Table of Contents
bcg_steady - steady-state numerical analysis of (extended) continuous-time
Markov chains encoded in the BCG format
bcg_steady [
bcg_options]
[
-epsilon eps] [
-sol solution_file] [
-thr [
-append]
throughput_file] [
-mat matrix_file]
[
-red reduced_matrix_file] [
-log log_file]
filename[.bcg] [
parameter=
value
...]
where bcg_options is defined below (see GENERAL OPTIONS).
bcg_steady
performs steady-state analysis on
filename.bcg, which is an (extended) continuous-time
Markov chain encoded in the BCG format.
bcg_steady first transforms filename.bcg
into a numerical matrix indexed by states. Then, it reduces this matrix
by normalizing probabilistic transitions, removing unreachable states and
"vanishing" states, keeping "tangible" states only (see section INPUT below
for details about the BCG graphs accepted by bcg_steady and the definition
of tangible and vanishing states). As a result, the reduced matrix obtained
is the generator matrix of a continuous-time Markov chain. Finally, bcg_steady
computes the corresponding equilibrium ("steady-state") probability distribution
on the long run using the Gauss/Seidel algorithm (see e.g. [Ste94]). It can
also compute throughputs for the transitions of the system.
The
following
bcg_options are currently supported:
-version,
-create,
-update,
-remove,
-cc, and
-tmp. See the
bcg
manual page for a description of
these options.
Taking as input
filename.bcg, on the form
of which various restrictions apply (see section INPUT below),
bcg_steady
can produce five kinds of output files, depending on the command-line options
specified.
The optional list of "parameter=value" arguments at the end of
the command line (where parameter is any character string that neither
contain blanks nor the "=" character, and where value is any character
string that does not contain blanks) is only meaningful to option -thr. The
various "parameter" strings must be pairwise distinct. These arguments have
no influence on the actual numerical computations, they only serve to add
columns in throughput tables (see section OUTPUT-2 below).
The following
options are supported:
- -epsilon eps
- Set the precision of certain floating-point
comparisons to eps, where eps is a real value. When eps is out of [0..1[,
bcg_steady reports an error. Default value for eps is 1E-6.
- -sol solution_file
- Write the probability vector, computed at the equilibrium state, to file
solution_file (see section OUTPUT-1 below for a description of the file
format). If solution_file already exists, its contents will be overwritten.
If solution_file is equal to the special string `-', the probability vector
is displayed on the standard output. Not a default option.
- -thr [-append] throughput_file
- Write the transition throughputs, computed at the equilibrium state, to
file throughput_file. The format of this file is determined by the suffix
(i.e., file extension) of throughput_file (see section OUTPUT-2 below for
a description of the available file formats). If throughput_file already
exists, its contents will be overwritten, unless the -append option is specified,
in which case the transition throughputs will be added at the end of throughput_file
so as to form a proper data table. If the -thr option is missing or if throughput_file
is equal to the special string `-', the transition throughputs are displayed
on the standard output. Option "-thr -" is the default option when the command
line does not contain any of the following options: -mat, -red, -sol, and
-thr.
- -mat matrix_file
- Write the transposed "raw" matrix (prior to matrix reduction)
to file matrix_file. The format of this file is determined by the suffix
(i.e., file extension) of matrix_file (see section OUTPUT-3 below for a description
of the available file formats). If matrix_file already exists, its contents
will be overwritten. If matrix_file is equal to the special string `-', the
matrix is displayed on the standard output. Not a default option.
- -red reduced_matrix_file
- Write the reduced transposed matrix to file reduced_matrix_file. The format
of this file is determined by the suffix (i.e., file extension) of reduced_matrix_file
(see section OUTPUT-3 below for a description of the available file formats).
If reduced_matrix_file already exists, its contents will be overwritten.
If reduced_matrix_file is equal to the special string `-', the matrix is
displayed on the standard output. Not a default option.
- -log log_file
- Write
various information about data structures and computations to file log_file.
The format of this file is undocumented but self-understandable, and might
change in future releases of bcg_steady. If log_file already exists, its
contents will be overwritten. If log_file is equal to the special string
`-', information is displayed on the standard output. Not a default option.
The files solution_file, throughput_file, matrix_file, reduced_matrix_file,
and log_file should be pairwise different; otherwise, the result is undefined.
