system the space
can only increase the counter if there are no pending inter-
nal actions. Transactions are implemented by using local
sets of entries; every transaction has three sets in which it
stores respectively the written, taken and read entries. The
entries stored in these sets cannot be used outside the trans-
action until the transaction commits.

Applications can synchronize with the space by the fol-
lowing atomic actions®:

e write(id, entry, txn, lease)

e read(id, txn, timeout, tmpl) and readE(id, txn, timeout,
tmpl)

o take(id, txn, timeout, tmpl) and takeE(id, txn, timeout,
tmpl)

e Return(id, entry)

e create(id, txn, lease), abort(id, txn) and commit(id, txn)

IWe exclude the primitives related with the notification mechanism, as
it is not used in this paper.



e Exception(txn)

Here id denotes a unique application identifier used to con-
trol the access of the agents to the space. readE and
takeE are abbreviations of readIfExists and takelfExists. A
transaction (txn) can be NULL (no transaction) or some
transaction-id generated by a create. Once a process has
created a transaction it has to add to every action the pos-
sibility to receive an expiration exception (see examples in
the appendix). A lease or time-out value can be any natural
number, or FOREVER. Finally, tmpl denotes a template.
The lookup-primitives are split in two actions: a request
(read, take, ...) and a Return. The returned value can be an
entry that matches the provided template or a NULL (en-
tryNull) if the associated time-out has expired. The other
primitives are considered atomic and we assume that they
always succeed.

We show, below, the 4CRL equivalent of the Naive Mas-
ter’s loop. Remember that this code does not represent the
correct solution of the problem, we present it here to illus-
trate the relation between the Java and the ¢ CRL code. The
sources of the processes that are analyzed in the next sec-
tion are included, in the Appendix. We obtained the process
expressions by a systematic, manual translation of the Java
code of Section 3.

proc Naive_Master(id:Nat) =
take(id, NULL, tt(0), anyNumber)
.sum(el:Entry,
Return(id, el)
(
take(id, NULL, tt(0), anyNumber)
.sum(e2:Entry,
Return(id, e2)
.(write(id, number(plus(value(el), value(e2))),
NULL, FOREVER)
<1 not(eq(e2, entryNull)) >
M_publish(value(el)).delta)

)
<1 not(eq(el, entryNull)) > delta

)
.Naive_Master(id)

Once the system is specified in uCRL, the toolset allows
to perform symbolic analysis. In general, a specification is
transformed into linear format in which an equivalent single
process replaces the parallel composition of the processes
of the system. Techniques can be applied to this linear mo-
del to, for example, eliminate redundant or dead code or to
reduce the specification by proving confluence which will
lead to a reduction in the state space. The tool gives also the
possibility to build a control flow graph (see appendix) and
a data dependencies graph which present a compositional

view of the system and can be used, for example, to guide
finding desirable abstractions.

Other techniques that can be fruitful in order to prove
the correctness of the application are simulation, state space
visualization, invariant checking and model-checking. The
last one is presented in the following section.

The size of the complete model is around 1700 lines of
code, the bigger (1500 lines) and more complex part of
which corresponds to the JavaSpaces architecture specifi-
cation that can be re-used by users to analyze different dis-
tributed applications based on JavaSpaces with a minimal
effort.

4.2 Model Checking

Model checking techniques are (mostly) restricted to fi-
nite state systems. Therefore, we have to limit our system
by fixing the number of workers, and the amount of entries
initially included in the repository. Actually, we also as-
sumed in the verification that the Workers can fail once and
if they do they cannot recover anymore and the Master can
also fail once and if he does he recovers and he will not fail
anymore. The last assumption is needed in order to guaran-
tee that the Master will detect termination in the end.

The correctness claim of the algorithm is that successful
termination is detected, i.e. the Master publishes the cor-
rect result. Therefore, we would like to prove a property
meaning that on all possible paths, starting from the initial
state, the action M_publish(n) will be reached, with n
representing the correct result. This is expressed in the tem-
poral logic regular alternation-free p-calculus [17] by the
library pattern “inevitable reachability”, which is written as
follows:

mu X.(<true> true
and [not “M_publish(n)’] X)

The formula will be satisfied if the initial state is in-
cluded, in the variable X, in one of the least fix point
iterations.  Starting from the empy set of states (X =
(), the first iteration will actualize the variable X by
adding all the states that have at least one outgoing tran-
sition (<true> true) and all transitions different to
M_publish(n) go to the empy set, in order words the
states that have M_publish(n) transitions only. The
following iterations will add the states that only have
M_publ ish(n) transitions or transitions going to the pre-
vious set of states.

The tool support for the verification is provided by the
combination of the 4CRL tool set [3] and the Evaluator
of the CESAR ALDEBARAN DEVELOPMENT PACKAGE
(CADP) [12, 17]. First, a labeled transition system repre-
senting the full state space is generated by the 4CRL tool
set. After hiding all internal actions, the state space can be



# data entries
# processes 2 | 3 | 4 | 5
1 155 753 4785 33545
2 3738 26082 225463 2200478
3 180881 1464665 | 15224547 -
4 25648290 - - -

Figure 2. Sizes of the generated state space

minimized and visualized, in order to allow visual verifica-
tion of the external behaviour. The Evaluator tool from the
CADRP package is used to check properties from temporal
logic on the state space.

We checked our system for various numbers of appli-
cation processes (1,2,3,4) and several numbers of values
(2,3,4,5). The size of the state space is displayed in Figure2.
In all cases, the formula above is satisfied. The naive imple-
mentation was refuted by our method and a counterexam-
ple was given. In Figure 3 we visualize the reduced state
space, of the correct solution, (only the external behavior
of the processes is displayed), in the case of a master and
two workers (id 1 or 2), summing up three values (1+2+3).
We see various intermediate states. In state number 2 all
processes are still alive, however in state 3 and 4 Worker
1 and 2 have failed, respectively; in state 5 both of them
have failed. We observe that the desired result is always
achieved (just before state 6) and the intermediate additions
can either be done by the Workers or by the Master.

The state space generations (see table) have been done
in a cluster which consists of 8 nodes, each node is a dual
AMD Athlon MP (1.4Gz) system with 2GB of RAM. The
generation of the system with 3 processes and 3 data val-
ues lasted around 2 hours while the biggest presented state
space (4p, 2e) was generated in 24 hours.

5 Related Work

This application builds upon our previous work [18, 19],
in which the formal JavaSpaces model was developed. For a
gentle introduction to JavaSpaces we refer to the books [13,
15], and SUN’s documentation on JavaSpaces [23] and
Jini [24]. The basic ideas of JavaSpaces go back to the co-
ordination language Linda [7].

Some work on the formalization of JavaSpaces (or other
Linda-like languages) exist, notably [5, 6]. Those authors
aim at the semantics of JavaSpaces, its expressiveness, and
results on serializability of transactions. Verification of in-
dividual JavaSpaces programs was not aimed at.

Our technical approach is similar to the research in [11,
16]. In these papers, programs written under the Splice ar-
chitecture [4] are verified. Both papers give an operational
model of Splice in 4CRL, and use the ©CRL and CADP

tool sets to analyse Splice programs. Splice systems are
quite different, because Splice provides a distributed data
storage, as opposed to the central storage in JavaSpaces.

There are several efforts to apply formal methods to the
verifications of Java programs, among them we point to the
Loop Project‘s tool [1] which analyzes single threaded Java
programs by translating the code into PVS and Bandera [10]
which deals with multi-threaded systems and it also makes
a translation of the original source into a specification lan-
guage such as Promela. Our approach is mainly focused
on the study of the coordination part of distributed systems
and encapsulates the details of the communication into the
model of JavaSpaces.

6 Conclusion

Through the analysis of a non-trivial example we val-
idated our general framework to verify JavaSpaces appli-
cations. The studied problem is a representative example
of coordination problems that JavaSpaces is aimed at. The
#CRL language and its related tool sets have been shown
to be suitable to model check this class of applications. We
conclude that small but non-trivial JavaSpaces applications
can he effectively verified using our technology. This tech-
nology could still be scaled up, by using abstraction and
symmetry techniques. In the parallel summation example,
the set of values can be abstracted to just its size. Also, there
is a lot of symmetry because all workers are identical.