The input of
bcg_steady is an extended Markovian model
combining features from discrete-time and continuous-time Markov chains. In
order to be accepted by
bcg_steady,
filename.bcg must satisfy several conditions,
otherwise an error message will occur. All transition labels of
filename.bcg
must have one of the following forms:
- "
rate
%f" (called a stochastic transition),
- "label
; rate
%f" (called a labelled stochastic transition), - "
prob
%p" (called
a probabilistic transition), or - "label
; prob
%p" (called a labelled probabilistic
transition),
where %f
denotes a strictly positive floating-point number,
%p
denotes a floating-point number in the range ]0..1], and label denotes
a character string that does not contain the ";
" character (label may be
equal to the internal action, often noted "i" or "tau").
Note: transitions
labelled with only "label" are always forbidden by bcg_steady, including
the case where "label" denotes the internal action.
When constructing the
"raw" matrix, all labels occurring in labelled probabilistic transitions
are discarded.
If there exists a (labelled) probabilistic transition from
a state S1 to a state S2, then all (labelled) stochastic transitions from
S1 to any state (including S2) are discarded when constructing the "raw"
matrix. This reflects that probabilistic transitions are instantaneous,
while stochastic transitions are not.
We classify states as being either
vanishing if at least one (possibly labelled) probabilistic transition
goes out of these states, or tangible otherwise.
The input BCG graph should
contain at least one tangible state, and it should not contain cycles (including
self-loops) of states connected by (possibly labelled) probabilistic transitions.
Note: The sum of %p
values on all (possibly labelled) probabilistic transitions
leaving a vanishing state needs not be equal to 1; if this sum is different
from 1, then probabilistic values will be normalized (i.e., divided by this
sum).
To build the reduced matrix, bcg_steady eliminates all vanishing states,
so that this matrix contains tangible states only. The input BCG graph
should be such that, after reduction, each tangible state possesses at
least one outgoing transition (i.e., there is no deadlock state).
See also
bcg_min
for a discussion about the various probabilistic and stochastic
models present in the literature.
The format
of the file generated using the
-sol option of
bcg_steady is the following.
There is one line per tangible state. Each line contains two numbers: an
integer corresponding to the state number in the input BCG graph and a
real number corresponding to the probability of being in this state on
the long run (i.e., at the equilibrium).
The
throughput table has two (possibly empty) groups of columns:
- The first
group contains one column for each option parameter=value given on the
command line. These columns, if any, are useful when evaluating the performance
of a system parameterized with one or more variables, namely to aggregate
in the same table the different throughputs measures corresponding to different
values of the parameters. Columns of the first group appear in the same
order as the corresponding options on the command line.
- The second group
contains one column per labelled stochastic transition label present in
the input BCG graph, precisely, one column for each different label occurring
on a transition of the form "label
; rate %f
". Columns of the second group
appear in the alphabetic order of labels.
The throughput table starts with
a first "header" line followed by one or several "subsequent" lines.
- The
header line contains the "titles" of columns. For a column of the first
group associated to a parameter=value option, the corresponding title is
parameter. For a column of the second group associated to a label, the corresponding
title is the label itself.
- The subsequent lines contain values. For a column
of the first group associated to a parameter=value option, the corresponding
cell contains value. For a column of the second group associated to a label,
the corresponding cell contains the throughput for this label, i.e., the
sum, for each stochastic transition "label
; rate %f
", of the rate value %f
weighted with the probability of being in the tangible source state of
this transition, in the long run.
If the -append option is absent, or if
the throughput file is equal to the special string `-', or if the throughput
file does not exist, or if it is empty, bcg_steady will generate automatically
the header line and one single subsequent line.
Otherwise, the first line
of the throughput file is expected to contain the titles of columns and
will be parsed to identify the correspondance between labels and columns.
In particular, bcg_steady checks that the first group of columns corresponds
to the parameters given on the command line. After parsing the header line,
bcg_steady will append one single subsequent line at the end of the throughput
file. As regards the second group of columns, if the label of a given column
title does not occur in filename.bcg, a zero throughput will be reported
in the corresponding column; conversely, labels of filename.bcg for which
there is no corresponding column title will be ignored.
Throughputs can
be displayed in two different formats, which are determined according to
the suffix (i.e., file extension) of the throughput file name.
- If the file
name has the ".csv" extension, the throughput table will be displayed in
the CSV (Comma-Separated Values) exchange format understood by most relational
data base applications and spreadsheet software (such as Microsoft Excel,
etc.).
- Otherwise, if the file name has a different extension, or no extension,
or if it is the standard output, throughputs will be displayed in a human-readable
format that is essentially the same format as CSV with commas replaced
by spaces so as to align columns properly. Note that this format is also
understood by some data visualization tools such as Gnuplot.