We have seen in section 4.1 how we manually translate
the Java code into 4CRL. We think that the automatic trans-
lation of the code is very important from a methodological
point of view and for the “industrial” application of the ve-
rification technique, however this process is completely or-
thogonal to our research and can be carried out by applying
techniques implemented in the Bandera or Loop Project’s
tool, cited above.

Besides scaling up and mechanized translation, future
work could be to use the 4CRL model of JavaSpaces in or-
der to investigate its meta-properties, and simulate proposed
modifications and extensions of JavaSpaces.

By model checking we can only check correctness for a
fixed number of processes, entries, and failures. We think
that in order to verify general correctness for arbitrary num-
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Figure 3. Three processes sum the items (1, 2, 3)

bers, a time consuming interaction with a theorem prover,
like PVS [21] is indispensable. Nevertheless, we think that
the model checking approach that we propose is comple-
mentary to testing. With testing, some executions for some
inputs can be checked. With theorem proving, all execu-
tions on all inputs are checked. The model checking ap-
proach we propose is in between: all executions on some
inputs are checked. This is currently the best available au-
tomated approach. In [11] this approach is called scenario
based verification.

As we claimed in the introduction, the proposed algo-
rithm can be generalized in order to solve other similar co-
ordination problems. Furthermore, we can see this gener-
alization as an alternative fault tolerant distributed imple-
mentation of the so-called chemical abstract machines[2].
The JavaSpaces will store the chemical molecules and the
Workers will perform in parallel the chemical reactions.
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7 Appendix

In the 4CRL specifications of JavaSpaces applications
catching an exception corresponds the ability to always syn-
chronize with the Exception action. Excp abbreviates
the expression Exception(trc) .Master(id). The
Master does not include the wait action after every loop
since is not necessary to prove termination.

Figure 7 shows the control graph of a Worker pro-
cess, note that the labels are abbreviated: C corresponds to
Create, E to Exception, Ato abort and so on.

proc Master(id:Nat) =
sum(trc:Nat, create(id, trc, tt(T_ma))
.(write(id, lock, trc, FOREVER) + Excp)
.(take(id, trc, tt(T_opM), noEntry) + Excp)
.(sum(n:Entry, Return(id, n)) + Excp)
.(take(id, trc, tt(0), anyNumber) + Excp)
.(sum(el:Entry, Return(id, el)
.((take(id, trc, tt(0), anyNumber) + Excp)
.(sum(e2:Entry, Return(id, e2)
.((commit(id,trc) + Excp)
.M_publish(value(el)).Finish)
< eq(e2, entryNull) >
.((write(id, number(plus(value(el), value(e2))),
trc, FOREVER) + Excp)
.(take(id, trc, tt(0), anyLock) + Excp)
.(sum(l:Entry, Return(id, 1)) + Excp)
.(commit(id, trc) + Excp)
.M_wrote(plus(value(el), value(e2)))))
+ Excp)))
+ Excp))
.Master(id)

proc Worker(id:Nat) =
sum(trc:Nat, create(id, trc, tt(T_op))
.(readE(id, trc, FOREVER, anyLock) + Excp)
.(sum(lock:Entry, Return(id, lock)) + Excp)
.(take(id, trc, tt(0), anyNumber) + Excp)
.(sum(el:Entry, Return(id, el)
.((take(id, trc, tt(0), anyNumber) + Excp)
.(sum(e2:Entry, Return(id, e2)
.((write(id, number(plus(value(el), value(e2))),
trc, FOREVER) + Excp)
.(commit(id, trc) + Excp)
.W_wrote(id, plus(value(el), value(e2))))
<1 not(eq(e2, entryNull)) >
(abort(id, trc).d + Excp))
+ Excp))
<1 not(eq(el, entryNull)) >
(abort(id, trc).d + Excp))
+ Excp))
.Worker(id)
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Figure 4. Stategraph of the Worker process
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