Both the (transposed) "raw" matrix produced using
option
-mat and the (transposed) reduced matrix produced using option
-red
follow the same format conventions. The essential difference is that the
former contains vanishing and tangible states, whereas the latter only
contains tangible states. Also, the reduced matrix is a generator of a continuous-time
Markov chain.
For two different indexes i and j, the element (i,j) of the
matrix, located at the i-th row and the j-th column, is the sum of all the
floating-point numbers associated to the (labelled) stochastic or probabilistic
transitions going from the j-th state to the i-th state, where floating-point
numbers associated to (labelled) stochastic transitions are interpreted
as positive numbers whereas floating-point numbers associated to (labelled)
probabilistic transitions are interpreted as negative numbers between -1
and 0. Note that rates and probabilities are never mixed since, between
two states, there cannot be stochastic and probabilistic transitions at
the same time.
The diagonal elements (j,j) are defined to be the negative
sum of all matrix elements (i,j) with i different from j.
Matrices can
be displayed in three different formats, which are determined according
to the suffix (i.e., file extension) of the matrix file name.
- If the file
name has the ".csv" extension, the matrix will be displayed in the CSV (Comma-Separated
Values) format mentioned above. Each raw of the matrix is displayed on one
line of the output file, and on each line, the matrix elements are separated
with commas.
- If the file name has the ".spm" extension, the matrix will be
displayed in the format used by the Sparse 1.3 software library (see the
CREDITS section below). This format is the following. The first line of
the file contains the file name. The second line contains the number of
states, followed by the "
real
" keyword. Then, there is one line per each
non-zero element (i,j) in the matrix. Each line contains two integers followed
by one real number: the value of i, the value of j, and the value of matrix
element (i,j). The file ends with a "sentinel" line consisting of three
zeros.
- Otherwise, if the file name has a different extension, or no extension,
or if it is the standard output, the matrix will be displayed in a human-readable
format. The columns of the matrix are split into "packets" so that the text
fits on the size of the display. The indexes of rows and columns are indicated
and null elements of the matrix are displayed as "..." instead of "0". Statistics
(such as matrix size, density, etc.), are displayed after the matrix.
Note:
for graphs with many states, whatever the chosen matrix format, the matrix
files can be large and writing them to disk may take time.
See the
bcg
manual page for a description of the environment
variables used by all the BCG application tools.
Exit status
is 0 if everything is all right, 1 otherwise.
The first version of
bcg_steady was written by Christophe Joubert (INRIA/VASY) and Holger Hermanns
(Saarland University and University of Twente). The algorithm for steady-state
analysis is based on a former implementation by Vassilis Mertsiotakis (University
of Erlangen). Bruno Ondet (INRIA/VASY) ported the tool to various architectures.
David Champelovier and Hubert Garavel (both at INRIA/VASY) deeply revised
the
bcg_steady code and manual page to allow their integration within
CADP. Holger Hermanns and Frederic Lang (INRIA/VASY) proof-checked the manual
page.
bcg_steady uses (an extended version of) the Sparse 1.3 package
from the University of California, Berkeley, developed by Kenneth S. Kundert
under the supervision of Alberto Sangiovanni-Vincentelli.
- filename.bcg
- BCG graph (input)
- filename@1.o
- dynamic library (input or output)
- $CADP/bin.`arch`/bcg_steady
- ``bcg_steady'' program
See the bcg
manual
page for a description of the other files.
bcg
,
bcg_min
,
bcg_transient
,
determinator
Additional information is available
from the CADP Web page located at http://cadp.inria.fr
Directives for installation
are given in files $CADP/INSTALLATION_*.
Recent changes and improvements
to this software are reported and commented in file $CADP/HISTORY.
Please
report bugs to
cadp@inria.fr
[GH02] H. Garavel and H. Hermanns.
On Combining Functional Verification and Performance Evaluation using
CADP. In proceedings of FME'2002, LNCS 2391, pages 410-429, Springer Verlag.
Full version available as INRIA Research Report 4492. Available from http://cadp.inria.fr/publications/Garavel-Hermanns-02.html
[HJ03] H. Hermanns and Ch. Joubert. A Set of Performance and Dependability
Analysis Components for CADP. In proceedings of TACAS'2003, LNCS 2619, pages
425-430, Springer Verlag. Available from http://cadp.inria.fr/publications/Hermanns-Joubert-03.html
[Mer98] V. Mertsiotakis. Approximate Analysis Methods for Stochastic Process
Algebras. Ph.D Thesis, University of Erlangen (Germany), 1998.
[Ste94] W. J.
Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton
University Press, 1994.
Table of Contents